リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evolutional transition of HBV genome during the persistent infection determined by single-molecule real-time sequencing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evolutional transition of HBV genome during the persistent infection determined by single-molecule real-time sequencing

Arasawa, Soichi 京都大学 DOI:10.14989/doctor.k24841

2023.07.24

概要

HBV is a partially double-stranded anthropotropic DNA
virus belonging to the Orthohepadnavirus genus of the
Hepadnaviridae family in the Riboviria realm.[1] HBV
has an ~3.2 kb-long open, circular genome containing
4 overlapping open reading frames. It has a unique life
history, with persistently present covalently closed
circular DNA as the genetic template, for sustained
viral replication through reverse transcription of pregenomic RNA in host cells.[2,3] As with other viruses in
Hepadnaviridae, HBV causes hepatotropic infections
in its natural hosts.[4] According to the World Health
Organization, ~296 million people were positive for
HBV in 2019. HBV is a major cause of severe health
problems such as acute hepatitis, chronic hepatitis,
liver cirrhosis, and HCC.[5]
Paleovirological studies have revealed the evolutionary
history of Hepadnaviridae in an estimated > 80 million
years since the emergence of their ancestor.[6] Gilbert and
Feschotte[7] identified a dozen endogenous duck HBV-like
sequences in the zebra finch genome using a BLASTbased genomic analysis. Presence/absence analyses
performed by Suh et al[9] revealed that the long-term
substitution rate of Hepadnaviridae between the Mesozoic
and Miocene periods was in the order of 10–8 per site per
year, which is ~10–3 times slower than the short-time
substitution rate of human HBV in several decades.[8] Suh
et al[9] also reported that the amino-acid sequences of
extant Hepadnaviridae genomes are highly conserved in
several regions, such as the reverse transcriptase, S, C,
terminal protein (TP), and ribonuclease H (RNaseH)
regions, at a rate of 12.2%–27.1%, as compared with
the hypothetical ancestral sequence in the Mesozoic era.
In terms of genomic size, previous studies using
conventional methods such as Southern blot, PCRbased electrophoresis, and direct sequencing have
revealed the presence of both interspecific and
intraspecific variation among Hepadnaviridae viruses. ...

この論文で使われている画像

参考文献

1. Magnius L, Mason WS, Taylor J, Kann M, Glebe D, Dény P, et al.

ICTV virus taxonomy profile: hepadnaviridae. J Gen Virol. 2020;

101:571–2.

2. Nassal M. HBV cccDNA: viral persistence reservoir and key

obstacle for a cure of chronic hepatitis B. Gut. 2015;64:1972–84.

3. Shi Y, Zheng M. Hepatitis B virus persistence and reactivation.

BMJ. 2020;370:m2200.

4. Seeger C, Mason WS. Molecular biology of hepatitis B virus

infection. Virology. 2015;479-480:672–86.

5. Sadiea RZ, Sultana S, Chaki BM, Islam T, Dash S, Akter S, et al.

Phytomedicines to target hepatitis B virus DNA replication: current

limitations and future approaches. Int J Mol Sci. 2022;23:1617.

6. Littlejohn M, Locarnini S, Yuen L. Origins and evolution of

hepatitis B virus and hepatitis D virus. Cold Spring Harb Perspect

Med. 2016;6:a021360.

7. Gilbert C, Feschotte C. Genomic fossils calibrate the long-term

evolution of hepadnaviruses. PLoS Biol. 2010;8:e1000495.

8. Osiowy C, Giles E, Tanaka Y, Mizokami M, Minuk GY. Molecular

evolution of hepatitis B virus over 25 years. J Virol. 2006;80:

10307–4.

9. Suh A, Brosius J, Schmitz J, Kriegs JO. The genome of a

Mesozoic paleovirus reveals the evolution of hepatitis B viruses.

Nat Commun. 2013;4:1791.

10. Suzuki T, Masui N, Kajino K, Saito I, Miyamura T. Detection and

mapping of spliced RNA from a human hepatoma cell line

transfected with the hepatitis B virus genome. Proc Natl Acad Sci

USA. 1989;86:8422–6.

11. Terré S, Petit M-A, Bréchot C. Defective hepatitis B virus

particles are generated by packaging and reverse transcription of

spliced viral RNAs in vivo. J Virol. 1991;65:5539–43.

12. Günther S, Sommer G, Iwanska A, Will H. Heterogeneity and

common features of defective hepatitis B virus genomes derived

from spliced pregenomic RNA. Virology. 1997;238:363–71.

HEPATOLOGY COMMUNICATIONS

13. Sommer G, van Bömmel F, Will H. Genotype-specific synthesis

and secretion of spliced hepatitis B virus genomes in hepatoma

cells. Virology. 2000;271:371–81.

14. Kremsdorf D, Lekbaby B, Bablon P, Sotty J, Augustin J,

Schnuriger A, et al. Alternative splicing of viral transcripts: the

dark side of HBV. Gut. 2021;70:2373–82.

15. Suzuki Y, Maekawa S, Komatsu N, Sato M, Tatsumi A, Miura M,

et al. HBV preS deletion mapping using deep sequencing

demonstrates a unique association with viral markers. PLOS

ONE. 2019;14:e0212559.

16. Betz-Stablein BD, Töpfer A, Littlejohn M, Yuen L, Colledge D,

Sozzi V, et al. Single-molecule sequencing reveals complex

genome variation of hepatitis B virus during 15 years of chronic

infection following liver transplantation. J Virol. 2016;90:

7171–83.

17. Yamashita T, Takeda H, Takai A, Arasawa S, Nakamura F,

Mashimo Y, et al. Single-molecular real-time deep sequencing

reveals the dynamics of multi-drug resistant haplotypes and

structural variations in the hepatitis c virus genome. Sci Rep.

2020;10:2651.

18. Takeda H, Ueda Y, Inuzuka T, Yamashita Y, Osaki Y, Nasu A,

et al. Evolution of multi-drug resistant HCV clones from preexisting resistant-associated variants during direct-acting antiviral therapy determined by third-generation sequencing. Sci

Rep. 2017;7:45605.

19. Lee GH, Wasser S, Lim SG. Hepatitis B pregenomic RNA

splicing—the products, the regulatory mechanisms and its

biological significance. Virus Res. 2008;136:1–7.

20. Abraham TM, Lewellyn EB, Haines KM, Loeb DD. Characterization of the contribution of spliced RNAs of hepatitis B virus to

DNA synthesis in transfected cultures of Huh7 and HepG2 cells.

Virology. 2008;379:30–7.

21. Huang C-C, Kuo T-M, Yeh C-T, Hu C-p, Chen Y-L, Tsai Y-L,

et al. One single nucleotide difference alters the differential

expression of spliced RNAs between HBV genotypes A and D.

Virus Res. 2013;174:18–26.

22. Chen J, Wu M, Wang F, Zhang W, Wang W, Zhang X, et al.

Hepatitis B virus spliced variants are associated with an impaired

response to interferon therapy. Sci Rep. 2015;5:16459.

23. Lam AM, Ren S, Espiritu C, Kelly M, Lau V, Zheng L, et al.

Hepatitis B virus capsid assembly modulators, but not nucleoside

analogs, inhibit the production of extracellular pregenomic RNA

and spliced RNA variants. Antimicrob Agents Chemother. 2017;

61:e00680–00617.

24. Lim CS, Sozzi V, Luciani F, Littlejohn M, Revill PA, Brown CM.

Quantitative analysis of the splice variants expressed by the

major hepatitis B virus genotypes. Microb Genom. 2021;7:

mgen000492.

25. Luk KC, Gersch J, Harris BJ, Holzmayer V, Mbanya D, Sauleda

S, et al. More DNA and RNA of HBV SP1 splice variants are

detected in genotypes B and C at low viral replication. Sci Rep.

2021;11:23838.

26. Kandpal M, Samal J, Biswas B, Negi A, Mishra VC, Tyagi N,

et al. Enhanced hepatitis B virus (HBV) pre-genomic RNA levels

and higher transcription efficiency of defective HBV genomes.

J Gen Virol. 2015;96:3109–17.

27. Nishijima N, Marusawa H, Ueda Y, Takahashi K, Nasu A, Osaki

Y, et al. Dynamics of hepatitis B virus quasispecies in

association with nucleos(t)ide analogue treatment determined

by ultra-deep sequencing. PLoS ONE. 2012;7:e35052.

28. Hayer J, Rodriguez C, Germanidis G, Deléage G, Zoulim F,

Pawlotsky J-M, et al. Ultradeep pyrosequencing and molecular

modeling identify key structural features of hepatitis B virus

RNase H, a putative target for antiviral intervention. J Virol. 2014;

88:574–82.

29. Lowe CF, Merrick L, Harrigan PR, Mazzulli T, Sherlock CH,

Ritchie G. Implementation of next-generation sequencing for

SMRT SEQUENCING FOR HBV QUASISPECIES

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

hepatitis B Virus resistance testing and genotyping in a clinical

microbiology laboratory. J Clin Microbiol. 2016;54:127–33.

Gencay M, Vermeulen M, Neofytos D, Westergaard G, Pabinger

S, Kriegner A, et al. Substantial variation in the hepatitis B

surface antigen (HBsAg) in hepatitis B virus (HBV)-positive

patients from South Africa: Reliable detection of HBV by the

Elecsys HBsAg II assay. J Clin Virol. 2018;101:38–43.

Chevaliez S, Rodriguez C, Poiteau L, Soulier A, Donati F, DartyMercier M, et al. Primary resistance of hepatitis B virus to

nucleoside and nucleotide analogues. J Viral Hepat. 2019;26:

278–86.

Hayashi S, Murakami S, Omagari K, Matsui T, Iio E, Isogawa M,

et al. Characterization of novel entecavir resistance mutations.

J Hepatol. 2015;63:546–3.

Han Y, Zhang Y, Mei Y, Wang Y, Liu T, Guan Y, et al. Analysis of

hepatitis B virus genotyping and drug resistance gene mutations

based on massively parallel sequencing. J Virol Methods. 2013;

193:341–7.

Rajoriya N, Combet C, Zoulim F, Janssen HLA. How viral genetic

variants and genotypes influence disease and treatment outcome of chronic hepatitis B. Time for an individualised

approach? J Hepatol. 2017;67:1281–97.

Bruni R, Villano U, Taffon S, Equestre M, Madonna E, Chionne

P, et al. Retrospective analysis of acute HBV infections occurred

in 1978–79 and 1994– 95 in North-East Italy: increasing

prevalence of BCP/pre-core mutants in sub-genotype D3. BMC

Infect Dis. 2020;20:78.

Wu I-C, Liu W-C, Chang T-T. Applications of next-generation

sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations. J Biomed Sci.

2018;25:51.

Teng C-F, Huang H-Y, Li T-C, Shyu W-C, Wu H-C, Lin C-Y, et al.

A next-generation sequencingbased platform for quantitative

detection of hepatitis B virus pre-S mutants in plasma of

hepatocellular carcinoma patients. Sci Rep. 2018;8:14816.

Anastasiou OE, Widera M, Verheyen J, Korth J, Gerken G,

Helfritz FA, et al. Clinical course and core variability in HBV

infected patients without detectable anti-HBc antibodies. J Clin

Virol. 2017;93:46–52.

Anastasiou OE, Widera M, Westhaus S, Timmer L, Korth J,

Gerken G, et al. Clinical outcome and viral genome variability of

hepatitis b virus–induced acute liver failure. Hepatology. 2019;

69:993–1003.

15

40. Cheng J-H, Liu W-C, Chang T-T, Hsieh S-Y, Tseng VS.

Detecting exact breakpoints of deletions with diversity in hepatitis

B viral genomic DNA from next-generation sequencing data.

Methods. 2017;129:24–32.

41. Jia J, Liang X, Chen S, Wang H, Li H, Fang M, et al. Nextgeneration sequencing revealed divergence in deletions of the

preS region in the HBV genome between different HBV-related

liver diseases. J Gen Virol. 2017;98:2748–58.

42. Liu W-C, Wu I-C, Lee Y-C, Lin C-P, Cheng J-H, Lin Y-J, et al.

Hepatocellular carcinoma-associated single-nucleotide variants and

deletions identified by the use of genome-wide high-throughput

analysis of hepatitis B virus. J Pathol. 2017;243:176–92.

43. Sauvage V, Boizeau L, Candotti D, Vandenbogaert M, ServantDelmas A, Caro Vr, et al. Early MinION™nanopore singlemolecule sequencing technology enables the characterization of

hepatitis B virus genetic complexity in clinical samples. PLOS

ONE. 2018;13:e0194366.

44. Yang Z-T, Huang S-Y, Chen L, Liu F, Cai X-H, Guo Y-F, et al.

Characterization of full-length genomes of hepatitis B virus

quasispecies in sera of patients at different phases of infection.

J Clin Microbiol. 2015;53:2201–14.

45. Gao S, Duan Z-P, Coffin CS. Clinical relevance of hepatitis B

virus variants. World J Hepatol. 2015;7:1086–96.

46. Xue Y, Wang MJ, Huang SY, Yang ZT, Yu DM, Han Y, et al.

Characteristics of CpG Islands and their quasispecies of fulllength hepatitis B virus genomes from patients at different

phases of infection. SpringerPlus. 2016;5:1630.

47. Yamani LN, Yano Y, Utsumi T, Juniastuti, Wandono H, Widjanarko

D, et al. Ultradeep sequencing for detection of quasispecies

variants in the major hydrophilic region of hepatitis B virus in

Indonesian patients. J Clin Microbiol. 2015;53:3165–75.

How to cite this article: Arasawa S, Takeda H,

Takai A, Iguchi E, Eso Y, Shimizu T, et al.

Evolutional transition of HBV genome during the

persistent infection determined by single-molecule real-time sequencing. Hepatol Commun.

2023;7:e0047. https://doi.org/10.1097/HC9.000

0000000000047

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る