リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy

Li, Junhuan 大阪大学

2021.06.24

概要

We conducted atomic-scale scanning tunneling microscopy of a graphene nanosheet on graphite. In addition to a rhombus lattice representing the (3×3)R30∘ superstructure, we resolved another quadrangle lattice similar to a rectangle in the sheet. Its lattice size was approximately 0.37×0.22nm2. To clarify the origin of this unique rectangular lattice, the overlap of the 3×3 superstructures along the direction of their long diagonals was theoretically examined using a simple model. The electron distribution with high energy in the occupied states of armchair-edged graphene nanoribbons (AGNRs) was calculated based on first principles. A rectangular lattice, resembling the one observed experimentally, was found to form on the AGNR under a specific width condition. This finding was also analyzed in terms of Clar's theory and the scattering of electron waves. We propose that wrinkles and adsorbates in graphene play a role similar to an armchair edge, resulting in the 3×3 phase. If these local defects are in close proximity, the rhombus phases interact to generate electronic structures predicted for AGNRs. This is probably the reason why a rectangular lattice was imaged on the graphene sheet that is not an ideal AGNR.

この論文で使われている画像

参考文献

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).

[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[4] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea et al., Nat. Phys. 7, 701 (2011).

[5] T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Adv. Phys. 63, 1 (2014).

[6] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).

[7] C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

[8] J.-H. Zhong, J. Zhang, X. Jin, J.-Y. Liu, Q. Li, M.-H. Li, W. Cai, D.-Y. Wu, D. Zhan, and B. Ren, J. Am. Chem. Soc. 136, 16609 (2014).

[9] X. Zou and B. I. Yakobson, Acc. Chem. Res. 48, 73 (2015).

[10] X. Yan, Y. Jia, T. Odedairo, X. Zhao, Z. Jin, Z. Zhu, and X. Yao, Chem. Commun. 52, 8156 (2016).

[11] R. Mikurino, A. Ogasawara, T. Hirano, Y. Nakata, H. Yamashita, S. Li, K. Kawai, K. Yamamura, and K. Arima, J. Phys. Chem. C 124, 6121 (2020).

[12] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

[13] S. E. Stein and R. L. Brown, J. Am. Chem. Soc. 109, 3721 (1987).

[14] L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nat. Nanotechnol. 3, 397 (2008).

[15] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng et al., Nature (London) 466, 470 (2010).

[16] P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone et al., Nature (London) 531, 489 (2016).

[17] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).

[18] T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. 101, 096402 (2008).

[19] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, Nano Lett. 9, 1433 (2009).

[20] C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie et al., Nat. Phys. 7, 616 (2011).

[21] M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, and T. Enoki, Phys. Rev.B 87, 115427 (2013).

[22] K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003).

[23] Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444, 347 (2006).

[24] O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).

[25] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).

[26] H. Söde, L. Talirz, O. Gröning, C. A. Pignedoli, R. Berger, X. Feng, K. Müllen, R. Fasel, and P. Ruffieux, Phys. Rev. B 91, 045429 (2015).

[27] X. Zhu and H. Su, J. Phys. Chem. A 115, 11998 (2011).

[28] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature (London) 363, 524 (1993).

[29] J. P. Rabe, M. Sano, D. Batchelder, and A. A. Kalatchev, J. Microsc. 152, 573 (1988).

[30] Y. Kobayashi, K.-I. Fukui, T. Enoki, and K. Kusakabe, Phys. Rev.B 73, 125415 (2006).

[31] W. Zhang, Z. Ju, and W. Wu, Phys. Rev.B 100, 115120 (2019).

[32] P. L. Giunta and S. P. Kelty, J. Chem. Phys. 114, 1807 (2001).

[33] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Phys. Rev. B 73, 085421 (2006).

[34] K.-I. Sakai, K. Takai, K.-I. Fukui, T. Nakanishi, and T. Enoki, Phys. Rev.B 81, 235417 (2010).

[35] K. A. Ritter and J. W. Lyding, Nat. Mater. 8, 235 (2009).

[36] G. M. Shedd and P. E. Russell, Surf. Sci. 266, 259 (1992).

[37] Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie et al., Science 323, 1705 (2009).

[38] A. Lherbier, S. M.-M. Dubois, X. Declerck, Y.-M. Niquet, S. Roche, and J.-C. Charlier, Phys. Rev.B 86, 075402 (2012).

[39] M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, and T. Enoki, Phys. Rev.B 89, 155405 (2014).

[40] T. Hirano, K. Nakade, S. Li, K. Kawai, and K. Arima, Carbon 127, 681 (2018).

[41] S. Li, K. Nakade, T. Hirano, K. Kawai, and K. Arima, Mat. Sci. Semicon. Proc. 87, 32 (2018).

[42] Y. Morikawa, K. Iwata, and K. Terakura, Appl. Surf. Sci. 169-170, 11 (2001).

[43] Y. Morikawa, H. Ishii, and K. Seki, Phys. Rev. B 69, 041403(R) (2004).

[44] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[45] Y. Baskin and L. Meyer, Phys. Rev. 100, 544 (1955).

[46] J. Tersoff and D. R. Hamann, Phys. Rev.B 31, 805 (1985).

[47] X. Zhang and H. Luo, Appl. Phys. Lett. 103, 231602 (2013).

[48] I. Y. Jumh, B. A. Albiss, and V. V. Dremova, Dig. J. Nanomater. Biostruct. 11, 277 (2016).

[49] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009).

[50] H. S. Wong, C. Durkan, and N. Chandrasekhar, ACS Nano 3, 3455 (2009).

[51] S. Fujii and T. Enoki, J. Am. Chem. Soc. 132, 10034 (2010).

[52] L. J. Yin, W. X. Wang, K. K. Feng, J.-C. Nie, C. M. Xiong, R.-F. Dou, and D. G. Naugle, Nanoscale 7, 14865 (2015).

[53] S. I. Park and C. F. Quate, Appl. Phys. Lett. 48, 112 (1986).

[54] D. Tománek and S. G. Louie, Phys. Rev.B 37, 8327 (1988).

[55] M. Ye, Y. T. Cui, Y. Nishimura, Y. Yamada, S. Qiao, A. Kimura, M. Nakatake, H. Namatame, and M. Taniguchi, Eur. Phys. J. B 75, 31 (2010).

[56] R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally et al., Nat. Commun. 6, 8006 (2015).

[57] A. Luican-Mayer, J. E. Barrios-Vargas, J. T. Falkenberg, G. Autès, A. W. Cummings, D. Soriano, G. Li, M. Brandbyge, O. V. Yazyev, S. Roche et al., 2D Mater. 3, 031005 (2016).

[58] D. Pandey, R. Reifenberger, and R. Piner, Surf. Sci. 602, 1607 (2008).

[59] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007).

[60] W.-X. Wang, M. Zhou, X. Li, S.-Y. Li, X. Wu, W. Duan, and L. He, Phys. Rev. B 93, 241403(R) (2016).

[61] E. Clar, The Aromatic Sextet (Wiley, London, 1972).

[62] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.103.245433 for the Clar’s theory on graphene nanoribbons.

[63] M. Randic´, Chem. Rev. 103, 3449 (2003).

[64] T. M. Krygowski and M. K. Cyran´ski, Chem. Rev. 101, 1385 (2001).

[65] I. Gutman, Ž. Tomovic´, K. Müllen, and J. P. Rabe, Chem. Phys. Lett. 397, 412 (2004).

[66] T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, J. Am. Chem. Soc. 132, 3440 (2010).

[67] H. A. Mizes and J. S. Foster, Science 244, 559 (1989).

[68] P. Ruffieux, M. Melle-Franco, O. Gröning, M. Bielmann, F. Zerbetto, and P. Gröning, Phys. Rev. B 71, 153403 (2005).

[69] K. Sasaki, K. Wakabayashi, and T. Enoki, New J. Phys. 12, 083023 (2010).

[70] H. Yang, A. J. Mayne, M. Boucherit, G. Comtet, G. Dujardin, and Y. Kuk, Nano Lett. 10, 943 (2010).

参考文献をもっと見る