リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Whole-genome sequence and genesis of an avian influenza virus H5N1 isolated from a healthy chicken in a live bird market in Indonesia: accumulation of mammalian adaptation markers in avian hosts」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Whole-genome sequence and genesis of an avian influenza virus H5N1 isolated from a healthy chicken in a live bird market in Indonesia: accumulation of mammalian adaptation markers in avian hosts

Rehman, Saifur Prasetya, Rima Ratnanggana Rahardjo, Krisnoadi Effendi, Mustofa Helmi Rantam, Fedik Abdul Rahmahani, Jola Witaningrum, Adiana Mutamsari Nastri, Aldise Mareta Dewantari, Jezzy Renova Mori, Yasuko Shimizu, Kazufumi 神戸大学

2023.02.21

概要

Background Influenza A viruses are a major pathogen that causes significant clinical and economic harm to many animals. In Indonesia, the highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in poultry since 2003 and has caused sporadic deadly infections in humans. The genetic bases that determine host range have not yet been fully elucidated. We analyzed the whole-genome sequence of a recent H5 isolate to reveal the evolution toward its mammalian adaptation. Methods We determined the whole-genome sequence of A/chicken/East Java/Av1955/2022 (hereafter, “Av1955”) from a healthy chicken in April 2022 and conducted phylogenetic and mutational analysis. Results Phylogenetic analysis revealed that Av1955 belonged to the H5N1 clade 2.3.2.1c (Eurasian lineage). The six gene segments (PB1, PB2, HA, NP, NA, and NS) out of the eight segments derived from viruses of H5N1 Eurasian lineage, one (PB2) from the H3N6 subtype and the remaining one (M) from the H5N1 clade 2.1.3.2b (Indonesian lineage). The donor of the PB2 segment was a reassortant among three viruses of H5N1 Eurasian and Indonesian lineages and the H3N6 subtype. The HA amino acid sequence contained multiple basic amino acids at the cleavage site. Mutation analysis revealed that Av1955 possessed the maximal number of mammalian adaptation marker mutations. Conclusions Av1955 was a virus of H5N1 Eurasian lineage. The HA protein contains an HPAI H5N1-type cleavage site sequence, while the virus was isolated from a healthy chicken suggesting its low pathogenicity nature. The virus has increased mammalian adaptation markers by mutation and intra- and inter-subtype reassortment, gathering gene segments possessing the most abundant maker mutations among previously circulating viruses. The increasing mammalian adaptation mutation in avian hosts suggests that they might be adaptive to infection in mammalian and avian hosts. It highlights the importance of genomic surveillance and adequate control measures for H5N1 infection in live poultry markets.

この論文で使われている画像

参考文献

Belshe RB, Smith MH, Hall CB, Betts R, Hay AJ. 1988. Genetic basis of resistance to rimantadine

emerging during treatment of influenza virus infection. Journal of Virology 62(5):1508–1512

DOI 10.1128/jvi.62.5.1508-1512.1988.

Clements ML, Subbarao EK, Fries LF, Karron RA, London WT, Murphy BR. 1992. Use of

single-gene reassortant viruses to study the role of avian influenza A virus genes in attenuation of

wild-type human influenza A virus for squirrel monkeys and adult human volunteers. Journal of

Clinical Microbiology 30(3):655–662 DOI 10.1128/jcm.30.3.655-662.1992.

Connor RJ, Kawaoka Y, Webster RG, Paulson JC. 1994. Receptor specificity in human, avian, and

equine H2 and H3 influenza virus isolates. Virology 205(1):17–23 DOI 10.1006/viro.1994.1615.

Dharmayanti NLPL, Hartawan R, Pudjiatmoko, Wibawa H, Hardiman, Balish A, Donis R,

Davis CT, Samaan G. 2014. Genetic characterization of clade 2.3.2.1 avian influenza A/(H5N1)

viruses, Indonesia, 2012. Emerging Infectious Diseases 20(4):671–674

DOI 10.3201/eid2004.130517.

Dharmayanti NLPI, Ibrahim F, Soebandrio A. 2010. Amantadine resistant of Indonesian H5N1

subtype influenza viruses during 2003–2008. Microbiology Indonesia 4(1):3

DOI 10.5454/mi.4.1.3.

Glaser L, Stevens J, Zamarin D, Wilson IA, García-Sastre A, Tumpey TM, Basler CF,

Taubenberger JK, Palese P. 2005. A single amino acid substitution in 1918 influenza virus

hemagglutinin changes receptor binding specificity. Journal of Virology 79(17):11533–11536

DOI 10.1128/JVI.79.17.11533-11536.2005.

Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH. 1985. The molecular basis of the specific

anti-influenza action of amantadine. The EMBO Journal 4(11):3021–3024

DOI 10.1002/j.1460-2075.1985.tb04038.x.

Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H,

Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G,

Kawaoka Y. 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet

transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428

DOI 10.1038/nature10831.

Klenk HD, Garten W. 1994. Host cell proteases controlling virus pathogenicity. Trends in

Microbiology 2(2):39–43 DOI 10.1016/0966-842X(94)90123-6.

Rehman et al. (2023), PeerJ, DOI 10.7717/peerj.14917

14/17

Lam TT, Hon CC, Pybus OG, Kosakovsky Pond SL, Wong RT, Yip CW, Zeng F, Leung FC.

2008. Evolutionary and transmission dynamics of reassortant H5N1 influenza virus in

Indonesia. PLOS Pathogens 4(8):e1000130 DOI 10.1371/journal.ppat.1000130.

Lan Y, Zhang Y, Dong L, Wang D, Huang W, Xin L, Yang L, Zhao X, Li Z, Wang W, Li X, Xu C,

Yang L, Guo J, Wang M, Peng Y, Gao Y, Guo Y, Wen L, Jiang T, Shu Y. 2010. A

comprehensive surveillance of adamantane resistance among human influenza A virus isolated

from mainland China between 1956 and 2009. Antiviral Therapy 15(6):853–859

DOI 10.3851/IMP1656.

Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P,

Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT,

Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Peiris JS. 2004. Genesis of

a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature

430(6996):209–213 DOI 10.1038/nature02746.

Long JX, Peng DX, Liu YL, Wu YT, Liu XF. 2008. Virulence of H5N1 avian influenza virus

enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes 36(3):471–478

DOI 10.1007/s11262-007-0187-8.

Maines TR, Chen LM, Van Hoeven N, Tumpey TM, Blixt O, Belser JA, Gustin KM, Pearce MB,

Pappas C, Stevens J, Cox NJ, Paulson JC, Raman R, Sasisekharan R, Katz JM, Donis RO.

2011. Effect of receptor binding domain mutations on receptor binding and transmissibility of

avian influenza H5N1 viruses. Virology 413(1):139–147 DOI 10.1016/j.virol.2011.02.015.

Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti MA, Naffakh N, Warnes C, Altholtz M,

Donis R, Subbarao K. 2009. Neuraminidase stalk length and additional glycosylation of the

hemagglutinin influence the virulence of influenza H5N1 viruses for mice. Journal of Virology

83(9):4704–4708 DOI 10.1128/JVI.01987-08.

Mertens E, Dugan VG, Stockwell TB, Lindsay LL, Plancarte M, Boyce WM. 2013. Evaluation of

phenotypic markers in full genome sequences of avian influenza isolates from California.

Comparative Immunology, Microbiology and Infectious Diseases 36(5):521–536

DOI 10.1016/j.cimid.2013.06.003.

Mettier J, Marc D, Sedano L, Da Costa B, Chevalier C, Le Goffic R. 2021. Study of the host

specificity of PB1-F2-associated virulence. Virulence 12(1):1647–1660

DOI 10.1080/21505594.2021.1933848.

Novianti AN, Rahardjo K, Prasetya RR, Nastri AM, Dewantari JR, Rahardjo AP,

Estoepangestie ATS, Shimizu YK, Poetranto ED, Soegiarto G, Mori Y, Shimizu K,

Hotopp JCD. 2019. Whole-genome sequence of an avian influenza A/H9N2 virus isolated from

an apparently healthy chicken at a live-poultry market in Indonesia. Microbiology Resource

Announcements 8(17):e01671-18 DOI 10.1128/MRA.01671-18.

Peiris JS, de Jong MD, Guan Y. 2007. Avian influenza virus (H5N1): a threat to human health.

Clinical Microbiology Reviews 20(2):243–267 DOI 10.1128/CMR.00037-06.

Pinto LH, Holsinger LJ, Lamb RA. 1992. Influenza virus M2 protein has ion channel activity. Cell

69(3):517–528 DOI 10.1016/0092-8674(92)90452-I.

Putri K, Widyarini S, Asmara W. 2019. The thrift of avian influenza in Indonesia. In: Viruses and

Viral Infections in Developing Countries. London: IntechOpen.

Rehman S, Effendi MH, Shehzad A, Rahman A, Rahmahani J, Witaningrum AM, Bilal M. 2022.

Prevalence and associated risk factors of avian influenza A virus subtypes H5N1 and H9N2 in

LBMs of East Java province, Indonesia: a cross-sectional study. PeerJ 10(1):e14095

DOI 10.7717/peerj.14095.

Rehman et al. (2023), PeerJ, DOI 10.7717/peerj.14917

15/17

Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC. 1983. Single amino acid

substitutions in influenza haemagglutinin change receptor binding specificity. Nature

304(5921):76–78 DOI 10.1038/304076a0.

Shimizu K, Wulandari L, Poetranto ED, Setyoningrum RA, Yudhawati R, Sholikhah A,

Nastri AM, Poetranto AL, Candra AYR, Puruhito EF, Takahara Y, Yamagishi Y,

Yamaoka M, Hotta H, Ustumi T, Lusida MI, Soetjipto, Shimizu YK, Soegiarto G, Mori Y.

2016. Seroevidence for a high prevalence of subclinical infection with avian influenza A/(H5N1)

virus among workers in a live-poultry market in Indonesia. Journal of Infectious Diseases

214(12):1929–1936 DOI 10.1093/infdis/jiw478.

Subbarao EK, London W, Murphy BR. 1993. A single amino acid in the PB2 gene of influenza A

virus is a determinant of host range. Journal of Virology 67(4):1761–1764

DOI 10.1128/jvi.67.4.1761-1764.1993.

Suguitan AL Jr, Matsuoka Y, Lau YF, Santos CP, Vogel L, Cheng LI, Orandle M, Subbarao K.

2012. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/

2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in

mammals. Journal of Virology 86(5):2706–2714 DOI 10.1128/JVI.05546-11.

Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J,

Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J,

Guo Z, Donis RO. 2013. New world bats harbor diverse influenza A viruses. PLOS Pathogens

9(10):e1003657 DOI 10.1371/journal.ppat.1003657.

Wang W, Lu B, Zhou H, Suguitan AL Jr, Cheng X, Subbarao K, Kemble G, Jin H. 2010.

Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity

synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1

A/Vietnam/1203/2004 vaccine virus in ferrets. Journal of Virology 84(13):6570–6577

DOI 10.1128/JVI.00221-10.

Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of

influenza A viruses. Microbiological Reviews 56(1):152–179 DOI 10.1128/mr.56.1.152-179.1992.

WHO H5N1. 2021. Cumulative number of confirmed human cases of avian influenza A/(H5N1)

reported to WHO. Available at https://www.who.int/publications/m/item/cumulative-numberof-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2021-15-april2021 (accessed 11 March 2021).

WHO/OIE/FAO H5N1 Evolution Working Group. 2008. Toward a unified nomenclature system

for highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases 14(7):e1

DOI 10.3201/eid1407.071681.

WHO/OIE/FAO H5N1 Evolution Working Group. 2014. Revised and updated nomenclature for

highly pathogenic avian influenza A/(H5N1) viruses. Influenza and Other Respiratory Viruses

8(3):384–388 DOI 10.1111/irv.12230.

World Health Organization. 2015. Cumulative number of confirmed human cases for avian

influenza A/(H5N1) reported to WHO, 2003–2015. World Health Organization, Geneva,

Switzerland.

World Health Organization. 2019. Cumulative number of confirmed human cases of Avian

Influenza A/(H5N1) reported to WHO, Geneva, 3.

Yudhawati R, Prasetya RR, Dewantari JR, Nastri AM, Rahardjo K, Novianti AN, Amin M,

Rantam FA, Poetranto ED, Wulandari L, Lusida MI, Soetjipto, Soegiarto G, Shimizu YK,

Mori Y, Shimizu K. 2020. Comparison of virulence and lethality in mice for avian influenza

viruses of two A/H5N1 and one A/H3N6 isolated from poultry during year 2013–2014 in

Rehman et al. (2023), PeerJ, DOI 10.7717/peerj.14917

16/17

Indonesia. Japanese Journal of Infectious Diseases 73(5):336–342

DOI 10.7883/yoken.JJID.2020.052.

Zhang X, Chen S, Jiang Y, Huang K, Huang J, Yang D, Zhu J, Zhu Y, Shi S, Peng D, Liu X. 2015.

Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian

influenza virus. Veterinary Microbiology 175(2–4):244–256 DOI 10.1016/j.vetmic.2014.12.011.

Zhou H, Yu Z, Hu Y, Tu J, Zou W, Peng Y, Zhu J, Li Y, Zhang A, Yu Z, Ye Z, Chen H, Jin M.

2009. The special neuraminidase stalk-motif responsible for increased virulence and

pathogenesis of H5N1 influenza A virus. PLOS ONE 4(7):e6277

DOI 10.1371/journal.pone.0006277.

Rehman et al. (2023), PeerJ, DOI 10.7717/peerj.14917

17/17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る