リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reconsidering representation of complex microbial community structures: Habitat-based analysis based on comparative metagenomics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reconsidering representation of complex microbial community structures: Habitat-based analysis based on comparative metagenomics

美世, 一守 東京大学 DOI:10.15083/0002006462

2023.03.24

概要

論 文 審 査 の 結 果 の 要 旨
氏名 大豆生田(石川)

夏子

本論文はおもに3章からなる。本章の前のイントロダクションでは、歩行運
動を制御する一般的な神経回路モデルについて解説し、さらにショウジョウバ
エ幼虫の後退運動制御回路および不快感覚情報の処理回路に関するこれまでの
知見が記載されている。
第1章では、ショウジョウバエ幼虫をモデルとして、後退運動を誘導する神
経細胞の網羅的同定を行なっている。まず、光遺伝学的手法を用いて、ショウジ
ョウバエ幼虫脳内の少数ニューロンを人工的に活性化する手法を確立し、次に、
その手法を用いて、ショウジョウバエ幼虫に回旋運動や後退運動など特定の行
動を引き起こすことができるニューロン集団を探索した。7000 以上の異なるシ
ョウジョウバエ系統のスクリーニングを行い、活性化により後退運動を誘導で
きるニューロン集団を4つ単離した。さらに、その4つの中から、細胞体が幼虫
脳中央部に位置する一対の新規神経細胞(AMB ニューロンと命名)に着目して、
詳細な細胞レベルの性状解析を行なっている。その結果、AMB ニューロンはア
セチルコリン作動性の興奮性ニューロンであり、脳の前方と後方にそれぞれ軸
索と樹状突起を投射していることを示している。
第2章では、ショウジョウバエ幼虫の後退運動を誘導するコマンド神経細胞
として報告されていた MDN ニューロンと AMB ニューロンとの機能連関に着
目した研究について記載されている。まず AMB ニューロンの軸索末端が、MDN
ニューロンの樹状突起に直接投射することを示し、さらに、AMB ニューロンの
光遺伝学的な活性化により、MDN ニューロンが活動することを示した。最後に、
MDN ニューロンを不活性化した個体では、AMB ニューロンの光遺伝学的な活
性化により誘導できる後退運動の頻度が、AMB ニューロンを活性化した場合に
比べて顕著に低下することを示した。以上の結果から、AMB ニューロンは、
MDN ニューロンの活性化を介して後退運動を誘導すると結論している。
第3章では、実際にどのような感覚入力が、AMB ニューロンを介して後退運
動を誘導するのかについて研究を行なっている。これまでの研究から、青色光刺
激や機械刺激をショウジョウバエ幼虫頭部に与えると、一定の確率で後退運動
を誘導できることが知られている。青色光刺激は頭部の感覚受容器(Bolwing’s

organ)と表皮 C4da 感覚ニューロンが、機械刺激は C3da 感覚ニューロンが、そ
れぞれ主として受容することが知られている。そこで、各ニューロンの特異的抑
制条件下において様々な感覚刺激を入力して後退運動を誘導できるか否かを解
析したところ、AMB ニューロンは、C4da 感覚ニューロンから入力する青色光刺
激の情報により活性化され、さらに下流の MDN ニューロンを介して後退運動を
誘導することを示した。
最後の章である考察では、上記のデータを踏まえて、複数の異なる感覚受容
器から入る忌避情報が後退運動を誘導する仕組みを、回路レベルにおいて考察
を行なっている。
これらの論文の各章で示された研究成果は、ショウジョウバエ頭部への忌避
刺激が後退運動を制御するニューロン群および神経回路について、遺伝学、分子
生物学、行動生理学、イメージングなど複数の方法論を組み合わせることにより
詳細な検討を与えたものであり、忌避性の感覚入力が後退運動へと変換する仕
組みを回路レベルで初めて詳細に解析した論文である。したがって、論文提出者
の研究成果は博士(理学)の学位を受けるにふさわしいと判定した。
なお、本論文第2章の一部データ(Figure 4 の R73D06-GAL4 の同定)は、本
学生物科学専攻の修士2年生であった酒井萌花さんとの共同研究であるが、論
文提出者が主体となって分析及び検証を行ったもので、論文提出者の寄与が十
分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

参考文献

(1) Amir, A., Daniel, M., Navas-Molina, J., Kopylova, E., Morton, J., Xu, Z.Z., Eric, K.,

Thompson, L., Hyde, E., Gonzalez, A., Knight, R., 2017. Deblur rapidly resolves

single-nucleotide community sequence patterns. mSystems 2, e00191–16.

(2) Antwis, R.E., Griffiths, S.M., Harrison, X.A., Aranega-Bou, P., Arce, A., Bettridge,

A.S., Brailsford, F.L., de Menezes, A., Devaynes, A., Forbes, K.M., Fry, E.L.,

Goodhead, I., Haskell, E., Heys, C., James, C., Johnston, S.R., Lewis, G.R., Lewis, Z.,

Macey, M.C., McCarthy, A., McDonald, J.E., Mejia-Florez, N.L., O’Brien, D., Orland,

C., Pautasso, M., Reid, W.D.K., Robinson, H.A., Wilson, K., Sutherland, W.J., 2017.

Fifty important research questions in microbial ecology. FEMS Microbiol. Ecol. 93,

fiz044. https://doi.org/10.1093/femsec/fix044

(3) Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R.,

Fernandes, G.R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N., Casellas, F.,

Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M.,

Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H.B., Nielsen, T.,

Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E.,

Zoetendal, E.G., Wang, J., Guarner, F., Pedersen, O., de Vos, W.M., Brunak, S., Doré,

J., Weissenbach, J., Ehrlich, S.D., Bork, P., 2011. Enterotypes of the human gut

microbiome. Nature 473, 174–180. https://doi.org/10.1038/nature09944

(4) Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y.,

Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang,

D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X.,

Madsen, L., Kristiansen, K., Dahlgren, J., Jun, W., 2015. Dynamics and stabilization

of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–

703. https://doi.org/10.1016/j.chom.2015.04.004

(5) Bálint, M., Bahram, M., Eren, A.M., Faust, K., Fuhrman, J.A., Lindahl, B., O’Hara,

R.B., öpik, M., Sogin, M.L., Unterseher, M., Tedersoo, L., 2016. Millions of reads,

thousands of taxa: Microbial community structure and associations analyzed via

marker

genesa.

FEMS

Microbiol.

Rev.

40,

686–700.

https://doi.org/10.1093/femsre/fuw017

(6) Barberán, A., Caceres Velazquez, H., Jones, S., Fierer, N., 2017. Hiding in plain sight:

Mining bacterial species records for phenotypic trait information. mSphere 2,

e00237–17. https://doi.org/10.1128/mSphere.00237-17

(7) Barberán, A., Ramirez, K.S., Leff, J.W., Bradford, M.A., Wall, D.H., Fierer, N., 2014.

Why are some microbes more ubiquitous than others? Predicting the habitat

breadth of soil bacteria. Ecol. Lett. 17, 794–802. https://doi.org/10.1111/ele.12282

(8) Bergkemper, F., Schöler, A., Engel, M., Lang, F., Krüger, J., Schloter, M., Schulz, S.,

2016. Phosphorus depletion in forest soils shapes bacterial communities towards

phosphorus

recycling

systems.

Environ.

Microbiol.

18,

1988–2000.

https://doi.org/10.1111/1462-2920.13442

(9) Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A.,

Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity

at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522.

https://doi.org/10.1073/pnas.1000080107

57

(10) Carter, K.M., Lu, M., Luo, Q., Jiang, H., An, L., 2020. Microbial community

dissimilarity for source tracking with application in forensic studies. PLoS One 15,

e0236082. https://doi.org/10.1371/journal.pone.0236082

(11) Castle, S.C., Sullivan, B.W., Knelman, J., Hood, E., Nemergut, D.R., Schmidt, S.K.,

Cleveland, C.C., 2017. Nutrient limitation of soil microbial activity during the

earliest stages of ecosystem development. Oecologia 185, 513–524.

https://doi.org/10.1007/s00442-017-3965-6

(12) Choudoir, M.J., Barberán, A., Menninger, H.L., Dunn, R.R., Fierer, N., 2018.

Variation in range size and dispersal capabilities of microbial taxa. Ecology 99, 322–

334. https://doi.org/10.1002/ecy.2094

(13) Chvatal, V., 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.

Res. 4, 233.

(14) Corlett, R.T., Westcott, D.A., 2013. Will plant movements keep up with climate

change? Trends Ecol. Evol. 28, 482–8. https://doi.org/10.1016/j.tree.2013.04.003

(15) Delgado-Baquerizo, M., Bardgett, R.D., Vitousek, P.M., Maestre, F.T., Williams,

M.A., Eldridge, D.J., Lambers, H., Neuhauser, S., Gallardo, A., García-Velázquez, L.,

Sala, O.E., Abades, S.R., Alfaro, F.D., Berhe, A.A., Bowker, M.A., Currier, C.M.,

Cutler, N.A., Hart, S.C., Hayes, P.E., Hseu, Z.-Y., Kirchmair, M., Peña-Ramírez, V.M.,

Pérez, C.A., Reed, S.C., Santos, F., Siebe, C., Sullivan, B.W., Weber-Grullon, L., Fierer,

N., 2019. Changes in belowground biodiversity during ecosystem development.

Proc. Natl. Acad. Sci. 116, 6891–6896. https://doi.org/10.1073/pnas.1818400116

(16) Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-gonzález, A.,

Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global

atlas of the dominant bacteria found in soil. Science. 325, 320–325.

https://doi.org/10.1126/science.aap9516

(17) Delgado-Baquerizo, M., Reich, P.B., Khachane, A.N., Campbell, C.D., Thomas, N.,

Freitag, T.E., Abu Al-Soud, W., Sørensen, S., Bardgett, R.D., Singh, B.K., 2017. It is

elemental: soil nutrient stoichiometry drives bacterial diversity. Environ. Microbiol.

19, 1176–1188. https://doi.org/10.1111/1462-2920.13642

(18) DiMucci, D., Kon, M., Segrè, D., 2018. Machine learning reveals missing edges and

putative interaction mechanisms in microbial ecosystem networks. mSystems 3, 1–

13. https://doi.org/10.1128/mSystems.00181-18

(19) Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

(20) Evans, S., Martiny, J.B.H., Allison, S.D., 2017. Effects of dispersal and selection on

stochastic assembly in microbial communities. ISME J. 11, 176–185.

https://doi.org/10.1038/ismej.2016.96

(21) Ferrenberg, S., O ’neill, S.P., Knelman, J.E., Todd, B., Duggan, S., Bradley, D.,

Robinson, T., Schmidt, S.K., Townsend, A.R., Williams, M.W., Cleveland, C.C.,

Melbourne, B.A., Jiang, L., Nemergut, D.R., 2013. Changes in assembly processes in

soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111.

https://doi.org/10.1038/ismej.2013.11

(22) Field, D., Garrity, G., Gray, T., Morrison, N., Selengut, J., Sterk, P., Tatusova, T.,

Thomson, N., Allen, M.J., Angiuoli, S. V, Ashburner, M., Axelrod, N., Baldauf, S.,

58

Ballard, S., Boore, J., Cochrane, G., Cole, J., Dawyndt, P., De Vos, P., DePamphilis,

C., Edwards, R., Faruque, N., Feldman, R., Gilbert, J., Gilna, P., Glöckner, F.O.,

Goldstein, P., Guralnick, R., Haft, D., Hancock, D., Hermjakob, H., Hertz-Fowler, C.,

Hugenholtz, P., Joint, I., Kagan, L., Kane, M., Kennedy, J., Kowalchuk, G., Kottmann,

R., Kolker, E., Kravitz, S., Kyrpides, N., Leebens-Mack, J., Lewis, S.E., Li, K., Lister,

A.L., Lord, P., Maltsev, N., Markowitz, V., Martiny, J., Methe, B., Mizrachi, I., Moxon,

R., Nelson, K., Parkhill, J., Proctor, L., White, O., Sansone, S.-A., Spiers, A., Stevens,

R., Swift, P., Taylor, C., Tateno, Y., Tett, A., Turner, S., Ussery, D., Vaughan, B., Ward,

N., Whetzel, T., San Gil, I., Wilson, G., Wipat, A., 2008. The minimum information

about a genome sequence (MIGS) specification. Nat. Biotechnol. 26, 541–7.

https://doi.org/10.1038/nbt1360

(23) Fierer, N., 2017. Embracing the unknown: Disentangling the complexities of the soil

microbiome.

Nat.

Rev.

Microbiol.

15,

579–590.

https://doi.org/10.1038/nrmicro.2017.87

(24) Fierer, N., Grandy, A.S., Six, J., Paul, E.A., 2009. Searching for unifying principles in

soil

ecology.

Soil

Biol.

Biochem.

41,

2249–2256.

https://doi.org/10.1016/j.soilbio.2009.06.009

(25) Fierer, N., Nemergut, D., Knight, R., Craine, J.M., 2010. Changes through time:

Integrating microorganisms into the study of succession. Res. Microbiol. 161, 635–

642. https://doi.org/10.1016/j.resmic.2010.06.002

(26) Freedman, Z., Zak, D.R., 2015. Soil bacterial communities are shaped by temporal

and environmental filtering: evidence from a long-term chronosequence. Environ.

Microbiol. 17, 3208–3218. https://doi.org/10.1111/1462-2920.12762

(27) Friedman, J., Higgins, L.M., Gore, J., 2017. Community structure follows simple

assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109.

https://doi.org/10.1038/s41559-017-0109

(28) Garnier, E., Navas, M.-L., 2012. A trait-based approach to comparative functional

plant ecology: concepts, methods and applications for agroecology. A review.

Agron. Sustain. Dev. 32, 365–399. https://doi.org/10.1007/s13593-011-0036-y

(29) Giagnoni, L., Arenella, M., Galardi, E., Nannipieri, P., Renella, G., 2018. Bacterial

culturability and the viable but non-culturable (VBNC) state studied by a proteomic

approach using an artificial soil. Soil Biol. Biochem. 118, 51–58.

https://doi.org/10.1016/j.soilbio.2017.12.004

(30) Gilbert, J.A., Jansson, J.K., Knight, R., 2018. Earth Microbiome Project and Global

Systems

Biology.

mSystems

3,

e00217–17.

https://doi.org/10.1128/mSystems.00217-17

(31) Girvan, M.S., Campbell, C.D., Killham, K., Prosser, J.I., Glover, L.A., 2005. Bacterial

diversity promotes community stability and functional resilience after perturbation.

Environ. Microbiol. 7, 301–313. https://doi.org/10.1111/j.1462-2920.2005.00695.x

(32) Glöckner, F.O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns, G.,

Yarza, P., Peplies, J., Westram, R., Ludwig, W., 2017. 25 years of serving the

community with ribosomal RNA gene reference databases and tools. J. Biotechnol.

261, 169‒176. https://doi.org/10.1016/j.jbiotec.2017.06.1198

(33) Goto, D.K., Yan, T., 2011. Effects of land uses on fecal indicator bacteria in the water

59

and soil of a tropical watershed.

https://doi.org/10.1264/jsme2.me11115

Microbes

Environ.

26,

254–260.

(34) Graham, E.B., Knelman, J.E., Schindlbacher, A., Siciliano, S., Breulmann, M.,

Yannarell, A., Beman, J.M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste,

J.C., Glanville, H.C., Jones, D.L., Angel, R., Salminen, J., Newton, R.J., Bürgmann,

H., Ingram, L.J., Hamer, U., Siljanen, H.M.P., Peltoniemi, K., Potthast, K., Bañeras,

L., Hartmann, M., Banerjee, S., Yu, R.Q., Nogaro, G., Richter, A., Koranda, M., Castle,

S.C., Goberna, M., Song, B., Chatterjee, A., Nunes, O.C., Lopes, A.R., Cao, Y.,

Kaisermann, A., Hallin, S., Strickland, M.S., Garcia-Pausas, J., Barba, J., Kang, H.,

Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E.S., Basiliko,

N., Nemergut, D.R., 2016. Microbes as engines of ecosystem function: When does

community structure enhance predictions of ecosystem processes? Front. Microbiol.

7, 214. https://doi.org/10.3389/fmicb.2016.00214

(35) Graham, E.B., Wieder, W.R., Leff, J.W., Weintraub, S.R., Townsend, A.R., Cleveland,

C.C., Philippot, L., Nemergut, D.R., 2014. Do we need to understand microbial

communities to predict ecosystem function? A comparison of statistical models of

nitrogen

cycling

processes.

Soil

Biol.

Biochem.

68,

279–282.

https://doi.org/10.1016/j.soilbio.2013.08.023

(36) Griffiths, B.S., Philippot, L., 2013. Insights into the resistance and resilience of the

soil

microbial

community.

FEMS

Microbiol.

Rev.

37,

112–129.

https://doi.org/10.1111/j.1574-6976.2012.00343.x

(37) Grime, J.P., 1974. Vegetation classification by reference to strategies. Nature 250, 26–

31. https://doi.org/10.1038/250026a0

(38) Grossart, H.-P., Dziallas, C., Leunert, F., Tang, K.W., 2010. Bacteria dispersal by

hitchhiking on zooplankton. Proc. Natl. Acad. Sci. 107, 11959–11964.

https://doi.org/10.1073/pnas.1000668107

(39) Guieysse, B., Wuertz, S., 2012. Metabolically versatile large-genome prokaryotes.

Curr. Opin. Biotechnol. 23, 467–473. https://doi.org/10.1016/j.copbio.2011.12.022

(40) Guittar, J., Shade, A., Litchman, E., 2019. Trait-based community assembly and

succession of the infant gut microbiome. Nat. Commun. 10, 512.

(41) Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., Goodman, R.M., 1998.

Molecular biological access to the chemistry of unknown soil microbes: a new

frontier for natural products. Chem. Biol. 5, R245-9. https://doi.org/10.1016/s10745521(98)90108-9

(42) Higashi, K., Suzuki, S., Kurosawa, S., Mori, H., Kurokawa, K., 2018. Latent

environment allocation of microbial community data. PLOS Comput. Biol. 14,

e1006143. https://doi.org/10.1371/journal.pcbi.1006143

(43) Hiraoka, S., Yang, C.C., Iwasaki, W., 2016. Metagenomics and Bioinformatics in

Microbial Ecology: Current Status and Beyond. Microbes Environ. 31, 204–212.

https://doi.org/10.1264/jsme2.ME16024

(44) Hitchens, A.P., Leikind, M.C., 1939. The introduction of agar into bacteriology. J.

Bacteriol. 37, 485–93.

(45) Isobe, K., Ikutani, J., Fang, Y., Yoh, M., Mo, J., Suwa, Y., Yoshida, M., Senoo, K.,

Otsuka, S., Koba, K., 2018. Highly abundant acidophilic ammonia-oxidizing archaea

60

causes high rates of nitrification and nitrate leaching in nitrogen-saturated forest

soils. Soil Biol. Biochem. in press. https://doi.org/10.1016/j.soilbio.2018.04.021

(46) Isobe, K., Ise, Y., Kato, H., Oda, T., Vincenot, C.E., Koba, K., Tateno, R., Senoo, K.,

Ohte, N., 2019. Consequences of microbial diversity in forest nitrogen cycling:

diverse ammonifiers and specialized ammonia oxidizers. ISME J.

https://doi.org/10.1038/s41396-019-0500-2

(47) Ji, M., Kong, W., Yue, L., Wang, J., Deng, Y., Zhu, L., 2019. Salinity reduces bacterial

diversity, but increases network complexity in Tibetan Plateau lakes. FEMS

Microbiol. Ecol. 95, fiz190. https://doi.org/10.1093/femsec/fiz190

(48) Jiang, Y., Lei, Y., Yang, Y., Korpelainen, H., Niinemets, Ü., Li, C., 2018. Divergent

assemblage patterns and driving forces for bacterial and fungal communities along

a glacier forefield chronosequence. Soil Biol. Biochem. 118, 207–216.

https://doi.org/10.1016/j.soilbio.2017.12.019

(49) Karsch-Mizrachi, I., Takagi, T., Cochrane, G., 2018. The international nucleotide

sequence database collaboration. Nucleic Acids Res. 46, D48–D51.

https://doi.org/10.1093/nar/gkx1097

(50) Kearns, P.J., Shade, A., 2017. Trait-based patterns of microbial succession in

dormancy potential and heterotrophic strategy: case studies of resource-based and

post-press succession. ISME J. 12, 2575–2581. https://doi.org/10.1038/s41396-0180194-x

(51) Kirs, M., Kisand, V., Wong, M., Caffaro-Filho, R.A., Moravcik, P., Harwood, V.J.,

Yoneyama, B., Fujioka, R.S., 2017. Multiple lines of evidence to identify sewage as

the cause of water quality impairment in an urbanized tropical watershed. Water

Res. 116, 23–33. https://doi.org/10.1016/j.watres.2017.03.024

(52) Klindworth, A., Peplies, J., Pruesse, E., Schweer, T., Glöckner, F.O., Quast, C., Horn,

M., 2012. Evaluation of general 16S ribosomal RNA gene PCR primers for classical

and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1.

https://doi.org/10.1093/nar/gks808

(53) Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G.,

Bushman, F.D., Knight, R., Kelley, S.T., 2011. Bayesian community-wide cultureindependent microbial source tracking. Nat. Methods 8, 761–765.

https://doi.org/10.1038/nmeth.1650

(54) Kopylova, E., Noé, L., Touzet, H., 2012. SortMeRNA: Fast and accurate filtering of

ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217.

https://doi.org/10.1093/bioinformatics/bts611

(55) Krause, S., Le Roux, X., Niklaus, P.A., van Bodegom, P.M., Lennon T., J.T., Bertilsson,

S., Grossart, H.P., Philippot, L., Bodelier, P.L.E., 2014. Trait-based approaches for

understanding microbial biodiversity and ecosystem functioning. Front. Microbiol.

5, 251. https://doi.org/10.3389/fmicb.2014.00251

(56) Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. Pyrosequencing-based

assessment of soil pH as a predictor of soil bacterial community structure at the

continental

scale.

Appl.

Environ.

Microbiol.

75,

5111–20.

https://doi.org/10.1128/AEM.00335-09

(57) Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen,

61

J., Pang, X., Zhang, M., Wei, H., Chen, Y., Lu, H., Zuo, J., Su, M., Qiu, Y., Jia, W.,

Xiao, C., Smith, L.M., Yang, S., Holmes, E., Tang, H., Zhao, G., Nicholson, J.K., Li,

L., Zhao, L., 2008. Symbiotic gut microbes modulate human metabolic phenotypes.

Proc. Natl. Acad. Sci. 105, 2117–2122. https://doi.org/10.1073/pnas.0712038105

(58) Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J., 1997. Characterization of microbial

diversity by determining terminal restriction fragment length polymorphisms of

genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516–22.

(59) Louca, Stilianos, Jacques, S.M.S., Pires, A.P.F., Leal, J.S., Srivastava, D.S., Parfrey,

L.W., Farjalla, V.F., Doebeli, M., 2016a. High taxonomic variability despite stable

functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015.

https://doi.org/10.1038/s41559-016-0015

(60) Louca, S., Parfrey, L.W., Doebeli, M., 2016b. Decoupling function and taxonomy in

the

global

ocean

microbiome.

Science.

353,

1272–1277.

https://doi.org/10.1126/science.aaf4507

(61) Lozupone, C.A., Knight, R., 2007. Global patterns in bacterial diversity. Proc. Natl.

Acad. Sci. U. S. A. 104, 11436–11440. https://doi.org/10.1073/pnas.0611525104

(62) Lynch, M.D.J., Neufeld, J.D., 2015. Ecology and exploration of the rare biosphere.

Nat. Rev. Microbiol. 13, 217–229. https://doi.org/10.1038/nrmicro3400

(63) Mapelli, F., Marasco, R., Fusi, M., Scaglia, B., Tsiamis, G., Rolli, E., Fodelianakis, S.,

Bourtzis, K., Ventura, S., Tambone, F., Adani, F., Borin, S., Daffonchio, D., 2018. The

stage of soil development modulates rhizosphere effect along a High Arctic desert

chronosequence. ISME J. 12, 1188–1198. https://doi.org/10.1038/s41396-017-00264

(64) Markowitz, V.M., Ivanova, N.N., Szeto, E., Palaniappan, K., Chu, K., Dalevi, D.,

Chen, I.-M.A., Grechkin, Y., Dubchak, I., Anderson, I., Lykidis, A., Mavromatis, K.,

Hugenholtz, P., Kyrpides, N.C., 2007. IMG/M: a data management and analysis

system

for

metagenomes.

Nucleic

Acids

Res.

36,

D534–D538.

https://doi.org/10.1093/nar/gkm869

(65) Martiny, J.B.H., Jones, S.E., Lennon, J.T., Martiny, A.C., 2015. Microbiomes in light

of

traits:

phylogenetic

perspective.

Science.

350,

649.

https://doi.org/10.1126/science.aac9323

(66) McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., Desantis, T.Z., Probst, A.,

Andersen, G.L., Knight, R., Hugenholtz, P., 2012. An improved Greengenes

taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria

and archaea. ISME J. 6, 610–618. https://doi.org/10.1038/ismej.2011.139

(67) Mise, K., Maruyama, R., Miyabara, Y., Kunito, T., Senoo, K., Otsuka, S., 2019. Timeseries analysis of phosphorus-depleted microbial communities in carbon/nitrogenamended soils. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2019.08.008

(68) Moyer, C.L., Dobbs, F.C., Karl, D.M., 1994. Estimation of diversity and community

structure through restriction fragment length polymorphism distribution analysis

of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent

system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871–9.

(69) Muyzer, G., de Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex microbial

populations by denaturing gradient gel electrophoresis analysis of polymerase

62

chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59,

695–700.

(70) Muyzer, G., Smalla, K., 1998. Application of denaturing gradient gel electrophoresis

(DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology.

Antonie Van Leeuwenhoek 73, 127–41. https://doi.org/10.1023/a:1000669317571

(71) Nemergut, D.R., Knelman, J.E., Ferrenberg, S., Bilinski, T., Melbourne, B., Jiang, L.,

Violle, C., Darcy, J.L., Prest, T., Schmidt, S.K., Townsend, A.R., 2016. Decreases in

average bacterial community rRNA operon copy number during succession. ISME

J. 10, 1147–1156. https://doi.org/10.1038/ismej.2015.191

(72) Nosho, K., Fukushima, H., Asai, T., Nishio, M., Takamaru, R., KobayashiKirschvink, K.J., Ogawa, T., Hidaka, M., Masaki, H., 2018. cAMP-CRP acts as a key

regulator for the viable but non-culturable state in escherichia coli. Microbiology

164, 410–419. https://doi.org/10.1099/mic.0.000618

(73) Oliverio, A.M., Bradford, M.A., Fierer, N., 2017. Identifying the microbial taxa that

consistently respond to soil warming across time and space. Glob. Chang. Biol. 23,

2117–2129. https://doi.org/10.1111/gcb.13557

(74) Ortiz-Álvarez, R., Fierer, N., De Los Ríos, A., Casamayor, E.O., Barberán, A., 2018.

Consistent changes in the taxonomic structure and functional attributes of bacterial

communities during primary succession. ISME J. 12, 1658–1667.

https://doi.org/10.1038/s41396-018-0076-2

(75) Pfeiffer, S., Pastar, M., Mitter, B., Lippert, K., Hackl, E., Lojan, P., Oswald, A.,

Sessitsch, A., 2014. Improved group-specific primers based on the full SILVA 16S

rRNA gene reference database. Environ. Microbiol. 16, 2389–2407.

https://doi.org/10.1111/1462-2920.12350

(76) Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J.,

Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: Improved

data processing and web-based tools. Nucleic Acids Res. 41, 590–596.

https://doi.org/10.1093/nar/gks1219

(77) R Core Team, 2017. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.

(78) Ramirez, K.S., Knight, C.G., De Hollander, M., Brearley, F.Q., Constantinides, B.,

Cotton, A., Creer, S., Crowther, T.W., Davison, J., Delgado-Baquerizo, M., Dorrepaal,

E., Elliott, D.R., Fox, G., Griffiths, R.I., Hale, C., Hartman, K., Houlden, A., Jones,

D.L., Krab, E.J., Maestre, F.T., McGuire, K.L., Monteux, S., Orr, C.H., Van Der Putten,

W.H., Roberts, I.S., Robinson, D.A., Rocca, J.D., Rowntree, J., Schlaeppi, K.,

Shepherd, M., Singh, B.K., Straathof, A.L., Bhatnagar, J.M., Thion, C., Van Der

Heijden, M.G.A., De Vries, F.T., 2018. Detecting macroecological patterns in

bacterial communities across independent studies of global soils. Nat. Microbiol. 3,

189–196. https://doi.org/10.1038/s41564-017-0062-x

(79) Rath, K.M., Fierer, N., Murphy, D. V, Rousk, J., 2019. Linking bacterial community

composition to soil salinity along environmental gradients. ISME J. 13, 836–846.

https://doi.org/10.1038/s41396-018-0313-8

(80) Reimer, L.C., Vetcininova, A., Carbasse, J.S., Söhngen, C., Gleim, D., Ebeling, C.,

63

Overmann, J., 2019. Bac Dive in 2019: bacterial phenotypic data for Highthroughput biodiversity analysis. Nucleic Acids Res. 47, D631–D636.

https://doi.org/10.1093/nar/gky879

(81) Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F.,

Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., Dodsworth, J.A., Hedlund, B.P.,

Tsiamis, G., Sievert, S.M., Liu, W.T., Eisen, J.A., Hallam, S.J., Kyrpides, N.C.,

Stepanauskas, R., Rubin, E.M., Hugenholtz, P., Woyke, T., 2013. Insights into the

phylogeny and coding potential of microbial dark matter. Nature 499, 431–437.

https://doi.org/10.1038/nature12352

(82) Roller, B.R.K., Stoddard, S.F., Schmidt, T.M., 2016. Exploiting rRNA operon copy

number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160.

https://doi.org/10.1038/nmicrobiol.2016.160

(83) Schmieder, R., Edwards, R.A., 2011. Quality control and preprocessing of

metagenomic

datasets.

Bioinformatics

27,

863–864.

https://doi.org/10.1093/bioinformatics/btr026

(84) Schuster, S.C., 2008. Next-generation sequencing transforms today’s biology. Nat.

Methods 5, 16–18. https://doi.org/10.1038/nmeth1156

(85) Sinha, R., Stanley, G., Gulati, G.S., Ezran, C., Travaglini, K.J., Wei, E., Chan, C.K.F.,

Nabhan, A.N., Su, T., Morganti, R.M., Conley, S.D., Chaib, H., Red-Horse, K.,

Longaker, M.T., Snyder, M.P., Krasnow, M.A., Weissman, I.L., 2017. Index

switching causes “spreading-of-signal” among multiplexed samples in Illumina

HiSeq 4000 DNA sequencing. bioRxiv 125724. https://doi.org/10.1101/125724

(86) Sriswasdi, S., Yang, C.C., Iwasaki, W., 2017. Generalist species drive microbial

dispersion and evolution. Nat. Commun. 8, 1162. https://doi.org/10.1038/s41467017-01265-1

(87) Steen, A.D., Crits-Christoph, A., Carini, P., DeAngelis, K.M., Fierer, N., Lloyd, K.G.,

Cameron Thrash, J., 2019. High proportions of bacteria and archaea across most

biomes remain uncultured. ISME J. 13, 3126–3130. https://doi.org/10.1038/s41396019-0484-y

(88) Tanaka, R., Hino, A., Tsai, I.J., Palomares-Rius, J.E., Yoshida, A., Ogura, Y., Hayashi,

T., Maruyama, H., Kikuchi, T., Poulin, R., Morand, S., Sukhdeo, M., Bansemir, A.,

Korallo, N., Vinarski, M., Krasnov, B., Shenbrot, G., Mouillot, D., Combes, C.,

Waters, A., Higgins, D., McCutchan, T., Desai, N., Antonopoulos, D., Gilbert, J.,

Glass, E., Meyer, F., Weinstock, G., Yatsunenko, T., Rey, F., Manary, M., Trehan, I.,

Dominguez-Bello, M., Sogin, M., Morrison, H., Huber, J., Welch, D.M., Huse, S.,

Amir, A., Zeisel, A., Zuk, O., Elgart, M., Stern, S., Jumpponen, A., Jones, K.,

Porazinska, D., Giblin-Davis, R., Powers, T., Thomas, W., Porazinska, D., GiblinDavis, R., Faller, L., Farmerie, W., Kanzaki, N., Logares, R., Audic, S., Bass, D.,

Bittner, L., Boutte, C., Webster, J., Macdonald, D., Holterman, M., Wurff, A. van der,

Elsen, S. van den, Megen, H. van, Bongers, T., Waeschenbach, A., Webster, B., Bray,

R., Littlewood, D., Katoh, K., Misawa, K., Kuma, K., Miyata, T., Castresana, J.,

Stamatakis, A., Caporaso, J., Lauber, C., Walters, W., Berg-Lyons, D., Huntley, J.,

Amaral-Zettler, L., McCliment, E., Ducklow, H., Huse, S., Vestheim, H., Jarman, S.,

Caporaso, J., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F., Quast, C.,

Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Turnbaugh, P., Ley, R., Hamady, M.,

64

Fraser-Liggett, C., Knight, R., Bik, H., Fournier, D., Sung, W., Bergeron, R., Thomas,

W., Hugerth, L., Muller, E., Hu, Y., Lebrun, L., Roume, H., Hadziavdic, K., Lekang,

K., Lanzen, A., Jonassen, I., Thompson, E., Zhao, X., Duszynski, D., 2014.

Assessment of helminth biodiversity in wild rats using 18S rDNA based

metagenomics.

PLoS

One

9,

e110769.

https://doi.org/10.1371/journal.pone.0110769

(89) Tanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K., Tamaki, H.,

Tanaka, M., Nakatsu, C.H., Kamagata, Y., 2014. A hidden pitfall in the preparation

of agar media undermines microorganism cultivability. Appl. Environ. Microbiol.

80, 7659–7666. https://doi.org/10.1128/AEM.02741-14

(90) Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill,

R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., Navas-Molina, J.A., Janssen, S.,

Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J.T., Mirarab, S., Zech Xu,

Z., Jiang, L., Haroon, M.F., Kanbar, J., Zhu, Q., Jin Song, S., Kosciolek, T., Bokulich,

N.A., Lefler, J., Brislawn, C.J., Humphrey, G., Owens, S.M., Hampton-Marcell, J.,

Berg-Lyons, D., McKenzie, V., Fierer, N., Fuhrman, J.A., Clauset, A., Stevens, R.L.,

Shade, A., Pollard, K.S., Goodwin, K.D., Jansson, J.K., Gilbert, J.A., Knight, R., 2017.

A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551,

457–463. https://doi.org/10.1038/nature24621

(91) Tkacz, A., Hortala, M., Poole, P.S., 2018. Absolute quantitation of microbiota

abundance

in

environmental

samples.

Microbiome

6,

110.

https://doi.org/10.1186/s40168-018-0491-7

(92) Torres, P.J., Edwards, R.A., McNair, K.A., 2017. PARTIE: A partition engine to

separate metagenomic and amplicon projects in the Sequence Read Archive.

Bioinformatics 33, 2389–2391. https://doi.org/10.1093/bioinformatics/btx184

(93) Unno, T., Staley, C., Brown, C.M., Han, D., Sadowsky, M.J., Hur, H.G., 2018. Fecal

pollution: new trends and challenges in microbial source tracking using nextgeneration

sequencing.

Environ.

Microbiol.

20,

3132–3140.

https://doi.org/10.1111/1462-2920.14281

(94) Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A.,

Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H.,

Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., BadenTillson, H., Pfannkoch, C., Rogers, Y.-H., Smith, H.O., 2004. Environmental genome

shotgun

sequencing

of

the

Sargasso

Sea.

Science.

304,

66–74.

https://doi.org/10.1126/science.1093857

(95) Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E.,

2007. Let the concept of trait be functional! Oikos 116, 882–892.

https://doi.org/10.1111/j.2007.0030-1299.15559.x

(96) Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for

rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl.

Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07

(97) Werner, G.D.A., Kiers, E.T., 2015. Order of arrival structures arbuscular mycorrhizal

colonization

of

plants.

New

Phytol.

205,

1515–1524.

https://doi.org/10.1111/nph.13092

(98) Wertz, S., Degrange, V., Prosser, J.I., Poly, F., Commeaux, C., Freitag, T.,

65

Guillaumaud, N., Roux, X. Le, 2006. Maintenance of soil functioning following

erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169.

https://doi.org/10.1111/j.1462-2920.2006.01098.x

(99) Yang, C.C., Iwasaki, W., 2014. MetaMetaDB: A database and analytic system for

investigating

microbial

habitability.

PLoS

One

9,

e87126.

https://doi.org/10.1371/journal.pone.0087126

(100) Yao, Q., Li, Z., Song, Y., Wright, S.J., Guo, X., Tringe, S.G., Tfaily, M.M., Paša-Tolić,

L., Hazen, T.C., Turner, B.L., Mayes, M.A., Pan, C., 2018. Community

proteogenomics reveals the systemic impact of phosphorus availability on

microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509.

https://doi.org/10.1038/s41559-017-0463-5

(101) Yassour, M., Vatanen, T., Siljander ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る