リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model

Ito, Ryo Kimura, Azuma Hirose, Yurie Hatano, Yu Mima, Atsushi Mae, Shin-Ichi Keidai, Yamato Nakamura, Toshihiro Fujikura, Junji Nishi, Yohei Ohta, Akira Toyoda, Taro Inagaki, Nobuya Osafune, Kenji 京都大学 DOI:10.1038/s41598-023-35875-1

2023.05.29

概要

For pluripotent stem cell (PSC)-based regenerative therapy against diabetes, the differentiation efficiency to pancreatic lineage cells needs to be improved based on the mechanistic understanding of pancreatic differentiation. Here, we aimed to elucidate the molecular mechanisms underlying pancreatic endoderm differentiation by searching for factors that regulate a crucial pancreatic endoderm marker gene, NKX6.1. Unbiasedly screening an siRNA knockdown library, we identified a candidate transcription factor, HHEX. HHEX knockdown suppressed the expression of another pancreatic endoderm marker gene, PTF1A, as well as NKX6.1, independently of PDX1, a known regulator of NKX6.1 expression. In contrast, the overexpression of HHEX upregulated the expressions of NKX6.1 and PTF1A. RNA-seq analysis showed decreased expressions of several genes related to pancreatic development, such as NKX6.1, PTF1A, ONECUT1 and ONECUT3, in HHEX knockdown pancreatic endoderm. These results suggest that HHEX plays a key role in pancreatic endoderm differentiation.

この論文で使われている画像

参考文献

1. DiMeglio, L. A., Evans-Molina, C. & Oram, R. A. Type 1 diabetes. Lancet 391, 2449–2462. https://​doi.o

​ rg/1​ 0.1​ 016/s​ 0140-6​ 736(18)​

31320-5 (2018).

2. Shapiro, A. M. J., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277.

https://​doi.​org/​10.​1038/​nrendo.​2016.​178 (2017).

3. Nakamura, T. et al. Long-term outcome of islet transplantation on insulin-dependent diabetes mellitus: An observational cohort

study. J. Diabetes Investig. 11, 363–372. https://​doi.​org/​10.​1111/​jdi.​13128 (2020).

4. D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat.

Biotechnol. 24, 1392–1401. https://​doi.​org/​10.​1038/​nbt12​59 (2006).

5. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting

cells in vivo. Nat. Biotechnol. 26, 443–452. https://​doi.​org/​10.​1038/​nbt13​93 (2008).

6. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439. https://​doi.​org/​10.​1016/j.​cell.​

2014.​09.​040 (2014).

7. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat.

Biotechnol. 32, 1121–1133. https://​doi.​org/​10.​1038/​nbt.​3033 (2014).

8. Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34,

1759–1772. https://​doi.​org/​10.​15252/​embj.​20159​1058 (2015).

9. Toyoda, T. et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells.

Stem Cell Res. 14, 185–197. https://​doi.​org/​10.​1016/j.​scr.​2015.​01.​007 (2015).

10. Toyoda, T. et al. Rho-associated kinases and non-muscle myosin IIs inhibit the differentiation of human iPSCs to pancreatic

endoderm. Stem Cell Rep. 9, 419–428. https://​doi.​org/​10.​1016/j.​stemcr.​2017.​07.​005 (2017).

11. Jennings, R. E. et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes 62, 3514–3522. https://​

doi.​org/​10.​2337/​db12-​1479 (2013).

12. Aigha, I. I. & Abdelalim, E. M. NKX6.1 transcription factor: A crucial regulator of pancreatic β cell development, identity, and

proliferation. Stem Cell Res. Ther. 11, 459. https://​doi.​org/​10.​1186/​s13287-​020-​01977-0 (2020).

13. Rezania, A. et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates

the maturation of insulin-secreting cells in vivo. Stem Cells 31, 2432–2442. https://​doi.​org/​10.​1002/​stem.​1489 (2013).

14. Pedersen, J. K. et al. Beta cell biology consortium, endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev. Biol.

288, 487–501. https://​doi.​org/​10.​1016/j.​ydbio.​2005.​10.​001 (2005).

15. Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538.

https://​doi.​org/​10.​1038/​natur​e22796 (2017).

16. Shi, Z.-D. et al. Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human

pancreatic development. Cell Stem Cell 20, 675–688. https://​doi.​org/​10.​1016/j.​stem.​2017.​01.​001 (2017).

17. Martinez-Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and

thyroid formation. Development 127, 2433–2445. https://​doi.​org/​10.​1242/​dev.​127.​11.​2433 (2000).

18. Bogue, C. W., Ganea, G. R., Sturm, E., Ianucci, R. & Jacobs, H. C. Hex expression suggests a role in the development and function

of organs derived from foregut endoderm. Dev. Dyn. 219, 84–89. https://​doi.​org/​10.​1002/​1097-​0177(2000)​9999:​9999%​3C::​aid-​

dvdy1​028%​3E3.0.​co;2-5 (2000).

19. Bort, R., Signore, M., Tremblay, K., Martinez-Barbera, J. P. & Zaret, K. S. Hex homeobox gene controls the transition of the

endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56. https://​doi.​org/​10.​

1016/j.​ydbio.​2005.​11.​006 (2006).

20. Kimura, A., Toyoda, T., Iwasaki, M., Hirama, R. & Osafune, K. Combined omics approaches reveal the roles of non-canonical

WNT7B signaling and YY1 in the proliferation of human pancreatic progenitor cells. Cell Chem. Biol. 27, 1561-1572.e7. https://​

doi.​org/​10.​1016/j.​chemb​iol.​2020.​08.​018 (2020).

21. Larribère, L. et al. An RNAi screen reveals an essential role for HIPK4 in human skin epithelial differentiation from iPSCs. Stem

Cell Rep. 9, 1234–1245. https://​doi.​org/​10.​1016/j.​stemcr.​2017.​08.​023 (2017).

22. Thomas, P. Q., Brown, A. & Beddington, R. S. Hex: A homeobox gene revealing peri-implantation asymmetry in the mouse embryo

and an early transient marker of endothelial cell precursors. Development 125, 85–94. https://​doi.​org/​10.​1242/​dev.​125.1.​85 (1998).

23. Soufi, A. & Jayaraman, P.-S. PRH/Hex: An oligomeric transcription factor and multifunctional regulator of cell fate. Biochem. J.

412, 399–413. https://​doi.​org/​10.​1042/​bj200​80035 (2008).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:8659 |

https://doi.org/10.1038/s41598-023-35875-1

10

www.nature.com/scientificreports/

24. Bort, R., Martinez-Barbera, J. P., Beddington, R. S. P. & Zaret, K. S. Hex homeobox gene-dependent tissue positioning is required

for organogenesis of the ventral pancreas. Development 131, 797–806. https://​doi.​org/​10.​1242/​dev.​00965 (2004).

25. Yang, D. et al. CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity

restriction. Nat. Cell Biol. 24, 1064–1076. https://​doi.​org/​10.​1038/​s41556-​022-​00946-4 (2022).

26. Zhang, J., McKenna, L. B., Bogue, C. W. & Kaestner, K. H. The diabetes gene Hhex maintains δ-cell differentiation and islet function.

Genes. Dev. 28, 829–834. https://​doi.​org/​10.​1101/​gad.​235499.​113 (2014).

27. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885. https://​doi.​

org/​10.​1038/​natur​e05616 (2007).

28. Horikoshi, M. et al. Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population.

Diabetologia 50, 2461–2466. https://​doi.​org/​10.​1007/​s00125-​007-​0827-5 (2007).

29. Vliet-Ostaptchouk, J. V. et al. HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort. Eur. J.

Hum. Genet. 16, 652–656. https://​doi.​org/​10.​1038/​sj.​ejhg.​52020​08 (2008).

30. Heller, S. et al. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun. Biol. 4, 1298.

https://​doi.​org/​10.​1038/​s42003-​021-​02818-3 (2021).

31. Pierreux, C. E., Vanhorenbeeck, V., Jacquemin, P., Lemaigre, F. P. & Rousseau, G. G. The transcription factor hepatocyte nuclear

factor-6/Onecut-1 controls the expression of its paralog Onecut-3 in developing mouse endoderm. J. Biol. Chem. 279, 51298–51304.

https://​doi.​org/​10.​1074/​jbc.​m4090​38200 (2004).

32. Vanhorenbeeck, V. et al. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric

endocrine differentiation. Dev. Biol. 305, 685–694. https://​doi.​org/​10.​1016/j.​ydbio.​2007.​02.​027 (2007).

33. Watanabe, H. et al. HHEX promotes hepatic-lineage specification through the negative regulation of eomesodermin. PLoS ONE

9, e90791. https://​doi.​org/​10.​1371/​journ​al.​pone.​00907​91 (2014).

34. Paz, H., Lynch, M. R., Bogue, C. W. & Gasson, J. C. The homeobox gene Hhex regulates the earliest stages of definitive

hematopoiesis. Blood 116, 1254–1262. https://​doi.​org/​10.​1182/​blood-​2009-​11-​254383 (2010).

35. Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood

and peripheral blood cells. Stem Cells 31, 458–466. https://​doi.​org/​10.​1002/​stem.​1293 (2013).

36. Suemori, H. et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype

by enzymatic bulk passage. Biochem. Biophys. Res. Commun. 345, 926–932. https://​doi.​org/​10.​1016/j.​bbrc.​2006.​04.​135 (2006).

37. Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci.

Rep. 4, 3594. https://​doi.​org/​10.​1038/​srep0​3594 (2014).

38. Kimura, A. et al. Small molecule AT7867 proliferates PDX1-expressing pancreatic progenitor cells derived from human pluripotent

stem cells. Stem Cell Res. 24, 61–68. https://​doi.​org/​10.​1016/j.​scr.​2017.​08.​010 (2017).

39. Tsujisaka, Y. et al. Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell

sorting. Stem Cell Rep. 17, 1772–1785. https://​doi.​org/​10.​1016/j.​stemcr.​2022.​05.​003 (2022).

40. Yamakawa, T. et al. Screening of human cDNA library reveals two differentiation-related genes, HHEX and HLX, as promoters of

early phase reprogramming toward pluripotency. Stem Cells 34, 2661–2669. https://​doi.​org/​10.​1002/​stem.​2436 (2016).

41. Hannig, G. & Jany, C. Co-transfection of plasmid DNA. Biotechniques 54, 47. https://​doi.​org/​10.​2144/​00011​3979 (2013).

42. Koike, H. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature 574, 112–

116. https://​doi.​org/​10.​1038/​s41586-​019-​1598-0 (2019).

43. Tsai, Y.-H. et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development

144, 1045–1055. https://​doi.​org/​10.​1242/​dev.​138453 (2017).

44. Hung, Y.-H. et al. Chromatin regulatory dynamics of early human small intestinal development using a directed differentiation

model. Nucleic Acids Res. 49, 726–744. https://​doi.​org/​10.​1093/​nar/​gkaa1​204 (2021).

Acknowledgements

The authors would like to thank Dr. Keisuke Okita for providing the pCXLE-gw episomal expression vectors,

Dr. Rina Ogura for supporting western blot experiments, and Dr. Peter Karagiannis for critically reading of the

manuscript. This work was partially supported by the Japan Society for the Promotion of Science (JSPS) through

its Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Number 21H02979) to K.O. and by the Japan

Agency for Medical Research and Development (AMED) through its research grant “Core Center for iPS Cell

Research (JP22bm0104001), R&D Program of Regenerative/Cellular Medicine and Gene Therapies from the Basic

to Nonclinical Phase (JP22bm1123002), Research Center Network for Realization of Regenerative Medicine” to

K.O. and by the iPS Cell Research Fund.

Author contributions

R.I. performed all the experiments. R.I. and K.O. drafted the manuscript. R.I., A.K., T.T. and K.O. contributed to

the study conception and design. Y. Hirose contributed to the establishment of the screening system. Y. Hatano

provided consultation on the statistical analysis methods. A.K., A.M., Y.K., T.N., and J.F. contributed to the

interpretation and planning of each experiment. S.-I.M. provided consultation on the RNA-seq analysis. Y.N.

and A.O. supervised the screening system. T.T., N.I. and K.O. supervised all aspects of the study. All authors

were involved in the manuscript preparation.

Competing interests K.O. is a founder and member of the scientific advisory boards of iPS Portal, Inc., and a founder and chief

scientific advisor of RegeNephro Co., Ltd. The other authors have no competing interest.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​35875-1.

Correspondence and requests for materials should be addressed to T.T. or K.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Scientific Reports |

(2023) 13:8659 |

https://doi.org/10.1038/s41598-023-35875-1

11

Vol.:(0123456789)

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

Vol:.(1234567890)

(2023) 13:8659 |

https://doi.org/10.1038/s41598-023-35875-1

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る