リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of ligand structures on oxygen absorbability and viscosity of metal-containing ionic liquids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of ligand structures on oxygen absorbability and viscosity of metal-containing ionic liquids

Matsuoka, Atsushi Kamio, Eiji Matsuyama, Hideto 神戸大学

2020.11.15

概要

Metal-containing ionic liquids (MCILs) composed of a cobalt(II) Schiff base complex and ionic-liquid-based axial ligands (ligand ILs) are potential O2 absorbents. To determine the design criteria of MCILs with both highly selective O2 absorbability and low viscosity, the relationship between the physicochemical properties and chemical structure of the MCILs was investigated. The measurement of the amount of O2 absorbed in MCILs with various ligand ILs indicated that O2 reactivity is determined by the electron density of the Co atom of the MCILs. The electron density of the Co atom could be controlled by the σ electron donation ability of the ligand ILs. Moreover, the viscosity of the MCILs was strongly affected by the interaction among the MCIL molecules caused by the π electron system. This interaction was weakened by the equatorially coordinating Schiff base and the ligand ILs within the chemical structure. Therefore, to develop MCILs with both high O2 reactivity and low viscosity, suppression of the interaction caused by the π electron system without decreasing the electron density of the Co atom is important.

この論文で使われている画像

参考文献

26

[1]

27

28

P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art, Ind.

Eng. Chem. Res. 48 (2009) 4638–4663.

[2]

F. Wu, M.D. Argyle, P.A. Dellenback, M. Fan, Progress in O2 separation for oxy-fuel

29

combustion–A promising way for cost-effective CO2 capture: A review, Prog. Energy Combust.

30

Sci. 67 (2018) 188–205.

31

[3]

32

33

T. Burdyny, H. Struchtrup, Hybrid membrane/cryogenic separation of oxygen from air for use in

the oxy-fuel process, Energy. 35 (2010) 1884–1897.

[4]

H. Lin, M. Zhou, J. Ly, J. Vu, J.G. Wijmans, T.C. Merkel, J. Jin, A. Haldeman, E.H. Wagener, D.

34

Rue, Membrane-based oxygen-enriched combustion, Ind. Eng. Chem. Res. 52 (2013) 10820–

35

10834.

19

[5]

J.-G. Jee, J.-S. Lee, C.-H. Lee, Air Separation by a Small-Scale Two-Bed Medical O2 Pressure

Swing Adsorption, Ind. Eng. Chem. Res. 40 (2001) 3647–3658.

[6]

P.D. Southon, D.J. Price, P.K. Nielsen, C.J. McKenzie, C.J. Kepert, Reversible and selective O2

chemisorption in a porous metal-organic host material, J. Am. Chem. Soc. 133 (2011) 10885–

10891.

[7]

frameworks, Chem. Soc. Rev. 38 (2009) 1477–1504.

[8]

10

J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic

J.-R. Li, J. Sculley, H.-C. Zhou, Metal–Organic Frameworks for Separation, Chem. Rev. 112

(2012) 869–932.

[9]

D.J. Xiao, M.I. Gonzalez, L.E. Darago, K.D. Vogiatzis, E. Haldoupis, L. Gagliardi, J.R. Long,

11

Selective, Tunable O2 Binding in Cobalt(II)-Triazolate/Pyrazolate Metal-Organic Frameworks, J.

12

Am. Chem. Soc. 138 (2016) 7161–7170.

13

[10]

14

15

D.F. Sava Gallis, M. V. Parkes, J.A. Greathouse, X. Zhang, T.M. Nenoff, Enhanced O2 selectivity

versus N2 by partial metal substitution in Cu-BTC, Chem. Mater. 27 (2015) 2018–2025.

[11]

L.J. Murray, M. Dinca, J. Yano, S. Chavan, F. Bonino, S. Bordiga, C.M. Brown, J.R. Long,

16

Highly-Selective and Reversible O2 Binding in Cr3(1,3,5-benzenetricarboxylate)2, J. Am. Chem.

17

Soc. 132 (2010) 7856–7857.

18

[12]

W. Zhang, D. Banerjee, J. Liu, H.T. Schaef, J. V. Crum, C.A. Fernandez, R.K. Kukkadapu, Z.

19

Nie, S.K. Nune, R.K. Motkuri, K.W. Chapman, M.H. Engelhard, J.C. Hayes, K.L. Silvers, R.

20

Krishna, B.P. McGrail, J. Liu, P.K. Thallapally, Redox-Active Metal-Organic Composites for

21

Highly Selective Oxygen Separation Applications, Adv. Mater. 28 (2016) 3572–3577.

22

[13]

E.D. Bloch, L.J. Murray, W.L. Queen, S. Chavan, S.N. Maximoff, J.P. Bigi, R. Krishna, V.K.

23

Peterson, F. Grandjean, G.J. Long, B. Smit, S. Bordiga, C.M. Brown, J.R. Long, Selective

24

binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination

25

sites, J. Am. Chem. Soc. 133 (2011) 14814–14822.

26

[14]

T. Zhao, X. Zhang, Z. Tu, Y. Wu, X. Hu, Low-viscous diamino protic ionic liquids with fluorine-

27

substituted phenolic anions for improving CO2 reversible capture, J. Mol. Liq. 268 (2018) 617–

28

624.

29

[15]

J.F. Huang, H. Luo, C. Liang, D.E. Jiang, S. Dai, Advanced liquid membranes based on novel

30

ionic liquids for selective separation of olefin/paraffin via olefin-facilitated transport, Ind. Eng.

31

Chem. Res. 47 (2008) 881–888.

32

[16]

S. Seo, M. Quiroz-Guzman, M.A. Desilva, T.B. Lee, Y. Huang, B.F. Goodrich, W.F. Schneider,

33

J.F. Brennecke, Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO2

34

capture, J. Phys. Chem. B. 118 (2014) 5740–5751.

20

[17]

S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-

Liquid-Based CO2 Capture Systems: Structure, Interaction and Process, Chem. Rev. 117 (2017)

9625–9673.

[18]

overview and progress, Energy Environ. Sci. 5 (2012) 6668–6681.

[19]

L.Y. Wang, Y.L. Xu, Z.D. Li, Y.N. Wei, J.P. Wei, CO2/CH4 and H2S/CO2 Selectivity by Ionic

Liquids in Natural Gas Sweetening, Energy and Fuels. 32 (2018) 10–23.

[20]

10

X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Carbon capture with ionic liquids:

F. Karadas, M. Atilhan, S. Aparicio, Review on the use of ionic liquids (ILs) as alternative fluids

for CO2 capture and natural gas sweetening, Energy and Fuels. 24 (2010) 5817–5828.

[21]

11

T. Torimoto, T. Tsuda, K.I. Okazaki, S. Kuwabata, New frontiers in materials science opened by

ionic liquids, Adv. Mater. 22 (2010) 1196–1221.

12

[22]

R.D. Rogers, K.R. Seddon, Ionic Liquids-Solvents of the Future?, Science. 302 (2003) 792–793.

13

[23]

R.L. Vekariya, A review of ionic liquids: Applications towards catalytic organic transformations,

14

15

J. Mol. Liq. 227 (2017) 44–60.

[24]

S. Kasahara, E. Kamio, H. Matsuyama, Improvements in the CO2 permeation selectivities of

16

amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption

17

properties, J. Memb. Sci. 454 (2014) 155–162.

18

[25]

19

20

applications of functionalised ionic liquids, Chem. A Eur. J. 12 (2006) 2122–2130.

[26]

21

22

Z. Fei, T.J. Geldbach, D. Zhao, P.J. Dyson, From dysfunction to bis-function: On the design and

E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am.

Chem. Soc. 124 (2002) 926–927.

[27]

D.E. Jiang, S. Dai, First principles molecular dynamics simulation of a task-specific ionic liquid

23

based on silver-olefin complex: Atomistic insights into a separation process, J. Phys. Chem. B.

24

112 (2008) 10202–10206.

25

[28]

P. Nockemann, B. Thijs, T.N. Parac-Vogt, K. Van Hecke, L. Van Meervelt, B. Tinant, I.

26

Hartenbach, T. Schleid, V.T. Ngan, M.T. Nguyen, K. Binnemans, Carboxyl-Functionalized Task-

27

Specific Ionic Liquids for Solubilizing Metal Oxides, Inorg. Chem. 47 (2008) 9987–9999.

28

[29]

29

30

I. Newington, J.M. Perez-Arlandis, T. Welton, Ionic liquids as designer solvents for nucleophilic

aromatic substitutions, Org. Lett. 9 (2007) 5247–5250.

[30]

F. Moghadam, E. Kamio, H. Matsuyama, High CO2 separation performance of amino acid ionic

31

liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under

32

humid conditions, J. Memb. Sci. 525 (2017) 290–297.

33

[31]

34

35

36

S. Kasahara, E. Kamio, T. Ishigami, H. Matsuyama, Amino acid ionic liquid-based facilitated

transport membranes for CO2 separation, Chem. Commun. 48 (2012) 6903–6905.

[32]

H. Fu, X. Wang, H. Sang, R. Fan, Y. Han, J. Zhang, Z. Liu, The study of bicyclic amidine-based

ionic liquids as promising carbon dioxide capture agents, J. Mol. Liq. 304 (2020) 112805.

21

[33]

P. Mehta, S. Vedachalam, G. Sathyaraj, S. Garai, G. Arthanareeswaran, K. Sankaranarayanan,

Fast sensing ammonia at room temperature with proline ionic liquid incorporated cellulose

acetate membranes, J. Mol. Liq. 305 (2020) 112820.

[34]

T. Zhao, P. Li, X. Feng, X. Hu, Y. Wu, Study on absorption and spectral properties of H2S in

carboxylate protic ionic liquids with low viscosity, J. Mol. Liq. 266 (2018) 806–813.

[35]

A. Matsuoka, E. Kamio, T. Mochida, H. Matsuyama, Facilitated O2 transport membrane

containing Co(II)-salen complex-based ionic liquid as O2 carrier, J. Memb. Sci. 541 (2017) 393–

402.

[36]

A. Matsuoka, E. Kamio, H. Matsuyama, Investigation into the Effective Chemical Structure of

10

Metal-Containing Ionic Liquids for Oxygen Absorption, Ind. Eng. Chem. Res. 58 (2019) 23304–

11

23316.

12

[37]

Q. Zheng, S.J. Thompson, S. Zhou, M. Lail, K. Amato, A. V. Rayer, J. Mecham, P. Mobley, J.

13

Shen, B. Fletcher, Task-Specific Ionic Liquids Functionalized by Cobalt(II) Salen for Room

14

Temperature Biomimetic Dioxygen Binding, Ind. Eng. Chem. Res. 58 (2019) 334–341.

15

[38]

16

17

phosphonium ionic liquids as potential electrolytes, Electrochem. Commun. 9 (2007) 2353–2358.

[39]

18

19

K. Tsunashima, M. Sugiya, Physical and electrochemical properties of low-viscosity

H.T. Clarke, B. Gillespie, S.Z. Weisshaus, The Action of Formaldehyde on Amines and Amino

Acids, J. Am. Chem. Soc. 55 (1933) 4571–4587.

[40]

K.C. Gupta, H.K. Abdulkadir, S. Chand, Polymer-immobilized N,N′-

20

bis(acetylacetone)ethylenediamine cobalt(II) Schiff base complex and its catalytic activity in

21

comparison with that of its homogenized analogue, J. Appl. Polym. Sci. 90 (2003) 1398–1411.

22

[41]

M. Okuhata, T. Mochida, Ionic Liquids from the Cationic Cobalt(III) Schiff Base Complex,

23

[Co(acacen)L2][Tf2N] (acacen = N,N’ bis(acetylacetone)ethylenediamine, Tf2N =

24

bis(trifluoromethanesulfonyl)amide), J. Coord. Chem. 67 (2014) 1361–1366.

25

[42]

26

I. Canals, J.A. Portal, E. Bosch, M. Rosés, Retention of ionizable compounds on HPLC. 4.

Mobile-phase pH measurement in methanol/water, Anal. Chem. 72 (2000) 1802–1809.

27

[43]

Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chem. Rev. 114 (2014) 1289–1326.

28

[44]

B. Dębski, A. Hänel, R. Aranowski, S. Stolte, M. Markiewicz, T. Veltzke, I. Cichowska-

29

Kopczyńska, Thermodynamic interpretation and prediction of CO2 solubility in imidazolium

30

ionic liquids based on regular solution theory, J. Mol. Liq. 291 (2019).

31

[45]

M.S. Shannon, J.M. Tedstone, S.P.O. Danielsen, M.S. Hindman, A.C. Irvin, J.E. Bara, Free

32

volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids, Ind. Eng.

33

Chem. Res. 51 (2012) 5565–5576.

34

[46]

S. Seo, M.A. Desilva, H. Xia, J.F. Brennecke, Effect of Cation on Physical Properties and CO2

35

Solubility for Phosphonium-Based Ionic Liquids with 2-Cyanopyrrolide Anions, J. Phys. Chem.

36

B. 119 (2015) 11807–11814.

22

[47]

M.J. Carter, D.P. Rillema, F. Basolo, Oxygen Carrier and Redox Properties of Some Neutral

Cobalt Chelates. Axial and in-Plane Ligand Effects, J. Am. Chem. Soc. 96 (1974) 392–400.

[48]

A. Pui, I. Berdan, I. Morgenstern-Badarau, A. Gref, M. Perrée-Fauvet, Electrochemical and

spectroscopic characterization of new cobalt(II) complexes. Catalytic activity in oxidation

reactions by molecular oxygen, Inorganica Chim. Acta. 320 (2001) 167–171.

[49]

Ethylenebis(acetylacetoniminato)ligandcobalt (II), J. Am. Chem. Soc. 92 (1970) 55–60.

[50]

G. Amiconi, G., Brunori, M., Antonini, E., Tauzher, G., Costa, Thermodynamics of the

Reversible Oxygenation of Bis(Acetylacetone)-Ethylenediiminecobalt (II) in Pyridine, Nature.

10

11

A.L. Crumbliss, F. Basolo, Monomeric Oxygen Adducts of N,N’-

228 (1970) 549–551.

[51]

S. Patel, P. Patel, S.B. Undre, S.R. Pandya, M. Singh, S. Bakshi, DNA binding and dispersion

12

activities of titanium dioxide nanoparticles with UV/vis spectrophotometry, fluorescence

13

spectroscopy and physicochemical analysis at physiological temperature, J. Mol. Liq. 213 (2016)

14

304–311.

15

[52]

D. Kumar, A. Chandra, M. Singh, Effect of Pr(NO3)3, Sm(NO3)3, and Gd(NO3)3 on Aqueous

16

Solution Properties of Urea: A Volumetric, Viscometric, Surface Tension, and Friccohesity Study

17

at 298.15 K and 0.1 MPa, J. Solution Chem. 45 (2016) 750–771.

18

[53]

R. Chetty, M. Singh, In-vitro interaction of cerium oxide nanoparticles with hemoglobin, insulin,

19

and dsDNA at 310.15 K: Physicochemical, spectroscopic and in-silico study, Int. J. Biol.

20

Macromol. 156 (2020) 1022–1044.

21

[54]

22

23

C. Janiak, A critical account on n-n stacking in metal complexes with aromatic nitrogencontaining ligands, J. Chem. Soc. Dalt. Trans. (2000) 3885–3896.

[55]

M.K. Milčić, Z.D. Tomić, S.D. Zarić, Very strong metal ligand aromatic cation-π interactions in

24

transition metal complexes: Intermolecular interaction in tetraphenylborate salts, Inorganica

25

Chim. Acta. 357 (2004) 4327–4329.

26

[56]

H. Keypour, M. Shayesteh, M. Rezaeivala, F. Chalabian, Y. Elerman, O. Buyukgungor,

27

Synthesis, spectral characterization, structural investigation and antimicrobial studies of

28

mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate

29

N2O4 Schiff base ligand derived from salicylaldehyde, J. Mol. Struct. 1032 (2013) 62–68.

30

[57]

M.A.A.F. de, B. de Castro, A.M. Coelho, D. Domingues, C. Freire, J. Morais, Electrochemical

31

and structural studies of nickel(II) complexes with N2O2 Schiff base ligands derived from 2-

32

hydroxy-1-naphthaldehyde. Molecular structure of N,N′-2,3-dimethylbutane-2,3-diyl-bis(2-

33

hydroxy-1-naphthylideneiminate) nickel(II), Inorganica Chim. Acta. 205 (1993) 157–166.

34

[58]

A. Gutiérrez, M.F. Perpiñán, A.E. Sánchez, M.C. Torralba, M.R. Torres, Stabilization of the

35

cobalt coordination site in transmetalation processes on dinuclear salen derivatives, Inorganica

36

Chim. Acta. 363 (2010) 1837–1842.

23

[59]

C.A. Hunter, J.K.M. Sanders, The Nature of π-π Interactions, J. Am. Chem. Soc. 112 (1990)

5525–5534.

[60]

N. Mahata, A.R. Silva, M.F.R. Pereira, C. Freire, B. de Castro, J.L. Figueiredo, Anchoring of a

[Mn(salen)Cl] complex onto mesoporous carbon xerogels, J. Colloid Interface Sci. 311 (2007)

152–158.

[61]

the investigation of intramolecular π-stacking interactions, J. Org. Chem. 70 (2005) 2299–2305.

[62]

M.A. Muñoz, O. Sama, M. Galán, P. Guardado, C. Carmona, M. Balón, Hydrogen bonding NH/π

interactions between betacarboline and methyl benzene derivatives, Spectrochim. Acta - Part A

10

11

X. Mei, C. Wolf, Highly congested nondistorted diheteroarylnaphthalenes: Model compounds for

Mol. Biomol. Spectrosc. 57 (2001) 1049–1056.

[63]

A.H. Kianfar, L. Keramat, M. Dostani, M. Shamsipur, M. Roushani, F. Nikpour, Synthesis,

12

spectroscopy, electrochemistry and thermal study of Ni(II) and Cu(II) unsymmetrical N2O2 Schiff

13

base complexes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 77 (2010) 424–429.

14

[64]

15

16

CH3OH), Inorganica Chim. Acta. 141 (1988) 139–144.

[65]

17

18

E.M. Nour, A.A. Taha, I.S. Alnaimi, Infrared and Raman studies of [UO2(salen)(L)] (L=H2O and

M. Tsuboi, Y. Kyogoku, T. Shimanouchi, Infrared absorption spectra of protonated and

deprotonated nucleosides, Biochim. Biophys. Acta. 55 (1962) 1–12.

[66]

H. Shirota, T. Mandai, H. Fukazawa, T. Kato, Comparison between dicationic and monocationic

19

ionic liquids: Liquid density, thermal properties, surface tension, and shear viscosity, J. Chem.

20

Eng. Data. 56 (2011) 2453–2459.

21

22

[67]

S. Biradar, R. Kasugai, H. Kanoh, H. Nagao, Y. Kubota, K. Funabiki, M. Shiro, M. Matsui,

Liquid azo dyes, Dye. Pigment. 125 (2016) 249–258.

23

24

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る