リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anomalous small-angle X-ray scattering analyses on hierarchical structures of rubber-filler systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anomalous small-angle X-ray scattering analyses on hierarchical structures of rubber-filler systems

Watanabe, Yuki Nishitsuji, Shotaro Takenaka, Mikkihito 京都大学 DOI:10.1107/s1600576723000547

2023.04

概要

The hierarchical structures of poly(styrene-ran-butadiene) (SBR) rubber/carbon black (CB) systems vulcanized with sulfur and ZnO have been clarified using anomalous small-angle X-ray scattering (ASAXS) near the Zn absorption edge. In the case of SBR/CB systems vulcanized with peroxide, it has been found previously that the hierarchical structures formed by CB consist of aggregates of primary particles and agglomerates of those aggregates with mass-fractal dimensions. However, to date the hierarchical structures in SBR/CB systems vulcanized with sulfur and ZnO have not been well investigated, despite being commonly used. This is because the strong scattering contrast of Zn prevents the quantitative analyses of the hierarchical structures of CB using X-ray scattering. In this study, the effects of Zn on the scattering intensity were eliminated and the structure factors of CB in SBR/CB systems were obtained using the ASAXS method. By extrapolating to the zero volume fraction of CB, the particle structure factor of the CB aggregates was estimated and it was found that the CB aggregates consist of closely packed CB primary particles. The presence of large particles of ZnO and particles of ZnS on the order of 10 nm in size is confirmed.

この論文で使われている画像

参考文献

Figure 8

Rg,ZZ of ZnS plotted as a function of CB.

independent of CB, agreeing with the results of elemental

mapping in rubber by energy-filtering transmission electron

microscopy and SAXS (Dohi & Horiuchi, 2007). This result

suggests that the vulcanization is not greatly affected by the

presence of CB.

4. Conclusions

We applied the ASAXS method to SBR/CB systems vulcanized with sulfur and ZnO to investigate their hierarchical

structures. We successfully eliminated the effects of Zn on the

scattering intensity and obtained the structure factors of CB in

SBR/CB systems using the ASAXS method. We measured the

CB volume fraction dependence of the structure factor, and

estimated the particle structure factor of the CB aggregate by

extrapolating to the zero-volume fraction of CB. The CB

aggregates are found to consist of closely packed CB primary

particles. We also confirmed the presence of large particles of

ZnO and particles of ZnS on the order of 10 nm.

Acknowledgements

We express sincere thanks to Dr Naoya Amino and Dr Satoshi

Mihara; and The Yokohama-rubber Company Ltd, for the

sample preparation. The synchrotron USAXS/SAXS/WAXD

experiments were performed at BL03XU of SPring-8

(proposal Nos. 2020A7216; 2019B7267; 2019A7218)

constructed by the Consortium of Advanced Softmaterial

Beamline (FSBL) with the approval of the Japan Synchrotron

Radiation Research Institute (JASRI). The authors thank Dr

Taizo Kabe and Dr Hiroyasu Masunaga (JASRI, SPring-8) for

their assistance in the experiments on the BL03XU beamline.

J. Appl. Cryst. (2023). 56, 461–467

Baeza, G. P., Genix, A. C., Degrandcourt, C., Petitjean, L., Gummel,

J., Couty, M. & Oberdisse, J. (2013). Macromolecules, 46, 317–329.

Cenedese, P., Bley, F. & Lefebvre, S. (1984). Acta Cryst. A40, 228–240.

Cromer, D. T. & Liberman, D. A. (1981). Acta Cryst. A37, 267–268.

Dohi, H. & Horiuchi, S. (2007). Polymer, 48, 2526–2530.

Hoell, A., Tatchev, D., Haas, S., Haug, J. & Boesecke, P. (2009). J.

Appl. Cryst. 42, 323–325.

Isono, Y. & Aoyama, T. (2013). Nihon Reoroji Gakkaishi, 41, 137–144.

Janzen, J. (1975). J. Appl. Phys. 46, 966–969.

Kato, A., Shimanuki, J., Kohjiya, S. & Ikeda, Y. (2006). Rubber Chem.

Technol. 79, 653–673.

Kishimoto, H., Matsumoto, N., Mashita, R. & Masui, T. (2021).

SPring-8/SACLA Res. Frontier. 9, 68–71.

Kluppel, M. (2003). Adv. Polym. Sci. 164, 1–86.

Koga, T., Hashimoto, T., Takenaka, M., Aizawa, K., Amino, N.,

Nakamura, M., Yamaguchi, D. & Koizumi, S. (2008). Macromolecules, 41, 453–464.

Koga, T., Takenaka, M., Aizawa, K., Nakamura, M. & Hashimoto, T.

(2005). Langmuir, 21, 11409–11413.

Lyon, O. & Simon, J. P. (1987). Phys. Rev. B, 35, 5164–5174.

McGlasson, A., Rishi, K., Beaucage, G., Chauby, M., Kuppa, V.,

Ilavsky, J. & Rackaitis, M. (2020). Macromolecules, 53, 2235–2248.

McGlasson, A., Rishi, K., Beaucage, G., Narayanan, V., Chauby, M.,

Mulderig, A., Kuppa, K. V., Ilavsky, J. & Rackaitis, M. (2019).

Polymer, 181, 121765.

Morfin, I., Ehrburger-Dolle, F., Grillo, I., Livet, F. & Bley, F. (2006). J.

Synchrotron Rad. 13, 445–452.

Naudon, A. (1992). Modern Aspects of Small-Angle Scattering, edited

by H. Brumberger, p. 203. New York: Plenum.

Noda, Y., Koizumi, S., Masui, T., Mashita, R., Kishimoto, H.,

Yamaguchi, D., Kumada, T., Takata, S., Ohishi, K. & Suzuki, J.

(2016). J. Appl. Cryst. 49, 2036–2045.

Pilz, I. (1969). J. Colloid Interface Sci. 30, 140–144.

Rathje, J. & Ruland, W. (1976). Colloid Polym. Sci. 254, 358–370.

Rishi, K., Beaucage, G., Kuppa, V., Mulderig, A., Narayanan, V.,

McGlasson, A., Rackaitis, M. & Ilavsky, J. (2018). Macromolecules,

51, 7893–7904.

Salgueiro, W., Somoza, A., Marzocca, A. J., Torriani, I. L. & Mansilla,

M. A. (2009). J. Polym. Sci. B Polym. Phys. 47, 2320–2327.

Salgueiro, W., Somoza, A., Torriani, I. L. & Marzocca, A. J. (2007). J.

Polym. Sci. B Polym. Phys. 45, 2966–2971.

Sasaki, S. (1989). KEK Report 88-14. National Laboratory for High

Energy Physics, Tsukuba, Japan.

Shinohara, Y., Kishimoto, H., Inoue, K., Suzuki, Y., Takeuchi, A.,

Uesugi, K., Yagi, N., Muraoka, K., Mizoguchi, T. & Amemiya, Y.

(2007). J. Appl. Cryst. 40, s397–s401.

Shirode, K., Oe, H., Hishikawa, Y. & Miura, S. (2015). Status Report

of Hyogo-Beamlines with Research Results, Vol. 4, pp. 21–23.

SPring-8, Hyogo, Japan.

Staropoli, M., Gerstner, D., Radulescu, A., Sztucki, M., Duez, B.,

Westermann, S., Lenoble, D. & Pyckhout-Hintzen, W. (2020).

Polymers, 12, 502.

Stuhrmann, H. B. (2007). J. Appl. Cryst. 40, s23–s27.

Takenaka, M., Nishitsuji, S., Amino, N., Ishikawa, Y., Yamaguchi, D.

& Koizumi, S. (2009). Macromolecules, 42, 308–311.

Yamaguchi, D., Yuasa, T., Sone, T., Tominaga, T., Noda, Y., Koizumi,

S. & Hashimoto, T. (2017). Macromolecules, 50, 7739–7759.

Yan, N., Buonocore, G., Lavorgna, M., Kaciulis, S., Balijepalli, K. S.,

Zhan, Y., Xia, H. & Ambrosio, L. (2014). Compos. Sci. Technol.

102, 74–81.

Yuki Watanabe et al.

ASAXS of hierarchical structures of rubber–filler systems

467

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る