リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Mazur-Ulam property for a Banach space which satisfies a separation condition (Research on preserver problems on Banach algebras and related topics)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Mazur-Ulam property for a Banach space which satisfies a separation condition (Research on preserver problems on Banach algebras and related topics)

HATORI, Osamu 京都大学

2023.07

概要

After some preparations in section 1, we recall the three well known concepts: the Choquet boundary, the Šilov boundary, and the strong boundary points in section 2. We need to define them by avoiding the confusion which appears because of the variety of names of these concepts; they sometimes differs from authors to authors. We describe the relationship between the three concepts emphasizing the case where a function space strongly separates the points in the underlying space. We study C-rich spaces, lush spaces, and extremely C-regular spaces concerning with the Mazur-Ulam property in section 3. We show that a uniform algebra and the uniform closure of the real part of a uniform algebra with the supremum norm are C-rich spaces, hence lush spaces. We prove that a uniformly closed subalgebra of the algebra of all complex-valued continuous functions on a locally compact Hausdorff space which vanish at infinity is extremely C-regular provided that it separates the points of the underlying space and has no common zeros. We exhibit a space of harmonic functions which has the Mazur- Ulam property (Corollary 3.8). The main concern in sections 4 through 6 is the Mazur-Ulam property. We exhibit a sufficient condition on a Banach space which has the Mazur-Ulam property and the complex Mazur-Ulam property (Propositions 4.11 and 4.12). In sections 5 and 6 we consider a Banach space with a separation condition (∗) (Definition 5.1). We prove that a real Banach space satisfying (∗) has the Mazur-Ulam property (Theorem 6.1), and a complex Banach space satisfying (∗) has the complex Mazur-Ulam property (Theorem 6.3). Applying these theorems and the results in the previous sections we prove that an extremely C-regular real (resp. complex) linear subspace has the (resp. complex) Mazur-Ulam property (Corollary 6.2 (resp. 6.4)) in section 6. As a consequence we prove that any closed subalgebra of the algebra of all complex-valued continuous functions defined on a locally compact Hausdorff space has the complex Mazur-Ulam property (Corollary 6.5).

参考文献

[1] T. A. Abrahamsen, O. Nygaard and M. P˜

oldvere, New applications of extremely regular

function spaces, Pacifc J. Math. 301 (2019), 385–394 doi:10.2140/pjm.2019.301.385

[2] J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions,

J. Araujo and J. J. Font, Trans. Amer. Math. Soc. 349 (1997), 413–428

[3] J. Araujo and J. J. Font, On Silov

boundaries for subspaces of continuous functions,

Proceedings of the First Ibero-American Conference on Topology and its Applications

(Benicassim, 1995) Topology Appl. 77 (1997), 79–85 doi:10.1016/S0166-8641(96)00132-0

[4] T. Banakh, Every 2-dimensional Banach space has the Mazur-Ulam property, Linear

Algebra Appl. 632 (2022), 268–280 doi:10.1016/j.laa.2021.09.020

[5] H. S. Bear, The Silov boundary for a linear space of continuous functions, Amer. Math.

Monthly 68 (1961), 483–485

[6] J. Becerra-Guerrero, M. Cueto-Avellaneda, F. J. Fern´

andez-Polo and A. M. Peralta, On

the extension of isometries between the unit spheres of a JBW*-triple and a Banach space,

J. Inst. Math. Jussieu 20 (2021), 277–303 doi:10.1007/s13324-022-00448-2

[7] E. Bishop and K. de Leeuw, The representation of linear functionals by measures on sets

of extreme points, Ann. Inst. Fourier, Grenoble 9 (1959), 305–331

[8] D. P. Blecher, The Shilov boundary of an operator space and the characterization theorems,

J. Funct. Anal. 182 (2001), 280–343 doi:10.1006/jfan.20003734

[9] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach

algebras, Ann. Math., II. Ser. 62 (1955), 217–229

[10] K. Boyko, V. Kadets, M. Mart´ın and J. Mer´ı, Properties of lush spaces and applications to Banach spaces with numerical index 1, Studia Math. 190 (2009), 117–133

doi:10.4064/sm190-2-2

[11] K. Boyko, V. Kadets, M. Mart´ın and D. Werner,

Numerical index of Banach spaces and duality, Math. Proc. Cambridge Philos. Soc. 142 (2007), 93–102

doi:10.1017/S0305004106009650

[12] A. Browder, Introduction to function algebras, W. A. Benjamin, Inc., New YorkAmsterdam 1969 Xii+273 pp

[13] J. Cabello S´

anchez, A reflection on Tingley’s problem and some applications, J. Math.

Anal. Appl. 476 (2019), 319–336 doi:10.1016/j.jmaa.2019.03.041

[14] D. Cabezas, M. Cueto-Avellaneda, D. Hirota, T. Miura and A. Peralta, Every commutative JB*-triple satisfies the complex Mazur-Ulam property, Ann. Funct. Anal. 13 (2022),

Paper No. 60, 8pp

[15] L. Cheng and Y. Dong, On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl. 377 (2011), 464–470

doi:10.1016/j.jmaa.2020.11.025

[16] B. Chengiz, On extremely regular function spaces, Pac. J. Math. 49 (1973), 335–338

The Mazur-Ulam property and point-separation property

81

[17] M. Cueto-Avellaneda, D. Hirota, T. Miura and A. Peralta, Exploring new solutions to

Tingley’s problem for function algebras Quaest. Math. Published online : 02 Jun 2022

[18] M. Cueto-Avellaneda and A. M. Peralta, On the Mazur-Ulam property for the space

of Hilbert-space-valued continuous functions, J. Math. Anal. Appl. 479 (2019), 875–902

doi:10.1016/j.jmaa.2019.06.056

[19] M. Cueto-Avellaneda and A. M. Peralta,

The Mazur-Ulam property for commutative von Neumann algebras, Linear Multilinear Algebra 68 (2020), 337–362

doi:10.1080/03081087.2018.1505823

[20] G. G. Ding, On extension of isometries between unit spheres of E and C(Ω), Acta Math.

Sin. (Engl. Ser.) 19 (2003), 793–800

[21] G. G. Ding, The isometric extension of the into mapping from a L∞ (Γ)-type space to

some Banach space, Illinois J. Math. 51 (2007), 445–453

[22] J. Duncan, C. McGregor, J. Pryce and A. White, The numerical index of a normed space,

J. London Math. Soc. 2 (1970), 481–488

[23] X. N. Fang and J. H. Wang, Extension of isometries between the unit spheres of normed

space and C(Ω), Acta Math.Sinica Engl Ser. 22 (2006), 1819–1824

[24] R. J. Fleming and J. E. Jamison, Isometries on Banach spaces: function spaces, Chapman

& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 129. Chapman

& Hall/CRC, Boca Raton, FL, 2003. x+197 pp. ISBN: 1-58488-040-6

[25] T. W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969

[26] O. Hatori, The Mazur-Ulam property for uniform algebras, Studia Math. 265 (2022),

227–239 doi: 10.4064/sm210703-11-9

[27] O. Hatori, S. Oi and R. Shindo Togashi, Tingley’s problems on uniform algebras Jour.

Math. Anal. Appl. 503 (2021), Paper No. 125346, 14 pp. doi: 10.1016/j.jmaa.2021.125346

[28] A. Jim´enez-Vargas, A. Morales-Campoy, A. M. Peralta and M. I. Ram´ırez, The MazurUlam property for the space of complex null sequences, Linear Multilinear Algebra 67

(2019), 799–816 doi:10.1080/03081087.2018.1433625

[29] V. M. Kadets and M. M. Popov, The Daugavet property for narrow operators in rich

subspaces of C[0, 1] and L1 [0, 1], St. Petersburg Math. J. 8 (1997), 571–584

boundary, Math. Z. 202

[30] P. Kajetanowicz, A general approach to the notion of Silov

(1989), 391–395

[31] O. F. K. Kalenda and A. M. Peralta, Extension of isometries from the unit sphere of a

rank-2 Cartan factor, Anal. Math. Phys. 11, Article number:15 (2021)

[32] R. Liu, On extension of isometries between unit spheres of L∞ (Γ)-type space and a Banach

space E, J. Math. Anal. Appl. 333 (2007), 959–970 doi:10.1016/j.jmaa.2006.11.044

[33] T. Miura, Real-linear isometries between function algebras, Cent. Eur. J. Math. 9 (2011),

778–788 doi:10.2478/s11533-011-0044-9

[34] M. Mori, Tingley’s problem through the facial structure of operator algebras, J. Math.

Anal. Appl. 466 (2018), 1281–1298 doi:10.1016/j.jmaa.2018.06.050

[35] M. Mori and N. Ozawa, Mankiewicz’s theorem and the Mazur-Ulam property for C ∗ algebras, Studia Math. 250 (2020), 265–281 doi:10.4064/sm180727-14-11

[36] W. Novinger, Linear isometries of subspaces of continuous functions, Studia Math. 53

(1975), 273–276

[37] R. R. Phelps, Lectures on Choquet’s Theorem. Second edition, Lecture Notes in Mathematics, 1757. Springer-Verlag, Berlin, 2001

[38] A. M. Peralta, Extending surjective isometries defined on the unit sphere of ℓ∞ (Γ) Rev.

Mat. Complut. 32 (2019), 99–114 doi:10.1007/s13163-018-0269-2

82

Osamu Hatori

[39] A. M. Peralta, On the extension of surjective isometries whose domain is the unit sphere

of a space of compact operators, Filmat 36 (2022), 3075–3090

[40] A. Peralta and R. Svarc,

A strengthened Kadison’s transitivity theorem for unital JB*algebras with applications to the Mazur-Ulam property, preprint 2023, arXiv:2301.00895

[41] Ch. Pomerenke, Boundary behavior of conformal maps, Grundlehrender Mathematischen

Wissenschaften, 299 Springer-Verlag, Berlin, 1992, x+300 pp

[42] N. V. Rao and A. K. Rao, Multiplicatively spectrum-preserving maps of function algebras.

II, Proc. Edinb. Math. Soc. 48 (2005), 219–229

[43] T. S. S. R. K. Rao and A. K. Roy, On Silov

boundary for function spaces, Topology Appl.

193 (2015), 175–181 doi:10.1016/j.topol.2015.07.005

[44] Z. Semadeni,

Banach spaces of continuous functions, Monografie Matematyczne,

Warszawa, 1971

[45] G. Silov,

On the extension of maximal ideals, Dokl. Akad. Nauk SSSR 29 (1940), 83–84

(in Russian)

[46] E. L. Stout, The theory of uniform algebras, Bogden & Quigley, Inc. Publishers,

Tarrytown-on-Hudson, N. Y., 1971

[47] D. N. Tan, Extension of isometries on unit spheres of L∞ , Taiwanese J. Math. 15 (2011),

819–827

[48] D. N. Tan, On extension of isometries on the unit spheres of Lp -spaces for 0 < p ≤ 1,

Nonlinear Anal. 74 (2011), 6981–6987 doi:10.1016/j.na.2011.07.035

[49] D. N. Tan, Extension of isometries on the unit sphere of Lp spaces, Acta Math. Sin.

(Engl. Ser.) 28 (2012), 1197–1208 doi:10.1007/s10114-011-0302-6

[50] D. Tan, X. Huang and R. Liu, Generalized-lush spaces and the Mazur-Ulam property,

Studia Math. 219 (2013), 139–153 doi:10.4064/sm219-2-4

[51] R. Tanaka, A further property of spherical isometries, Bull. Aust. Math. Soc. 90 (2014),

304–310 doi:10.1017/S0004972714000185

[52] R. Tanaka, The solution of Tingley’s problem for the operator norm unit sphere of complex

n × n matrices, Linear Algebra Appl. 494 (2016), 274–285 doi:10.1016/j.laa.2016.01.020

[53] D. Tingley, Isometries of the unit sphere, Geom. Dedicata 22 (1987), 371–378

[54] R. S. Wang, Isometries between the unit spheres of C0 (Ω) type spaces, Acta Math. Sci.

(English Ed.) 14 (1994), 82–89

(n)

[55] Risheng Wang, Isometries of C0 (X), Hokkaido Math. J. 25 (1996), 465–519

doi:10.14492/hokmj/1351516747

[56] Ruidong Wang and X. Huang, The Mazur-Ulam property for two dimensional somewhereflat spaces, Linear Algebra Appl. 562 (2019), 55–62 doi:10.1016/j.laa.2018.09.024

[57] P. Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc. 115

(1992), 1047–1052

[58] X. Yang and X. Zhao, On the extension problems of isometric and nonexpansive mappings,

In:Mathematics without boundaries. Edited by Themistocles M. Rassias and Panos M.

Pardalos, 725– Springer, New York, 2014

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る