リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

Noguchi, Takaaki Matsumoto, Toru Miyake, Akira Igami, Yohei Haruta, Mitsutaka Saito, Hikaru Hata, Satoshi Seto, Yusuke Miyahara, Masaaki Tomioka, Naotaka Ishii, Hope A. Bradley, John P. Ohtaki, Kenta K. Dobrică, Elena Leroux, Hugues Le Guillou, Corentin Jacob, Damien de la Peña, Francisco Laforet, Sylvain Marinova, Maya Langenhorst, Falko Harries, Dennis Beck, Pierre Phan, Thi H. V. Rebois, Rolando Abreu, Neyda M. Gray, Jennifer Zega, Thomas Zanetta, Pierre-M. Thompson, Michelle S. Stroud, Rhonda Burgess, Kate Cymes, Brittany A. Bridges, John C. Hicks, Leon Lee, Martin R. Daly, Luke Bland, Phil A. Zolensky, Michael E. Frank, David R. Martinez, James Tsuchiyama, Akira Yasutake, Masahiro Matsuno, Junya Okumura, Shota Mitsukawa, Itaru Uesugi, Kentaro Uesugi, Masayuki Takeuchi, Akihisa Sun, Mingqi Enju, Satomi Takigawa, Aki Michikami, Tatsuhiro Nakamura, Tomoki Matsumoto, Megumi Nakauchi, Yusuke Abe, Masanao Arakawa, Masahiko Fujii, Atsushi Hayakawa, Masahiko Hirata, Naru Hirata, Naoyuki Honda, Rie Honda, Chikatoshi Hosoda, Satoshi Iijima, Yu-ichi Ikeda, Hitoshi Ishiguro, Masateru Ishihara, Yoshiaki Iwata, Takahiro Kawahara, Kousuke Kikuchi, Shota Kitazato, Kohei Matsumoto, Koji Matsuoka, Moe Mimasu, Yuya Miura, Akira Morota, Tomokatsu Nakazawa, Satoru Namiki, Noriyuki Noda, Hirotomo Noguchi, Rina Ogawa, Naoko Ogawa, Kazunori Okada, Tatsuaki Okamoto, Chisato Ono, Go Ozaki, Masanobu Saiki, Takanao Sakatani, Naoya Sawada, Hirotaka Senshu, Hiroki Shimaki, Yuri Shirai, Kei Sugita, Seiji Takei, Yuto Takeuchi, Hiroshi Tanaka, Satoshi Tatsumi, Eri Terui, Fuyuto Tsukizaki, Ryudo Wada, Koji Yamada, Manabu Yamada, Tetsuya Yamamoto, Yukio Yano, Hajime Yokota, Yasuhiro Yoshihara, Keisuke Yoshikawa, Makoto Yoshikawa, Kent Fukai, Ryohta Furuya, Shizuho Hatakeda, Kentaro Hayashi, Tasuku Hitomi, Yuya Kumagai, Kazuya Miyazaki, Akiko Nakato, Aiko Nishimura, Masahiro Soejima, Hiromichi Suzuki, Ayako I. Usui, Tomohiro Yada, Toru Yamamoto, Daiki Yogata, Kasumi Yoshitake, Miwa Connolly, Harold C. Lauretta, Dante S. Yurimoto, Hisayoshi Nagashima, Kazuhide Kawasaki, Noriyuki Sakamoto, Naoya Okazaki, Ryuji Yabuta, Hikaru Naraoka, Hiroshi Sakamoto, Kanako Tachibana, Shogo Watanabe, Sei-ichiro Tsuda, Yuichi 京都大学 DOI:10.1038/s41550-022-01841-6

2023.02

概要

Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe³⁺ to Fe²⁺ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.

この論文で使われている画像

参考文献

1. Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016).

2. Grier, J. A. & Rivkin, A. S. Airless Bodies of The Inner Solar System (Elsevier, 2019).

3. Reams, D. V. Solar Energetic Particles 2nd edn (Springer, 2021).

4. Grün, E., Zook, H. A., Fechtig, H. & Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).

5. Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

6. Noguchi, T. et al. Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121–1125 (2011).

7. Noguchi, T. et al. Space weathered rim found on the surfaces of the Itokawa dust particles. Meteorit. Planet. Sci. 49, 188–214 (2014).

8. Matsumoto, T. et al. Surface and internal structures of a space-weathered rim of an Itokawa regolith particle. Icarus 257, 230–238 (2015).

9. Matsumoto, T. et al. Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat. Commun. 11, 1117 (2020).

10. Matsumoto, T. et al. Space weathering of iron sulfides in the lunar surface environment. Geochim. Cosmochim. Acta 299, 69–84 (2021).

11. Thompson, M. S. et al. Microchemical and structural evidence for space weathering in soils from asteroid Itokawa. Earth Planet. Space 66, 89–99 (2014).

12. Langenhorst, F. et al. Mineralogy and defect microstructure of olivine dominated Itokawa dust particle: evidence for shock metamorphism, collisional fragmentation, and LL chondrite origin. Earth Planet. Space 66, 118 (2014).

13. Burgess, K. D. & Stroud, R. Coordinated nanoscale compositional and oxidation state measurements of lunar space-weathered material. J. Geophys. Res. Planets 123, 2022–2037 (2018).

14. Hicks, L. et al. Fe-redox changes in Itokawa space-weathered rims. Meteorit. Planet. Sci. 55, 2599–2618 (2020).

15. Thompson, M. S. et al. Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319, 499–511 (2019).

16. Thompson, M. S. et al. The effect of progressive space weathering on the organic and inorganic components of a carbonaceous chondrite. Icarus 346, 113775 (2020).

17. Matsuoka, M., Nakamura, T., Hiroi, T., Okumura, S. & Sasaki, S. Space weathering simulation with low-energy laser irradiation of Murchison CM chondrite for reproducing micrometeoroid bombardments on C-type asteroids. Astrophys. J. 890, L23 (2020).

18. Lantz, C. et al. Ion irradiation of carbonaceous chondrites: a new view of space weathering on primitive asteroids. Icarus 285, 43–57 (2017).

19. Laczniak, D. L. et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses. Icarus 364, 114479 (2021).

20. Trang, D. et al. The role of hydrated minerals and space weathering products in the bluing of carbonaceous chondrites. Planet. Sci. J. 3, 68 (2021).

21. Kitazato, K. et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science 364, 272–275 (2019).

22. Sugita, S. et al. The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364, eaaw0422 (2019).

23. Morota, T. et al. Sample collection from asteroid (162173) Ryugu by Hayabsa2: implications for surface evolution. Science 368, 654–659 (2020).

24. Tatsumi, E. et al. Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nat. Commun. 12, 5837 (2021).

25. Brearley, A. J. & Jones, R. H. in Planetary Materials Reviews in Mineralogy Vol. 36 (ed. Papike, J. J.) C1 (Mineralogical Society of America, 1998).

26. Weisberg, M. E., McCoy, T. J. & Krot, A. N. in Meteorites and the Early Solar System II (eds. Lauretta, D. S. & McSween, H. Y. Jr) 19–52 (University of Arizona Press, 2006).

27. Yada, T. et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nat. Astron. 6, 214–220 (2021).

28. Yokoyama, T. et al. The first returned samples from a C-type asteroid show kinship to the chemically most primitive meteorites. Science https://doi.org/10.1126/science.abn7850 (2022).

29. Nakamura, E. et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proc. Jpn. Acad. Ser. B 98, 227–282 (2022).

30. Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples. Science https://doi.org/10.1126/science.abn8671 (2022).

31. Ito, M. et al. Hayabusa2 returned samples: a unique and pristine record of outer Solar System materials from asteroid Ryugu. Nat. Astron. https://doi.org/10.1038/s41550-022-01745-5 (2022).

32. Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).

33. Noble, S., Pieters, C. M. & Keller, L. P. An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007).

34. Hayabusa Sample Library (Astromaterials Science Research Group, JAXA/ISAS, accessed 25th November, 2022) https://curation.isas.jaxa.jp/curation/hayabusa/index.html

35. Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

36. Ghiorso, M. S. & Gualda, G. A. R. An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral. Petrol. 169, 53 (2015).

37. Tanbakouei, S. et al. Mechanical properties of particles from the surface of asteroid 25143 Itokawa. Astron. Astrophys. 629, A119 (2019).

38. Bland, P. A. et al. Pressure-temperature evolution of primordial solar system solids during impact-induced compaction. Nat. Commun. 5, 5451 (2014).

39. Rucinski, D. et al. Ionization processes in the heliosphere - Rates and methods of their determination. Space Sci. Rev. 78, 73–84 (1996).

40. Bürgi, A. Proton and alpha particle fluxes in the solar wind: results of a three-fluid model. J. Geophys. Res. 97, 3137v3150 (1992).

41. Keller, L. P. et al. Solar energetic particle tracks in lunar samples: a transmission electron microscope calibration and implications for lunar space weathering. Meteorit. Planet. Sci. 56, 1685–1707 (2021).

42. Matsumoto, T., Hasegawa, S., Nakao, S., Sakai, M. & Yurimoto, H. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa. Icarus 303, 22–33 (2018).

43. Harries, D. et al. Secondary submicrometer impact cratering on the surface of asteroid 25143 Itokawa. Earth Planet. Sci. Lett. 450, 337–345 (2016).

44. Okazaki, R. et al. Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution. Science https://doi.org/10.1126/science.abo0431 (2022).

45. Lauretta, D. et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science 366, 1217 (2019).

46. Rubino, S. et al. Space weathering affects the remote near-IR identification of phyllosilicates. Planet. Sci. Jour. 1, 61 (2020).

47. Kitazato, K. et al. Thermally altered subsurface material of asteroid (162173) Ryugu. Nat. Astron. 5, 246–250 (2021).

48. Cloutis, E. A. et al. Spectral reflectance ‘deconstruction’ of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids. Icarus 305, 203–224 (2018).

49. Rubino, S. et al. Geometry induced bias in the remote near-IR identification of phyllosilicates on space weathered bodies. Icarus 376, 114887 (2022).

50. Prince, B. S. & Loeffler, M. J. Space weathering of the 3-µm phyllosilicate feature induced by pulsed laser irradiation. Icarus 372, 114736 (2022).

51. Hiroi, T., Pieters, C. M., Zolensky, M. E. & Lipschutz, M. E. Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science 261, 1016–1018 (1993).

52. Vernazza, P. et al. Interplanetary dust particles as samples of icy asteroids. Astrophys. J. 806, 204 (2015). (10pp).

53. Vernazza, P. et al. Different origins or different evolution? Decoding the spectral diversity among C-type asteroids. Astron. J. 153, 72 (2017). (10pp).

54. Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. 3, 332–340 (2019).

55. Ito, M. et al. The universal sample holders of microanalytical instruments of FIB, TEM, NanoSIMS, and STXM-NEXAFS for the coordinated analysis of extraterrestrial materials. Earth, Planet Space 72, 133 (2020).

56. Watanabe, M. & Williams, D. B. The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new ζ-factor methods. J. Microsc. 221, 89–109 (2006).

57. van Aken, P. A. & Liebscher, B. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L2,3 electron energy-loss near-edge spectra. Phys. Chem. Mineral. 29, 188–200 (2002).

58. Bourdelle, F. et al. Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2, 3 edges. Contrib. Mineral. Petrol. 166, 423–434 (2013).

59. Le Guillou, C., Changela, H. G. & Brearley, A. J. Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: implications for alteration conditions and H2 degassing of asteroids. Earth Planet. Sci. Lett. 420, 162–173 (2015).

60. de la Pena, F. et al. Electron microscopy (Big and Small) data analysis with the open-source software package HyperSpy. Microsc. Microanal. 23, 214–215 (2017).

61. Lerotic, M., Mak, R., Wirick, S., Meirer, F. & Jacobsen, C. MANTiS: a program for the analysis of X-ray spectromicroscopy data. J. Synchrotron Radiat. 21, 1206–1212 (2014).

62. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

63. Price, M. et al. Comet 81P/Wild 2: the size distribution of finer (sub- 10 µm) dust collected by the Stardust spacecraft. Meteorit. Planet. Sci. 45, 1409–1428 (2010).

64. Shu, A. et al. Cratering studies in polyvinylidene fluoride (PVDF) thin films. Planet. Space Sci. 89, 29–35 (2013).

65. Jehn, R. An analytical model to predict the particle flux on spacecraft in the solar system. Planet. Space Sci. 48, 1429–1435 (2000).

66. Takeuchi, A., Uesugi, K. & Suzuki, Y. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics. J. Synch. Rad. 20, 793–800 (2013).

67. Matsumoto, M. et al. Discovery of fossil asteroidal ice in primitive meteorite Acfer 094. Sci. Adv. 5, eaax5078 (2019).

68. Chan, T. & Vese, L. An active contour model without edges. In Proc. International Conference on Scale-Space Theories in Computer Vision (eds Nielsen, M. et al.) 141–151 (Springer, 1999).

69. Macke, R. J., Consolmagno, G. J. & Britt, D. T. Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1231–1241 (2011).

参考文献をもっと見る