リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Excitation polarization-independent photo-induced restoration of inversion symmetry in Td-WTe₂」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Excitation polarization-independent photo-induced restoration of inversion symmetry in Td-WTe₂

Aoki, Ryota Uchida, Kento Tanaka, Koichiro 京都大学 DOI:10.1063/5.0086398

2022.04

概要

Td-WTe₂ is a topologically nontrivial material and exhibits a variety of physical properties, such as giant unsaturated magnetoresistance and the unconventional thermoelectric effect, due to its topological nature. It is also known to exhibit ultrafast topological phase transitions that restore its inversion symmetry by intense terahertz and mid-infrared pulses, and these properties demonstrate the possibility of ultrafast control of devices based on topological properties. Recently, a novel photo-induced topological phase transition by using polarization-controlled infrared excitation has been proposed, which is expected to control the material topology by rearranging the atomic orbitals near the Weyl point. To examine this topological phase transition, we experimentally studied the excitation-polarization dependence of the infrared-induced phase dynamics in a thin-layer of Td-WTe₂. Time-resolved second harmonic generation (SHG) measurements showed that SHG intensity decreases after the infrared pump regardless of the polarization. Polarization-resolved infrared pump–probe measurements indicated that the polarization-selected excited state relaxes quite rapidly (i.e., within 10–40 fs). Considering these experimental results, we conclude that it is difficult to control the photo-induced phase transition through orbital-selective excitation owing to the rapid loss of carrier distribution created by polarization-selective excitation in thin-layer Td-WTe₂ under our experimental condition. These results indicate that the suppression of the electron scattering process is crucial for experimentally realizing the photo-induced phase transition based on the polarization selection rule of the materials.

この論文で使われている画像

参考文献

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett.

49, 405 (1982).

B. Q. Lv, T. Qian, and H. Ding, Rev. Mod. Phys. 93, 025002 (2021).

N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001

(2018).

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83,

205101 (2011).

C. P. Weber, J. Appl. Phys. 129, 070901 (2021).

T. Oka and S. Kitamura, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

C. P. Weber, M. G. Masten, T. C. Ogloza, B. S. Berggren, M. K. L. Man, K. M.

Dani, J. Liu, Z. Mao, D. D. Klug, A. A. Adeleke, and Y. Yao, Phys. Rev. B 98,

155115 (2018).

J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu, G. Meier, and A.

Cavalleri, Nat. Phys. 16, 38 (2020).

T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).

10

N. Aryal, X. Jin, Q. Li, A. M. Tsvelik, and W. Yin, Phys. Rev. Lett. 126, 016401

(2021).

11

E. J. Sie, C. M. Nyby, C. D. Pemmaraju, S. J. Park, X. Shen, J. Yang, M. C.

Hoffmann, B. K. Ofori-Okai, R. Li, A. H. Reid, S. Weathersby, E. Mannebach, N.

Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T. P. Devereaux, T.

F. Heinz, X. Wang, and A. M. Lindenberg, Nature 565, 61 (2019).

12

M. Y. Zhang, Z. X. Wang, Y. N. Li, L. Y. Shi, D. Wu, T. Lin, S. J. Zhang, Y. Q.

Liu, Q. M. Liu, J. Wang, T. Dong, and N. L. Wang, Phys. Rev. X 9, 021036 (2019).

13

K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

14

A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A.

Bernevig, Nature 527, 495 (2015).

15

C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y. Zhang, B. Shen, J. Liu,

C. Hu, Y. Ding, D. Liu, Y. Hu, S. He, L. Zhao, L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi,

X. Jia, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z. Fang,

Z. Xu, C. Chen, and X. J. Zhou, Phys. Rev. B 94, 241119 (2016).

16

B. Feng, Y.-H. Chan, Y. Feng, R.-Y. Liu, M.-Y. Chou, K. Kuroda, K. Yaji, A.

Harasawa, P. Moras, A. Barinov, W. Malaeb, C. Bareille, T. Kondo, S. Shin, F.

Komori, T.-C. Chiang, Y. Shi, and I. Matsuda, Phys. Rev. B 94, 195134 (2016).

17

P. Li, Y. Wen, X. He, Q. Zhang, C. Xia, Z.-M. Yu, S. A. Yang, Z. Zhu, H. N.

Alshareef, and X.-X. Zhang, Nat. Commun. 8, 2150 (2017).

18

M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N.

Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205

(2014).

12, 045309-5

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

AIP Advances

19

K. G. Rana, F. K. Dejene, N. Kumar, C. R. Rajamathi, K. Sklarek, C. Felser, and

S. S. P. Parkin, Nano Lett. 18, 6591 (2018).

20

A. Tiwari, F. Chen, S. Zhong, E. Drueke, J. Koo, A. Kaczmarek, C. Xiao, J. Gao,

X. Luo, Q. Niu, Y. Sun, B. Yan, L. Zhao, and A. W. Tsen, Nat. Commun. 12, 2049

(2021).

21

K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nat. Mater. 18, 324 (2019).

22

B. E. Brown, Acta Crystallogr. 20, 268 (1966).

23

Y. Zhou, X. Chen, N. Li, R. Zhang, X. Wang, C. An, Y. Zhou, X. Pan, F. Song, B.

Wang, W. Yang, Z. Yang, and Y. Zhang, AIP Adv. 6, 075008 (2016).

24

Y. Tao, J. A. Schneeloch, A. A. Aczel, and D. Louca, Phys. Rev. B 102, 060103

(2020).

25

S. Ji, O. Grånäs, and J. Weissenrieder, ACS Nano 15, 8826 (2021).

26

T. Fukuda, K. Makino, Y. Saito, P. Fons, A. V. Kolobov, K. Ueno, and M. Hase,

Appl. Phys. Lett. 116, 093103 (2020).

27

M.-X. Guan, E. Wang, P.-W. You, J.-T. Sun, and S. Meng, Nat. Commun. 12,

1885 (2021).

28

K. Nassau, The Physics and Chemistry of Color, 2nd ed. (Wiley, New York, 2001).

29

D. Hirai, T. Yajima, D. Nishio-Hamane, C. Kim, H. Akiyama, M. Kawamura, T.

Misawa, N. Abe, T.-h. Arima, and Z. Hiroi, J. Am. Chem. Soc. 139, 10784 (2017).

30

Y.-M. Chang, L. Xu, and H. W. K. Tom, Chem. Phys. 251, 283 (2000).

31

A. J. Frenzel, C. C. Homes, Q. D. Gibson, Y. M. Shao, K. W. Post, A. Charnukha,

R. J. Cava, and D. N. Basov, Phys. Rev. B 95, 245140 (2017).

32

S.-i. Kimura, Y. Nakajima, Z. Mita, R. Jha, R. Higashinaka, T. D. Matsuda, and

Y. Aoki, Phys. Rev. B 99, 195203 (2019).

33

C. C. Homes, M. N. Ali, and R. J. Cava, Phys. Rev. B 92, 161109 (2015).

34

A. N. Domozhirova, A. A. Makhnev, E. I. Shreder, S. V. Naumov, A. V. Lukoyanov, V. V. Chistyakov, J. C. A. Huang, A. A. Semiannikova, P. S. Korenistov, and

V. V. Marchenkov, J. Phys.: Conf. Ser. 1389, 012149 (2019).

35

F. Hou, D. Zhang, P. Sharma, S. Singh, T. Wu, and J. Seidel, ACS Appl. Electron.

Mater. 2, 2196 (2020).

AIP Advances 12, 045309 (2022); doi: 10.1063/5.0086398

© Author(s) 2022

ARTICLE

scitation.org/journal/adv

36

F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X.-L. Feng, Small 12, 5802 (2016).

Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M.

Lin, X. Wan, F. Song, and L. Dai, Sci. Rep. 6, 29254 (2016).

38

H. Wang and X. Qian, npj Comput. Mater. 5, 119 (2019).

39

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

40

E. Drueke, J. Yang, and L. Zhao, Phys. Rev. B 104, 064304 (2021).

41

Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’ko, P. C. Canfield, N.

Trivedi, R. Arita, and A. Kaminski, Phys. Rev. Lett. 115, 166602 (2015).

42

B. He, C. Zhang, W. Zhu, Y. Li, S. Liu, X. Zhu, X. Wu, X. Wang, H.-h. Wen, and

M. Xiao, Sci. Rep. 6, 30487 (2016).

43

H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S.

Dresselhaus, Phys. Rev. B 45, 768 (1992).

44

T. E. Stevens, J. Kuhl, and R. Merlin, Phys. Rev. B 65, 144304 (2002).

45

D. Soranzio, M. Peressi, R. J. Cava, F. Parmigiani, and F. Cilento, Phys. Rev. Res.

1, 032033 (2019).

46

P. Hein, S. Jauernik, H. Erk, L. Yang, Y. Qi, Y. Sun, C. Felser, and M. Bauer, Nat.

Commun. 11, 2613 (2020).

47

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, Laser Photonics Rev. 7,

557 (2013).

48

A. N. Afanasiev, A. A. Greshnov, and D. Svintsov, Phys. Rev. B 99, 115202

(2019).

49

M. S. Foster and I. L. Aleiner, Phys. Rev. B 79, 085415 (2009).

50

Y. Qi, M. Guan, D. Zahn, T. Vasileiadis, H. Seiler, Y. W. Windsor, H. Zhao, S.

Meng, and R. Ernstorfer, arXiv:2105.14175 (2021).

51

M. Kim, S. G. Xu, A. I. Berdyugin, A. Principi, S. Slizovskiy, N. Xin, P. Kumaravadivel, W. Kuang, M. Hamer, R. Krishna Kumar, R. V. Gorbachev, K. Watanabe,

T. Taniguchi, I. V. Grigorieva, V. I. Fal’ko, M. Polini, and A. K. Geim, Nat.

Commun. 11, 2339 (2020).

37

12, 045309-6

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る