リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Temperature dependence of the Raman spectra of multilayer graphene nanoribbons fabricated by unzipping method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Temperature dependence of the Raman spectra of multilayer graphene nanoribbons fabricated by unzipping method

辻本 茉里奈 横浜市立大学

2020.12.25

概要

The temperature dependence of Raman spectra of multilayer-graphene nanoribbons (MLGNRs) fabricated by unzipping method was investigated in the temperature range from 300 K to 700 K. MLGNRs with the width of ~ 200 nm are isolated and individually measured. The frequency of G band is monotonically downshifted with increasing temperature. The change in the G band frequency with temperature is reversible in thermal cycles with heating and cooling. By linear fitting, the temperature coefficient is estimated to be about −0.021 cm−1 /K. This value is smaller than −0.028 cm−1/K of carbon nanotubes and larger than −0.011 and −0.016 cm−1 /K of graphite and graphene, respectively, as reported previously. This means that MLGNRs are thermally stable compared with carbon nanotubes with curvatures, whereas the thermal stability of MLGNRs is lower than those of graphene and graphite. The better fitting to the G band frequency shift with temperature is obtained with nonlinear quadratic curve. From the theoretical analysis of the fitted quadratic curve, it is clarified that the downshift of G band frequency with increasing temperature is attributed to the anharmonic phonon interaction, especially 4-phonon process rather than 3-phonon process. Comparing with other nanocarbon materials reported so far, it is suggested that the strength of the anharmonic phonon interaction depends on the layer number and size of graphene.

この論文で使われている画像

参考文献

[1] A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M.G. Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A.D. Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7 (2015) 4598.

[2] F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5 (2010) 487.

[3] J. Bai, X. Duan, Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask, Nano Lett. 9 (2009) 2083.

[4] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319 (2008) 1229.

[5] J.L. Johnson, A. Behnam, Y. An, S.J. Pearton, A. Ural, Experimental study of graphitic nanoribbon films for ammonia sensing, J. Appl. Phys. 109 (2011) 1.

[6] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (2013) 235.

[7] P.H. Tan, Y.M. Deng, Q. Zhao, Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite, Phys. Rev. B 58 (1998) 5435.

[8] P.H. Tan, Y.M. Deng, Q. Zhao, W.C. Cheng, The intrinsic temperature effect of the Raman spectra of graphite, Appl. Phys. Lett. 74 (1999) 1818.

[9] H.N. Liu, X. Cong, M.L. Lin, P.H. Tan, The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4K to 1000K, Carbon 152 (2019) 451.

[10] I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers, Nano Lett. 7 (2007) 2645.

[11] D. Abdula, T. Ozel, K. Kang, D.G. Cahill, M. Shim, Environment-induced effects on the temperature dependence of Raman spectra of single-layer graphene, J. Phys. Chem. C 112 (2008) 20131.

[12] D. Yoon, Y.W. Son, H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11 (2011) 3227.

[13] N. Hosoya, Y. Akaho, M. Inoue, S. Sahoo, M. Tachibana, Temperature dependence of the Raman spectra of polycrystalline graphene grown by chemical vapor deposition, Appl. Phys. Lett. 105 (2014) 1.

[14] S. Tian, Y. Yang, Z. Liu, C. Wang, R. Pan, C. Gu, J. Li, Temperature-dependent Raman investigation on suspended graphene: contribution from thermal expansion coefficient mismatch between graphene and substrate, Carbon 104 (2016) 27.

[15] Y.R. Lee, J.X. Huang, J.C. Lin, J.R. Lee, Study of the substrate-induced strain of asgrown graphene on Cu (100) using temperature-dependent Raman spectroscopy: estimating the mode Grüneisen parameter with temperature, J. Phys. Chem. C 121 (2017) 27427.

[16] F. Huang, K.T. Yue, P. Tan, S.L. Zhang, Z. Shi, X. Zhou, Z. Gu, Temperature dependence of the Raman spectra of carbon nanotubes, J. Appl. Phys. 84 (1998) 4022.

[17] H.D. Li, K.T. Yue, Z.L. Lian, Y. Zhan, L.X. Zhou, S.L. Zhang, Z.J. Shi, Z.N. Gu, B.B. Liu, R.S. Yang, H.B. Yang, G.T. Zou, Y. Zhang, S. Iijima, Temperature dependence of the Raman spectra of single-wall carbon nanotubes, Appl. Phys. Lett. 76 (2000) 2053.

[18] N.R. Raravikar, P. Keblinski, A.M. Rao, M.S. Dresselhaus, L.S. Schadler, P.M. Ajayan, Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes, Phys. Rev. B 66 (2002) 1.

[19] L. Ci, Z. Zhou, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, S. Xie, Temperature dependence of resonant Raman scattering in doublewall carbon nanotubes, Appl. Phys. Lett. 82 (2003) 3098.

[20] S. Chiashi, Y. Murakami, Y. Miyauchi, S. Maruyama, Temperature dependence of Raman scattering from single-walled carbon nanotubes: undefined radial breathing mode peaks at high temperatures, Jpn. J. Appl. Phys. 47 (2008) 2010.

[21] N.D. Sharma, J. Singh, A. Vijay, Temperature dependent Raman investigation of multiwall carbon nanotubes, J. Appl. Phys. 123 (2018) 1.

[22] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458 (2009) 872.

[23] W. Xu, T.W. Lee, Recent progress in fabrication techniques of graphene nanoribbons, Mater. Horiz. 3 (2016) 186.

[24] A.G.C. Ma´rquez, F.J.R. Macı´as, J.C. Delgado, C.G.E. Gonza´lez, F.T. Lo´pez, D.R. Gonza´lez, D.A. Cullen, D.J. Smith, M. Terrones, Y.I.V. Cantu´, Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Lett. 9 (2009) 1527.

[25] B. Genorio, W. Lu, A.M. Dimiev, Y. Zhu, A.R.O. Raji, B. Novosel, L.B. Alemany, J.M. Tour, In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks, ACS Nano 6 (2012) 4231.

[26] D. Torres, J.L. Pinilla, I. Suelves, Unzipping of multi-wall carbon nanotubes with different diameter distributions: effect on few-layer graphene oxide obtention, Appl. Surf. Sci. 424 (2017) 101.

[27] I.A. Verzhbitskiy, M. De Corato, A. Ruini, E. Molinari, A. Narita, Y. Hu, M.G. Schwab, M. Bruna, D. Yoon, S. Milana, X. Feng, K. Müllen, A.C. Ferrari, C. Casiraghi, D. Prezzi, Raman fingerprints of atomically precise graphene nanoribbons, Nano Lett. 16 (2016) 3442.

[28] C. Casiraghi, D. Prezzi, Raman Spectroscopy of Graphene Nanoribbons: A Review, GraphITA, (2017), p. 19.

[29] Y.S. Li, J.L. Liao, S.Y. Wang, W.H. Chiang, Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons, Sci. Rep. 6 (2016) 1.

[30] S.D. Costa, J.E. Weis, O. Frank, M. Fridrichová, M. Kalbac, Monitoring the doping of graphene on SiO2/Si substrates during the thermal annealing process, RSC Adv. 6 (2016) 72859.

[31] N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phonon anharmonicities in graphite and graphene, Phys. Rev. Lett. 99 (2007) 1.

[32] P.G. Klemens, Anharmonic decay of optical phonons, Phys. Rev. 148 (1966) 845.

[33] L. Song, W. Ma, Y. Ren, W. Zhou, S. Xie, P. Tan, L. Sun, Temperature dependence of Raman spectra in single-walled carbon nanotube rings, Appl. Phys. Lett. 92 (2008) 1.

[34] I. Efthimiopoulos, S. Mayanna, E. Stavrou, A. Torode, Y. Wang, Extracting the anharmonic properties of the G-band in graphene nanoplatelets, J. Phys. Chem. C 124 (2020) 4835.

[35] M. Balkanski, R.F. Wallis, E. Haro, Anharmonic effects in light scattering due to optical phonons in silicon, Phys. Rev. B 28 (1983) 1928.

[36] C. Postmus, J.R. Ferraro, S.S. Mitra, Pressure dependence of infrared eigenfrequencies of KCl and KBr, Phys. Rev. 174 (1968) 983.

[37] T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation, Phys. Rev. B 79 (2009) 1.

[38] D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Graphite thermal expansion relationship for different temperature ranges, Carbon 43 (2005) 2902.

[39] G. Montagnac, R. Caracas, E. Bobocioiu, F. Vittoz, B. Reynard, Anharmonicity of graphite from UV Raman spectroscopy to 2700 K, Carbon 54 (2013) 68.

[40] J. Lin, L. Guo, Q. Huang, Y. Jia, K. Li, X. Lai, X. Chen, Anharmonic phonon effects in Raman spectra of unsupported vertical graphene sheets, Phys. Rev. B 83 (2011) 1.

[41] Z. Zhao, J. Elwood, M.A. Carpenter, Phonon anharmonicity of PdO studied by Raman spectrometry, J. Phys. Chem. C 119 (2015) 23094.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る