リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高強度加速器中性子源開発に関連した陽子および重陽子核データに関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高強度加速器中性子源開発に関連した陽子および重陽子核データに関する研究

竹下, 隼人 TAKESHITA, Hayato タケシタ, ハヤト 九州大学

2022.03.23

概要

中性子は 1932 年に発見されて以降、その利用は多岐にわたるようになった。中性子は電荷を持たない粒子であり、原子核と容易に核反応を起こすことができる。中性子を利用した代表的なエネルギー技術として、ウランの中性子誘起核分裂反応を利用した原子力発電がある。原子力発電は 1951 年に米国で初めて実用化されて以来、多くの国でベースロード電源として利用されてきた。さらに近年では、中性子を利用した技術は工業・医療分野にも広がっており、その例として、中性子を利用して物質内部を非破壊で観察する中性子イメージング技術や中性子回折法による物質の構造解析、ホウ素捕捉療法によるがん治療などが挙げられる。

 中性子源として最も古くから利用されてきたのが原子炉である。原子炉はウランや超ウラン元素を利用して核分 裂連鎖反応を起こすことで持続的に中性子を発生させる。世界初の研究炉は中性子束が107 [/cm2/s]ほどであったが、より高強度の中性子束に対する需要が高まるにつれ、また技術の発展に伴い、原子炉の中性子強度は高められた。 現在利用されている原子炉の中性子束は1014[/cm2/s]を達成している。しかし、中性子源としての原子炉はいくつか の欠点を抱えている。まず、原子炉は潜在的な危険性を有するという点である。原子炉の事故は深刻な被害につな がりやすく、原子炉の新設をする際の敷居が高くなっている。また、原子炉は比較的大規模な施設であるため、設 置、維持コストが高いことも問題となる。さらに、中性子利用の観点でいえば、原子炉から発生する中性子のエネ ルギー分布は連続的であり、ある特定のエネルギーの中性子を利用できない。

 このような背景があり、加速器中性子源が注目されるようになった。加速器中性子源は、加速した陽子などの軽い粒子を標的物質(中性子コンバータと呼ぶ)に照射することで起こる核反応により中性子を発生する装置である。加速器中性子源の利点としては、加速器の運転を停止することで容易に中性子発生を抑制できること、加速器のビーム出力を変更することで中性子強度を調整できることがある。本研究では、今後需要が高まることが予想される高強度な加速器中性子源として、重陽子加速器中性子源と核破砕中性子源の2 つに着目する。加速器中性子源を設計する際、施設の遮蔽能力を評価するために、PHITS などの粒子輸送計算コードが利用される。粒子輸送計算コードは、核反応モデルや核データライブラリを利用して核反応で発生する二次粒子やガンマ線の情報(エネルギー、角度分布など)や加速器構造材の放射化量(核反応により生成する放射性核種の量)を計算する。粒子輸送計算コードの信頼性を担保するためには、核反応モデルや核データライブラリの精度検証を十分に行う必要がある。しかしながら、核反応モデルや核データライブラリの精度検証を行う上で必要となる実験データは十分でない、または実験データが存在する場合でも、その不確かさ(誤差)が大きい場合がある。そこで本研究では、精度検証を行うのに必要な不確かさが小さな実験データを新たに取得することを第一の目的とした。さらに、取得したデータを核反応モデルや核データライブラリの予測値と比較することで、これらの精度検証を行う。

 本論文は以下の 4 章から構成される。
 第1 章では、本研究の研究背景および研究目的を示す。最初に中性子の利用例を挙げ、中性子源の変遷について述べる。その後、今後も応用分野の展開が期待される重陽子加速器中性子源および核破砕中性子源について説明する。さらに、これらの中性子源の設計開発のために利用される核反応モデルや核反応計算コードについて解説する。

 第2 章では、重陽子加速器中性子源の設計で不可欠な物理量である、厚い標的からの中性子収量(以降TTNY)の測定と理論モデル解析について述べる。重陽子は陽子と中性子が弱く結合した粒子であり、核反応により容易に分解して中性子を放出する。そのため、重陽子中性子源は従来の陽子加速器中性子源に比べて高強度であり、さらに中性子エネルギースペクトルには入射エネルギーの約半分のところに幅広のピークを持つ。この特徴を生かして、核融合炉で発生する高強度の 14.1 MeV 中性子束を模擬する国際核融合材料照射施設IFMIF をはじめとして、今後様々な目的への応用が期待されている。重陽子加速器中性子源の開発のためには、中性子コンバータとして利用される軽い標的に加えて、遮蔽設計の観点からNi, Ta などの重元素標的に対してもTTNY データが必要である。そこで本研究では九州大学加速器・応用ビーム科学センターにて、LiF, C, Si, Ni, Mo, Ta の 6 つの標的に対して核子あたり6.7 MeV の重陽子入射によるTTNY の測定を行った。測定したデータを、先行研究で取得された核子あたり6.7 MeV の三重陽子入射によるTTNY と比較することで、重陽子入射反応により生成された中性子エネルギースペクトルに見られる特徴的なバンプ構造について議論する。また、取得した重陽子入射TTNY および先行研究で取得された三重陽子 TTNY データを理論計算による予測値と比較することで精度検証を行った。重陽子入射 TTNY に対して、PHITS および核反応計算コードDEURACS の計算値と比較した。PHITS に搭載された二つの核反応モデル(INCL4.6/GEM、JQMD/GEM)は実験値を上手く再現できなかったが、DEURACS はC, Si, Ni, Mo, Ta 標的に対する実験値を良好に再現することがわかった。さらに、DEURACS の計算値から重陽子入射反応の理論解析を行った。その結果、重陽子入射反応においては、軽い標的核に対しては重陽子分解反応が大きく寄与しているが、重い標的核に対しては分解反応の寄与は減り、統計崩壊過程の寄与が大きくなることを示した。一方、三重陽子入射TTNY に対してはPHITS(INCL4.6/GEM、JQMD/GEM)および、CCONE、TALYS の計算値と比較した。JQMD/GEM、CCONE が実験値を比較的よく再現することがわかった。JQMD/GEM やCCONE は三重陽子の分解反応を正しく記述できないことから、三重陽子入射反応に対しては分解反応の寄与が小さいことを明らかにした。

 第3 章では、核破砕中性子源の線量評価で重要な、放射性核種生成断面積の測定と理論モデルの検証結果について述べる。核破砕中性子源は、数百 MeV から数 GeV 程度に加速した陽子を水銀などの重い原子核で構成された中性子コンバータに照射することで大量の中性子を発生する核破砕反応を利用した中性子源である。核破砕中性子源は高強度の中性子束を発生することができるため、数多くの最先端研究に利用されている。他にも、原子炉から発生する高レベル放射性廃棄物の核変換処理として、核破砕中性子源と未臨界原子炉を組み合わせたシステムである加速器駆動核変換システムの研究が世界各国で行われている。このような核破砕反応を利用する施設内では、加速器構造材や中性子コンバータが大量に放射化するので、遮蔽設計の観点から放射性核種の生成量を精度よく見積もる必要がある。先行研究では様々な標的物質に対して核破砕反応による核種生成断面積が測定されているが、それらの多くは実験値の不確かさが10%程度以上と比較的大きい。また、先行研究どうしでも整合性がとれていない場合がある。そこで本研究は、茨城県東海村にある大強度陽子加速器施設J-PARC を利用することで精度の高い実験データの系統的な測定を行った。標的物質としては加速器構造材として利用されるMn, Co, Ni, Zr を用い、0.4から3 GeV の陽子入射核破砕反応による核種生成断面積測定を行った。本研究では、J-PARC の大強度ビームを利用することにより、10 個の反応に対して世界初の生成断面積データ取得に成功した。また、J-PARC の高性能なビームモニタリングシステムを利用することで、先行研究を上回る 4%程度の不確かさで実験値を取得できることを示した。取得した実験値から核種生成断面積の入射陽子エネルギー依存性について考察し、生成核の質量数領域からその依存性を明らかにした。その後、取得したデータを使って PHITS に搭載されている核反応モデル(INCL4.6/GEM, Bertini/GEM, JAM/GEM)および最新の核反応計算コードINCL++/ABLA07、核データライブラリ JENDL/HE-2007 の予測値と比較しその精度検証を行った。使用した核反応モデルは実験値の入射陽子エネルギー依存性を概ね再現することがわかった。モデルごとに実験値の再現性を評価したところ、Mn 標的に対してはINCL4.6/GEM が、Co およびNi 標的に対してはJENDL/HE-2007 が、Zr 標的に対してはINCL++/ABLA07が最も良い再現性を示すことがわかった。しかし、本研究で使用したモデルの中で最も再現性が良い場合でも実験値と計算値の差は平均で40%以上あり、核反応モデルのさらなる改良が望まれることを示した。

 最後に、第4 章では本論文の総括を述べ、今後の高強度中性子源開発における展望を述べた。

この論文で使われている画像

参考文献

[1] J. Chadwick, “Possible existence of a neutron,” Nature, vol. 129, no. 3252, pp. 312–312, Feb. 1932, ISSN: 1476-4687. DOI: 10.1038/129312a0.

[2] J. Chadwick, “The existence of a neutron,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 136, no. 830, pp. 692–708, 1932.

[3] I. S. Shlimak, “Neutron transmutation doping in semiconductors: Science and applications,” Physics of the Solid State, vol. 41, no. 5, pp. 716–719, May 1999, ISSN: 1090-6460. DOI: 10.1134/1.1130856.

[4] T. Kin, T. Kawagoe, S. Araki, and Y. Watanabe, “Production of high-purity medical radio isotope 64Cu with accelerator-based neutrons generated with 9 and 12 MeV deuterons,” Journal of Nuclear Science and Technology, vol. 54, no. 10, pp. 1123–1130, 2017.

[5] T. Kin, Y. Nagai, N. Iwamoto, F. Minato, O. Iwamoto, Y. Hatsukawa, M. Segawa, H. Harada, C. Konno, K. Ochiai, and K. Takakura, “New produc- tion routes for medical isotopes 64Cu and 67Cu using accelerator neutrons,” Journal of the Physical Society of Japan, vol. 82, no. 3, p. 034 201, 2013. DOI: 10.7566/JPSJ.82.034201.

[6] R. F. Barth and J. C. Grecula, “Boron neutron capture therapy at the crossroads-where do we go from here?” Applied Radiation and Isotopes, p. 109 029, 2019.

[7] H. Okuno, H. Sakurai, Y. Mori, R. Fujita, and M. Kawashima, “Proposal of a 1-ampere-class deuteron single-cell linac for nuclear transmutation,” Proceedings of the Japan Academy, Series B, vol. 95, no. 7, pp. 430–439, 2019. DOI: 10.2183/pjab.95.030.

[8] K. Tsujimoto, T. Sasa, K. Nishihara, T. Takizuka, and H. Takano, “Accelerator- driven system for transmutation of high-level waste,” Progress in Nuclear Energy, vol. 37, no. 1, pp. 339–344, 2000, Global Environment and Nuclear Energy Systems-3 Proceedings of the Third International Symposium, ISSN: 0149-1970. DOI: https://doi.org/10.1016/S0149-1970(00)00068-8.

[9] M. Matsubayashi, A. Tsuruno, and Y. Horiguchi, “Jrr-3 neutron radiogra- phy facility,” Japan, Tech. Rep., 1992, JAERI-M–92-028, pp. 600–607.

[10] T. Yoshiie, Y. Hayashi, S. Yanagita, Q. Xu, Y. Satoh, H. Tsujimoto, T. Kozuka, K. Kamae, K. Mishima, S. Shiroya, K. Kobayashi, M. Utsuro, and Y. Fujita, “A new materials irradiation facility at the Kyoto university reactor,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 498, no. 1, pp. 522–531, 2003, ISSN: 0168-9002. DOI: https:// doi.org/ 10 . 1016/S0168-9002(02)02143-5.

[11] Y. Kiyanagi, “Neutron applications developing at compact accelerator-driven neutron sources,” AAPPS Bulletin, vol. 31, no. 1, p. 22, Sep. 2021, ISSN: 2309-4710. DOI: 10.1007/s43673-021-00022-3.

[12] B. Bayanov, V. Belov, E. Bender, M. Bokhovko, G. Dimov, V. Kononov, O. Kononov, N. Kuksanov, V. Palchikov, V. Pivovarov, R. Salimov, G. Silvestrov, A. Skrinsky, N. Soloviov, and S. Taskaev, “Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hos- pital,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 413, no. 2, pp. 397–426, 1998, ISSN: 0168-9002. DOI: https:// doi.org/ 10 . 1016/S0168-9002(98)00425-2.

[13] T. A. Gabriel, J. R. Haines, and T. J. McManamy, “Overview of the Spal- lation Neutron Source (SNS) with emphasis on target systems,” Journal of Nuclear Materials, vol. 318, pp. 1–13, 2003, Fifth International Work- shop on Spallation Materials Technology, ISSN: 0022-3115. DOI: https://doi.org/10.1016/S0022-3115(03)00010-2.

[14] H. Tatsumoto, D. Lyngh, Y. Beßler, M. Klaus, F. Hanusch, P. Arnold, and H. Quack, “Design status of the ESS cryogenic moderator system,” IOP Conference Series: Materials Science and Engineering, vol. 755, p. 012 101, Jun. 2020. DOI: 10.1088/1757-899x/755/1/012101.

[15] J. Wei, H. Chen, Y. Chen, Y. Chen, Y. Chi, C. Deng, H. Dong, L. Dong, S. Fang, J. Feng, S. Fu, L. He, W. He, Y. Heng, K. Huang, X. Jia, W. Kang, X. Kong, J. Li, T. Liang, G. Lin, Z. Liu, H. Ouyang, Q. Qin, H. Qu, C. Shi, H. Sun, J. Tang, J. Tao, C. Wang, F. Wang, D. Wang, Q. Wang, S. Wang, T. Wei, J. Xi, T. Xu, Z. Xu, W. Yin, X. Yin, J. Zhang, Z. Zhang, Z. Zhang, M. Zhou, and T. Zhu, “China Spallation Neutron Source: Design, R&D, and outlook,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 600, no. 1, pp. 10–13, 2009, ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2008.11.017.

[16] Y. Iwamoto, M. Hagiwara, D. Satoh, H. Iwase, H. Yashima, T. Itoga, T. Sato, Y. Nakane, H. Nakashima, Y. Sakamoto, T. Matsumoto, A. Ma- suda, J. Nishiyama, A. Tamii, K. Hatanaka, C. Theis, E. Feldbaumer, L. Jaegerhofer, C. Pioch, V. Mares, and T. Nakamura, “Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV 7Li(p, n) reactions at angles from 0° to 30°,” Nuclear Instruments and Methods in Physics Research Sec- tion A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 629, no. 1, pp. 43–49, 2011, ISSN: 0168-9002. DOI: https://doi.org/ 10.1016/j.nima.2010.12.022.

[17] S. Meigo, H. Takada, S. Chiba, T. Nakamoto, K. Ishibashi, N. Matsufuji, K. Maehata, N. Shigyo, Y. Watanabe, and M. Numajiri, “Measurements of neutron spectra produced from a thick lead target bombarded with 0.5- and 1.5-gev protons,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment, vol. 431, no. 3, pp. 521–530, 1999, ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(99)00282-X.

[18] Y. Uwamino, T. Ohkubo, A. Torii, and T. Nakamura, “Semi-monoenergetic neutron field for activation experiments up to 40 MeV,” Nuclear Instru- ments and Methods in Physics Research Section A: Accelerators, Spectrom- eters, Detectors and Associated Equipment, vol. 271, no. 3, pp. 546–552, 1988, ISSN: 0168-9002. DOI: https://doi.org/10.1016/0168-9002(88) 90318-X.

[19] M. Saltmarsh, C. Ludemann, C. Fulmer, and R. Styles, “Characteristics of an intense neutron source based on the d+Be reaction,” Nuclear Instru- ments and Methods, vol. 145, no. 1, pp. 81–90, 1977, ISSN: 0029-554X. DOI: https://doi.org/10.1016/0029-554X(77)90559-6.

[20] A. Moeslang, V. Heinzel, H. Matsui, and M. Sugimoto, “The IFMIF test facilities design,” Fusion Engineering and Design, vol. 81, no. 8-14, pp. 863– 871, 2006.

[21] M. Fadil and B. Rannou, “About the production rates and the activation of the uranium carbide target for SPIRAL 2,” English, Nuclear Inst. and Methods in Physics Research, B, vol. 266, no. 19-20, pp. 4318–4321, 2008. DOI: 10.1016/j.nimb.2008.05.138.

[22] S. Peng, F. Zhu, Z. Wang, Y. Gao, and Z. Guo, “The deuteron accelerator preliminary design for BISOL,” English, Nuclear Instruments and Meth- ods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 376, no. C, pp. 420–424, 2016. DOI: 10.1016/j.nimb.2016. 01.008.

[23] A. B. Smith, P. R. Fields, and J. H. Roberts, “Spontaneous fission neutron spectrum of Cf252,” Phys. Rev., vol. 108, pp. 411–413, 2 Oct. 1957. DOI: 10.1103/PhysRev.108.411.

[24] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S.-i. Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, and K. Ni- ita, “Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02,” Journal of Nuclear Science and Technology, vol. 55, no. 6, pp. 684–690, 2018. DOI: 10.1080/00223131.2017.1419890.

[25] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeni- aus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawa- bata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kok- oulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Mu- rakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Oht- subo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeif- fer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcher- niaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschi- esche, “Geant4 a simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, 2003, ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(03)01368-8.

[26] A. Koning, D. Rochman, J.-C. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, “TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology,” Nuclear Data Sheets, vol. 155, pp. 1– 55, 2019, Special Issue on Nuclear Reaction Data, ISSN: 0090-3752. DOI: https://doi.org/10.1016/j.nds.2019.01.002.

[27] A. Koning and D. Rochman, “Modern nuclear data evaluation with the talys code system,” Nuclear Data Sheets, vol. 113, no. 12, pp. 2841–2934, 2012, Special Issue on Nuclear Reaction Data, ISSN: 0090-3752.

[28] M. Chadwick, M. Herman, P. Oblo?insky, M. Dunn, Y. Danon, A. Kahler, D. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D. Brown, R. Capote, A. Carlson, Y. Cho, H. Derrien, K. Guber, G. Hale, S. Hoblit, S. Holloway, T. Johnson, T. Kawano, B. Kiedrowski, H. Kim, S. Kunieda, N. Larson, L. Leal, J. Lestone, R. Little, E. McCutchan, R. MacFarlane,

M. MacInnes, C. Mattoon, R. McKnight, S. Mughabghab, G. Nobre, G. Palmiotti, A. Palumbo, M. Pigni, V. Pronyaev, R. Sayer, A. Sonzogni, N. Summers, P. Talou, I. Thompson, A. Trkov, R. Vogt, S. van der Marck, A. Wallner, M. White, D. Wiarda, and P. Young, “Endf/b-vii.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data,” Nuclear Data Sheets, vol. 112, no. 12, pp. 2887– 2996, 2011, Special Issue on ENDF/B-VII.1 Library, ISSN: 0090-3752. DOI: https://doi.org/10.1016/j.nds.2011.11.002.

[29] S. Nakayama, H. Kouno, Y. Watanabe, O. Iwamoto, and K. Ogata, “Theo- retical model analysis of (d, xn) reactions on 9Be and 12C at incident energies up to 50 MeV,” Physical Review C, vol. 94, no. 1, p. 014 618, 2016.

[30] S. Araki, Y. Watanabe, M. Kitajima, H. Sadamatsu, K. Nakano, T. Kin, Y. Iwamoto, D. Satoh, M. Hagiwara, H. Yashima, and T. Shima, “Systematic measurement of double-differential neutron production cross sections for deuteron-induced reactions at an incident energy of 102MeV,” Nuclear In- struments and Methods in Physics Research Section A: Accelerators, Spec- trometers, Detectors and Associated Equipment, vol. 842, pp. 62–70, 2017, ISSN: 0168-9002.

[31] H. Sadamatsu, Y. Watanabe, K. Nakano, S. Kawase, T. Kin, S. Araki, Y. Iwamoto, D. Satoh, M. Hagiwara, H. Yashima, et al., “Systematic measure- ment of double-differential (d, xn) cross sections at an incident energy of 200 MeV,” JAEA-Conf 2018-001, pp. 131–136, 2018.

[32] S. Nakayama, O. Iwamoto, Y. Watanabe, and K. Ogata, “JENDL/DEU- 2020: Deuteron nuclear data library for design studies of accelerator-based neutron sources,” Journal of Nuclear Science and Technology, vol. 58, no. 7, pp. 805–821, 2021. DOI: 10.1080/00223131.2020.1870010.

[33] A. Boudard, J. Cugnon, J.-C. David, S. Leray, and D. Mancusi, “New potentialities of the Li`ege intranuclear cascade model for reactions induced by nucleons and light charged particles,” Phys. Rev. C, vol. 87, p. 014 606, 1 Jan. 2013.

[34] S. Kunieda, O. Iwamoto, N. Iwamoto, F. Minato, T. Okamoto, T. Sato, H. Nakashima, Y. Iwamoto, H. Iwamoto, F. Kitatani, T. Fukahori, Y. Watan- abe, N. Shigyo, and S. Chiba, “Overview of JENDL-4.0/HE and benchmark calculation,” Tech. Rep., 2016, pp. 41–46.

[35] Y. Watanabe, T. Fukahori, K. Kosako, N. Shigyo, T. Murata, N. Ya- mano, T. Hino, K. Maki, H. Nakashima, N. Odano, and S. Chiba, “Nuclear data evaluations for JENDL high-energy file,” AIP Conference Proceedings, vol. 769, no. 1, pp. 326–331, 2005. DOI: 10.1063/1.1945015.

[36] H. Iwamoto, “Generation of nuclear data using gaussian process regression,” Journal of Nuclear Science and Technology, vol. 57, no. 8, pp. 932–938, 2020. DOI: 10.1080/00223131.2020.1736202.

[37] M. Drosg and D. M. Drake, “Neutron emission spectra of triton beams of 20.22-MeV fully stopped in targets of H2O, D2O, LiF, Si, Ni, Mo, Ta, W, Pt, and Au,” Nuclear Science and Engineering, vol. 182, no. 2, pp. 256–260, 2016.

[38] N. Shigyo, K. Hidaka, K. Hirabayashi, Y. Nakamura, D. Moriguchi, M. Kumabe, H. Hirano, S. Hirayama, Y. Naitou, C. Motooka, C. Lan, T. Watanabe, Y. Watanabe, K. Sagara, S. Maebaru, H. Sakaki, and H. Taka- hashi, “Measurement of deuteron induced thick target neutron yields at 9 MeV,” J.Korean Phys.Soc., vol. 59, 1725s, 2011.

[39] Y. Tajiri, Y. Watanabe, N. Shigyo, K. Hirabayashi, T. Nishizawa, and K. Sagara, “Measurement of double differential neutron yields from thick car- bon target irradiated by 5-MeV and 9-MeV deuterons,” Progress in Nuclear Science and Technology, vol. 4, pp. 582–586, 2014.

[40] K. Hirabayashi, T. Nishizawa, H. Uehara, H. Hirano, T. Kajimoto, N. Shi- gyo, M. Maeda, T. Yasumune, K. Maehata, Y. Tajiri, et al., “Measurement of neutron yields from thick Al and SUS304 targets bombarded by 5-MeV and 9-MeV deuterons,” Progress in Nuclear Science and Technology, vol. 3, pp. 60–64, 2012.

[41] S. Araki, Y. Watanabe, T. Kin, N. Shigyo, and K. Sagara, “Measurement of double differential neutron yields from thick aluminum target irradiated by 9 MeV deuteron,” Energy Procedia, vol. 71, pp. 197–204, 2015, The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4, ISSN: 1876-6102.

[42] S. Nakayama, N. Furutachi, O. Iwamoto, and Y. Watanabe, “Role of breakup processes in deuteron-induced spallation reactions at 100–200 MeV/nucleon,” Physical Review C, vol. 98, no. 4, p. 044 606, 2018.

[43] S. Nakayama, O. Iwamoto, and Y. Watanabe, “Consistent description of light composite particle emission in deuteron-induced reactions,” Physical Review C, vol. 100, no. 4, p. 044 603, 2019.

[44] M. Yahiro, K. Ogata, T. Matsumoto, and K. Minomo, “The continuum dis- cretized coupled-channels method and its applications,” Progress of Theo- retical and Experimental Physics, vol. 2012, no. 1, Sep. 2012, 01A206, ISSN: 2050-3911.

[45] Y. Iseri, M. Yahiro, and M. Kamimura, “Chapter IV. Coupled-Channels Approach to Deuteron and 3He Breakup Reactions,” Progress of Theoretical Physics Supplement, vol. 89, pp. 84–117, Apr. 1986, ISSN: 0375-9687. DOI: 10.1143/PTPS.89.84.

[46] G. Ohlsen, “Kinematic relations in reactions of the form A+B C+D+E,” Nuclear Instruments and Methods, vol. 37, pp. 240–248, 1965.

[47] T. Ye, S. Hashimoto, Y. Watanabe, K. Ogata, and M. Yahiro, “Analysis of inclusive (d, xp) reactions on nuclei from 9Be to 238U at 100 MeV,” Phys. Rev. C, vol. 84, Nov. 2011.

[48] O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, and K. Shibata, “The ccone code system and its application to nuclear data evaluation for fission and other reactions,” Nuclear Data Sheets, vol. 131, pp. 259–288, 2016, Special Issue on Nuclear Reaction Data, ISSN: 0090-3752.

[49] C. Kalbach, “Two-component exciton model: Basic formalism away from shell closures,” Phys. Rev. C, vol. 33, pp. 818–833, 3 Mar. 1986. DOI: 10. 1103/PhysRevC.33.818.

[50] W. Hauser and H. Feshbach, “The inelastic scattering of neutrons,” Phys. Rev., vol. 87, pp. 366–373, 2 Jul. 1952. DOI: 10.1103/PhysRev.87.366.

[51] A. Koning and M. Duijvestijn, “A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential,” Nuclear Physics A, vol. 744, pp. 15–76, 2004, ISSN: 0375-9474. DOI: https://doi.org/10. 1016/j.nuclphysa.2004.08.013.

[52] A. Koning, S. Hilaire, and S. Goriely, “User manual of TALYS-1.8,” Nuclear Research and Consultancy Group, Petten, The Netherlands, 2015.

[53] A. Koning and J. Akkermans, “Randomness in multi-step direct reactions,” Annals of Physics, vol. 208, no. 1, pp. 216–250, 1991, ISSN: 0003-4916. DOI: https://doi.org/10.1016/0003-4916(91)90345-9.

[54] C. Kalbach, “Systematics of continuum angular distributions: Extensions to higher energies,” Phys. Rev. C, vol. 37, pp. 2350–2370, 6 Jun. 1988. DOI: 10.1103/PhysRevC.37.2350.

[55] A. Boudard, J. Cugnon, J.-C. David, S. Leray, and D. Mancusi, “New potentialities of the Li`ege intranuclear cascade model for reactions induced by nucleons and light charged particles,” Phys. Rev. C, vol. 87, p. 014 606, 1 2013. DOI: 10.1103/PhysRevC.87.014606.

[56] K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, “Analysis of the (N, xN r) reactions by quantum molecular dynamics plus statistical decay model,” Phys. Rev. C, vol. 52, pp. 2620–2635, 5 Nov. 1995.

[57] S. Furihata, “Statistical analysis of light fragment production from medium energy proton-induced reactions,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 171, no. 3, pp. 251–258, 2000, ISSN: 0168-583X. DOI: 10.1016/s0168- 583x(00)00332-3.

[58] INCL the Li`ege Intranuclear Cascade Model, https://irfu.cea.fr/dphn/ Spallation/incl.html.

[59] A. Gilbert and A. G. W. Cameron, “A composite nuclear-level density formula with shell corrections,” Canadian Journal of Physics, vol. 43, no. 8, pp. 1446–1496, 1965. DOI: 10.1139/p65-139.

[60] Eljen technology, https:// eljentechnology.com /products/ liquid- scintillators/ej-301-ej-309.

[61] J. F. Ziegler, M. Ziegler, and J. Biersack, “Srim-the stopping and range of ions in matter (2010),” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 268, no. 11, pp. 1818–1823, 2010, 19th International Conference on Ion Beam Analysis, ISSN: 0168-583X.

[62] G. Dietze and H. Klein, “Gamma-calibration of NE 213 scintillation coun- ters,” Nuclear Instruments and Methods in Physics Research, vol. 193, no. 3, pp. 549–556, 1982, ISSN: 0167-5087.

[63] N. Nakao, T. Nakamura, M. Baba, Y. Uwamino, N. Nakanishi, H. Nakashima, and S.-i. Tanaka, “Measurements of response function of organic liquid scin- tillator for neutron energy range up to 135 MeV,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De- tectors and Associated Equipment, vol. 362, no. 2-3, pp. 454–465, 1995.

[64] R. Johnson, D. Ingersoll, B. Wehring, and J. Dorning, “NE-213 neutron spectrometry system for measurements from 1.0 to 20 MeV,” Nuclear In- struments and Methods, vol. 145, no. 2, pp. 337–346, 1977, ISSN: 0029-554X.

[65] T. Adye, “Unfolding algorithms and tests using RooUnfold,” in Proceedings of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, CERN- 2011-006, 2011, pp. 313–318.

[66] G. D’Agostini, “A multidimensional unfolding method based on bayes’ the- orem,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 362, no. 2, pp. 487–498, 1995, ISSN: 0168-9002. DOI: 10.1016/0168-9002(95) 00274-X.

[67] A. Hocker and V. Kartvelishvili, “SVD approach to data unfolding,” Nu- clear Instruments and Methods in Physics Research Section A: Accelera- tors, Spectrometers, Detectors and Associated Equipment, vol. 372, no. 3, pp. 469–481, 1996, ISSN: 0168-9002. DOI: 10.1016/0168-9002(95)01478-0.

[68] D. Satoh, T. Sato, A. Endo, Y. Yamaguchi, M. Takada, and K. Ishibashi, “Measurement of response functions of a liquid organic scintillator for neu- trons up to 800 MeV,” Journal of Nuclear Science and Technology, vol. 43, pp. 714–719, Jul. 2006.

[69] D. Satoh, S. Kunieda, Y. Iwamoto, N. Shigyo, and K. Ishibashi, “Develop- ment of SCINFUL-QMD code to calculate the neutron detection efficiencies for liquid organic scintillator up to 3 GeV,” Journal of Nuclear Science and Technology, vol. 39, no. sup2, pp. 657–660, 2002. DOI: 10.1080/00223131. 2002.10875185.

[70] R. Cecil, B. Anderson, and R. Madey, “Improved predections of neutron detection efficiency for hydrocarbon scintillators from 1 MeV to about 300 MeV,” Nuclear Instruments and Methods, vol. 161, no. 3, pp. 439–447, 1979, ISSN: 0029-554X.

[71] K. Weaver, J. Anderson, H. Barschall, and J. Davis, “Neutron spectra from deuteron bombardment of D, Li, Be, and C,” Nucl. Sci. Eng., v. 52, no. 1, pp. 35-45, vol. 52, Sep. 1973.

[72] K. Minomo, K. Washiyama, and K. Ogata, “Deuteron-nucleus total reaction cross sections up to 1 GeV,” Journal of Nuclear Science and Technology, vol. 54, no. 1, pp. 127–130, 2017.

[73] P. Kunz, “Computer code DWUCK4,” University of Colorado, unpublished.

[74] K. Ogata and K. Yoshida, “Applicability of the continuum-discretized coupled- channels method to the deuteron breakup at low energies,” Phys. Rev. C, vol. 94, p. 051 603, 5 Nov. 2016.

[75] J. R. Oppenheimer and M. Phillips, “Note on the transmutation function for deuterons,” Physical Review, vol. 48, no. 6, p. 500, 1935.

[76] D. Hurst, R. Latham, and W. B. Lewis, “On the production of radium E and polonium by deuteron bombardment of bismuth,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 174, no. 956, pp. 126–136, 1940.

[77] T. Sugawara, Y. Eguchi, H. Obayashi, H. Iwamoto, and K. Tsujimoto, “Conceptual design study of beam window for accelerator-driven system with subcriticality adjustment rod,” Nuclear Engineering and Design, vol. 331, pp. 11–23, 2018, ISSN: 0029-5493. DOI: 10.1016/j.nucengdes.2018.02. 011.

[78] R. Michel, M. Gloris, H.-J. Lange, I. Leya, M. Lupke, U. Herpers, B. Dittrich-Hannen, R. Rosel, T. Schiekel, D. Filges, P. Dragovitsch, M. Suter, H.-J. Hofmann, W. Wolfli, P. Kubik, H. Baur, and R. Wieler, “Nuclide production by proton-induced reactions on elements (6 Z 29) in the energy range from 800 to 2600 MeV,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 103, no. 2, pp. 183–222, 1995, ISSN: 0168-583X. DOI: 10.1016/0168- 583X(95)00566-8.

[79] R. Michel, R. Bodemann, H. Busemann, R. Daunke, M. Gloris, H.-J. Lange, B. Klug, A. Krins, I. Leya, M. Lupke, S. Neumann, H. Reinhardt, M. Schnatz-Buttgen, U. Herpers, T. Schiekel, F. Sudbrock, B. Holmqvist, H. Conde, P. Malmborg, M. Suter, B. Dittrich-Hannen, P.-W. Kubik, H.-A. Synal, and D. Filges, “Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interac- tions with Materials and Atoms, vol. 129, no. 2, pp. 153–193, 1997, ISSN: 0168-583X. DOI: 10.1016/S0168-583X(97)00213-9.

[80] Y. E. Titarenko, E. I. Karpikhin, A. F. Smolyakov, M. M. Igumnov, O. V. Shvedov, N. V. Stepanov, V. D. Kazarizki, V. F. Batyaev, S. G. Mashnik, and T. A. Gabriehl, “Experimental and calculative research of radioactive nuclei formation-products of target and constructional materials of elec- tronuclear facilities irradiated by protons with energies 1.5 GeV and 130 MeV.,” Inst. Teoret. i Experiment. Fiziki, Moscow Repts, p. 184, 1996.

[81] T. Schiekel, F. Sudbrock, U. Herpers, M. Gloris, H.-J. Lange, I. Leya, R. Michel, B. Dittrich-Hannen, H.-A. Synal, M. Suter, P. Kubik, M. Blann, and D. Filges, “Nuclide production by proton-induced reactions on elements (6 Z 29) in the energy range from 200 MeV to 400 MeV,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms, vol. 114, no. 1, pp. 91–119, 1996, ISSN: 0168- 583X. DOI: 10.1016/0168-583X(96)00145-0.

[82] T. W. Armstrong and K. C. Chandler, “HETC: A high energy transport code,” Nuclear Science and Engineering, vol. 49, no. 1, pp. 110–111, 1972. DOI: 10.13182/NSE72-A22535.

[83] L. S. Waters and R. E. Prael, “Status of the LAHET code system,” Dec. 1995.

[84] S. Mashnik and A. Sierk, “CEM2k - recent developments in CEM,” 2000.

[85] H. Matsuda, S. Meigo, and H. Iwamoto, “Proton-induced activation cross section measurement for aluminum with proton energy range from 0.4 to 3 GeV at J-PARC,” Journal of Nuclear Science and Technology, vol. 55, no. 8, pp. 955–961, 2018. DOI: 10.1080/00223131.2018.1461694.

[86] H. Matsuda, H. Takeshita, S. Meigo, F. Maekawa, and H. Iwamoto, “Mea- surement of nuclide production cross-sections of natFe for 0.4–3.0 GeV pro- tons in J-PARC,” in Proceedings of the 3rd J-PARC Symposium (J-PARC2019), 2021, p. 011 047.

[87] H. Matsuda, S.-i. Meigo, H. Iwamoto, and F. Maekawa, “Measurement of nuclide production cross section for lead and bismuth with proton in energy range from 0.4 GeV to 3.0 GeV,” EPJ Web Conf., vol. 239, p. 06 004, 2020. DOI: 10.1051/epjconf/202023906004.

[88] D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, and S. Leray, “Extension of the Li`ege intranuclear-cascade model to reactions in- duced by light nuclei,” Phys. Rev. C, vol. 90, p. 054 602, 5 Nov. 2014. DOI: 10.1103/PhysRevC.90.054602.

[89] A. Keli´c, M. V. Ricciardi, and K.-H. Schmidt, ABLA07–towards a complete description of the decay channels of a nuclear system from spontaneous fission to multifragmentation, 2009.

[90] H. W. Bertini, “Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 MeV and comparisons with experiment,” Phys. Rev., vol. 188, pp. 1711– 1730, 4 Dec. 1969. DOI: 10.1103/PhysRev.188.1711.

[91] Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, “Relativistic nuclear collisions at 10A gev energies from p+Be to Au+Au with the hadronic cascade model,” Phys. Rev. C, vol. 61, p. 024 901, 2 Dec. 1999. DOI: 10. 1103/PhysRevC.61.024901.

[92] S. Nagamiya, “Introduction to J-PARC,” Progress of Theoretical and Ex- perimental Physics, vol. 2012, no. 1, Oct. 2012, 02B001, ISSN: 2050-3911. DOI: 10.1093/ptep/pts025.

[93] S. Meigo, F. Noda, S. Ishikura, M. Futakawa, S. Sakamoto, and Y. Ikeda, “Evaluation of the 3-GeV proton beam profile at the spallation target of the JSNS,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 562, no. 2, pp. 569–572, 2006, Proceedings of the 7th International Conference on Accelerator Applications, ISSN: 0168-9002. DOI: 10.1016/j.nima.2006. 02.011.

[94] S. Meigo, M. Ohi, T. Kai, T. Ono, K. Ikezaki, T. Haraguchi, H. Fujimori, and S. Sakamoto, “Beam commissioning for neutron and muon facility at J- PARC,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 600, no. 1, pp. 41–43, 2009, ISSN: 0168-9002. DOI: 10.1016/j.nima.2008.11. 068.

[95] S. Hiroki, N. Hayashi, M. Kawase, F. Noda, P. Saha, H. Sako, H. Takahashi, A. Ueno, Y. Arakida, S. Lee, et al., “Multi-wire profile monitor for J-PARC 3 GeV RCS,” EPAC08, Genoa, Italy, pp. 1131–1133, 2008.

[96] Technical design report of spallation neutron source facility in J-PARC, JAEA-Tech. 2011-035. 2012.

[97] E. Tomarchio and S. Rizzo, “Coincidence-summing correction equations in gamma-ray spectrometry with p-type HP Ge detectors,” Radiation Physics and Chemistry, vol. 80, no. 3, pp. 318–323, 2011, ISSN: 0969-806X. DOI: 10.1016/j.radphyschem.2010.09.014.

[98] Y. Mizumoto, T. Kusakabe, and S. Iwata, “Ratio of peak to total efficiencies for germanium detectors,” Radioisotopes (Tokyo), vol. 36, no. 1, pp. 20–23, 1987.

[99] M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, D. Z. R. Sukumar, and K. Olsen, XCOM: Photon cross sections database, https://www.nist.gov/pml/xcom-photon-cross-sections-database, 1987.

[100] K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Ku- nieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Mat- sunobu, A. Zukeran, S. Kamada, and J. Katakura, “JENDL-4.0: A new library for nuclear science and engineering,” Journal of Nuclear Science and Technology, vol. 48, no. 1, pp. 1–30, 2011. DOI: 10.1080/18811248.

2011.9711675.

[101] G. Chiba, K. Okumura, K. Sugino, Y. Nagaya, K. Yokoyama, T. Kugo, M. Ishikawa, and S. Okajima, “JENDL-4.0 benchmarking for fission reactor applications,” Journal of Nuclear Science and Technology, vol. 48, no. 2, pp. 172–187, 2011. DOI: 10.1080/18811248.2011.9711692.

[102] M. R. Bhat, “Evaluated nuclear structure data file (ENSDF),” in Nuclear Data for Science and Technology, S. M. Qaim, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 817–821.

[103] I. Leya, “Modelling of the interactions between galactic cosmic rays with stone and iron meteorites - thin-target irradiations and thick-target exper- iments,” Ph.D. dissertation, Univ. Hannover, 1997.

[104] P. Kozma and B. Tumendemberel, “Nuclear reactions of medium and heavy target nuclei with high-energy projectiles,” Czechoslovak Journal of Physics, vol. 40, pp. 29–37, 1 Jan. 1990. DOI: 10.1007/BF01598352.

[105] R. Michel, F. Peiffer, and R. Stuck, “Measurement and hybrid model anal- ysis of integral excitation functions for proton-induced reactions on vana- dium, manganese and cobalt up to 200 MeV,” Nuclear Physics A, vol. 441, no. 4, pp. 617–639, 1985, ISSN: 0375-9474. DOI: 10.1016/0375-9474(85) 90441-5.

[106] R. Michel, B. Dittrich, U. Herpers, F. Peiffer, T. Schiffmann, P. Cloth, P. Dragovitsch, and D. Filges, “Proton-induced spallation at 600 MeV,” Analyst, vol. 114, pp. 287–293, 3 1989. DOI: 10.1039/AN9891400287.

[107] H. Weigel, R. Michel, U. Herpers, and W. Herr, “Survey of 600 MeV proton cross-sections for spallogenic radionuclides in quartz-, Fe-, Co-, and Ni- targets,” Radiochemical and Radioanalytical Letters, vol. 21, no. 5, pp. 293– 300, 1975.

[108] I. Haller and G. Rudstam, “Relative yields of the isomeric pairs 69gZn- 69mZn and 52gMn-52mMn in some spallation reactions induced by 20–153 MeV protons,” Journal of Inorganic and Nuclear Chemistry, vol. 19, no. 1, pp. 1–8, 1961, ISSN: 0022-1902. DOI: 10.1016/0022-1902(61)80038-9.

[109] O. V. Shvedov, Y. E. Titarenko, E. I. Karpikhin, I. V. Fedotov, V. D. Kazaritskiy, V. F. Batyaev, Y. V. Kochevalin, and N. V. Stepanov, “The experimental and theoretical investigations deep spallation cross section reaction on Co-59 by 1.2 GeV protons.,” Inst. Teoret. i Experiment. Fiziki, Moscow Repts, no. 81-93, 1993.

[110] Y. Asano, S. Mori, M. Sakano, K. Katoh, K. Kondo, and M. Noguchi, “Nuclear reactions of Ti, Fe, Co, Ni, Cu, and Zn by 500-MeV protons,” Journal of the Physical Society of Japan, vol. 60, no. 1, pp. 107–113, 1991. DOI: 10.1143/JPSJ.60.107.

[111] Y. E. Titarenko, “Experimental yields for Co-59 irradiated with 0.2, 1.2, 1.6 and 2.6-GeV protons,” USSR report to the I.N.D.C., no. 433, p. 91, 2003.

[112] Y. V. Aleksandrov, A. I. Bogdanov, S. K. Vasil’ev, R. B. Ivanov, M. A. Mikhaylova, T. I. Popova, and V. P. Prikhodtseva, “The radionuclide pro- duction by 1 GeV protons in the middle atomic weight elements,” Izv. Rossiiskoi Akademii Nauk, Ser. Fiz., vol. 54, p. 2249, 1990.

[113] G. Steyn, S. Mills, F. Nortier, B. Simpson, and B. Meyer, “Production of 52Fe via proton-induced reactions on manganese and nickel,” International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 41, no. 3, pp. 315–325, 1990, ISSN: 0883-2889. DOI: 10.1016/0883-2889(90)90197-O.

[114] R. G. Korteling and A. Caretto, “Systematics of 24Na and 22Na produc- tion with 400 MeV protons,” Journal of Inorganic and Nuclear Chemistry, vol. 29, no. 12, pp. 2863–2878, 1967, ISSN: 0022-1902. DOI: 10.1016/0022-1902(67)80117-9.

[115] A. Budzanowski, M. Fidelus, D. Filges, F. Goldenbaum, H. Hodde, L. Jar- czyk, B. Kamys, M. Kistryn, S. Kistryn, S. Kliczewski, A. Kowalczyk, E. Kozik, P. Kulessa, H. Machner, A. Magiera, B. Piskor-Ignatowicz, K. Pysz, Z. Rudy, R. Siudak, and M. Wojciechowski, “Comparison of nonequilib- rium processes in p+Ni and p+Au collisions at GeV energies,” Phys. Rev. C, vol. 82, p. 034 605, 3 Sep. 2010. DOI: 10.1103/PhysRevC.82.034605.

[116] C.-M. Herbach, D. Hilscher, U. Jahnke, V. G. Tishchenko, J. Galin, A. Letourneau, A. Peghaire, D. Filges, F. Goldenbaum, L. Pienkowski, W. U. Schroder, and J. Toke, “Systematic investigation of 1.2-GeV proton-induced spallation reactions on targets between Al and U,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De- tectors and Associated Equipment, vol. 562, no. 2, pp. 729–732, 2006, Pro- ceedings of the 7th International Conference on Accelerator Applications, ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2006.02.033.

[117] E. Belmont and J. M. Miller, “Reactions of 370-MeV protons with cobalt,” Phys. Rev., vol. 95, pp. 1554–1561, 6 Sep. 1954. DOI: 10.1103/PhysRev. 95.1554.

[118] G. M. Raisbeck and F. Yiou, “Production cross sections for 7Be and 22Na in targets of Si, Mg, Fe, and Ni irradiated by 1, 2, 3, and 23 GeV protons,” Phys. Rev. C, vol. 12, pp. 915–920, 3 Sep. 1975. DOI: 10.1103/PhysRevC. 12.915.

[119] G. V. S. Rayudu, “Formation cross sections of various radionuclides from Ni, Fe, Si, Mg, O, and C for protons of energies between 130 and 400 MeV,” Canadian Journal of Chemistry, vol. 42, no. 5, pp. 1149–1154, 1964. DOI: 10.1139/v64-178.

[120] G. V. S. Rayudu, “Formation cross sections of various radionuclides from Ni, Fe, Si, Mg, O and C for protons of energies between 0.5 and 2.9 GeV,” Journal of Inorganic and Nuclear Chemistry, vol. 30, no. 9, pp. 2311–2315, 1968, ISSN: 0022-1902. DOI: https://doi.org/10.1016/0022-1902(68) 80239-8.

[121] H. Yashima, Y. Uwamino, H. Iwase, H. Sugita, T. Nakamura, S. Ito, and A. Fukumura, “Cross sections for the production of residual nuclides by high- energy heavy ions,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 226, no. 3, pp. 243–263, 2004, ISSN: 0168-583X. DOI: https://doi.org/10.1016/j. nimb.2004.06.025.

[122] J. Cline and E. Nieschmidt, “Measurements of spallation cross sections for 590 MeV protons on thin targets of copper, nickel, iron and aluminum,” Nuclear Physics A, vol. 169, no. 2, pp. 437–448, 1971, ISSN: 0375-9474. DOI: https://doi.org/10.1016/0375-9474(71)90897-9.

[123] J. Sisterson and J. Vincent, “Cross section measurements for proton-induced reactions in Fe and Ni producing relatively short-lived radionuclides at Ep=140–500MeV,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 251, no. 1, pp. 1–8, 2006, ISSN: 0168-583X. DOI: https://doi.org/10.1016/j.nimb. 2006.05.015.

[124] K. Chackett, “Yields of potassium isotopes in high energy bombardments of vanadium, iron, cobalt, nickel, copper and zinc,” Journal of Inorganic and Nuclear Chemistry, vol. 27, no. 12, pp. 2493–2505, 1965, ISSN: 0022-1902. DOI: https://doi.org/10.1016/0022-1902(65)80148-8.

[125] L. B. Church and A. A. Caretto, “Study of (p, xn) reactions at 400 MeV,” Phys. Rev., vol. 178, pp. 1732–1742, 4 Feb. 1969. DOI: 10.1103/PhysRev. 178.1732.

[126] S. Neumann, “Activation experiments with medium-energy neutrons and the production of cosmogenic nuclides in extraterrestrial matter,” Ph.D. dissertation, Leibniz University Hannover, 1999.

[127] S. Regnier, B. Lavielle, M. Simonoff, and G. N. Simonoff, “Nuclear reactions in Rb, Sr, Y, and Zr targets,” Phys. Rev. C, vol. 26, pp. 931–943, 3 Sep. 1982. DOI: 10.1103/PhysRevC.26.931.

[128] Y. Titarenko, V. Batyaev, A. Titarenko, M. Butko, K. Pavlov, S. Florya, R. Tikhonov, V. Zhivun, A. Ignatyuk, S. Mashnik, S. Leray, and A. Boudard, “Measurement and simulation of the cross sections for nuclide production in 93Nb and natNi targets irradiated with 0.04- to 2.6 GeV protons,” Physics of Atomic Nuclei - PHYS ATOM NUCL-ENGL TR, vol. 74, pp. 537–550, Apr. 2011. DOI: 10.1134/S106377881104017X.

[129] V. Zerkin and B. Pritychenko, “The experimental nuclear reaction data (EXFOR): Extended computer database and web retrieval system,” Nu- clear Instruments and Methods in Physics Research Section A: Accelera- tors, Spectrometers, Detectors and Associated Equipment, vol. 888, pp. 31– 43, 2018, ISSN: 0168-9002. DOI: 10.1016/j.nima.2018.01.045.

[130] Y. Watanabe, K. Kosaka, S. Kunieda, S. Chiba, R. Fujimoto, H. Harada, M. Kawai, F. Maekawa, T. Murata, H. Nakashima, et al., “Status of JENDL high energy file,” Journal of the Korean Physical Society, vol. 59, pp. 1040– 1045, 2 2011.

[131] K. Kosako, T. Fukahori, and Y. Watanabe, “Evaluations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Zn for JENDL/HE,” AIP Conference Proceedings, vol. 769, no. 1, pp. 398–401, 2005. DOI: 10.1063/1.1945032.

[132] Y. E. Titarenko, O. V. Shvedov, V. F. Batyaev, E. I. Karpikhin, V. M. Zhivun, A. B. Koldobsky, R. D. Mulambetov, S. V. Kvasova, A. N. Sosnin, S. G. Mashnik, R. E. Prael, A. J. Sierk, T. A. Gabriel, M. Saito, and H. Yasuda, “Cross sections for nuclide production in 1 GeV proton-irradiated 208Pb,” Phys. Rev. C, vol. 65, p. 064 610, 6 May 2002. DOI: 10 .1103 / PhysRevC.65.064610.

[133] Y. E. Titarenko, V. F. Batyaev, A. Y. Titarenko, M. A. Butko, K. V. Pavlov, S. N. Florya, R. S. Tikhonov, S. G. Mashnik, A. V. Ignatyuk, N. N. Titarenko, W. Gudowski, M. T ˇe ˇsı´ensky´, C.-M. L. Persson, H. A. Abder- rahim, H. Kumawat, and H. Duarte, “Cross sections for nuclide production in a 56Fe target irradiated by 300, 500, 750, 1000, 1500, and 2600 MeV pro- tons compared with data on a hydrogen target irradiated by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions,” Phys. Rev. C, vol. 78, p. 034 615, 3 Sep. 2008. DOI: 10.1103/PhysRevC.78.034615.

[134] A. J. Koning, “Review of high energy data and model codes for accelerator- based transmutation,” Netherlands, Tech. Rep., 1993, ECN-C–93-005, p. 135.

[135] Y. E. Titarenko, V. F. Batyaev, A. Titarenko, M. A. Butko, K. Pavlov, S. N. Florya, R. S. Tikhonov, V. M. Zhivun, A. Ignatyuk, S. Mashnik, S. Leray, A. Boudard, J. Cugnon, D. Mancusi, Y. Yariv, K. Nishihara, N. Matsuda, H. Kumawat, G. Mank, and W. Gudowski, “Measurement and simulation of the cross sections for nuclide production in natW and 181Ta targets irradiated with 0.04- to 2.6-GeV protons,” Physics of Atomic Nuclei, vol. 74, pp. 551–572, 2011.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る