リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Project 6 Advancement of integrated system for dose estimation in BNCT (R3P6)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Project 6 Advancement of integrated system for dose estimation in BNCT (R3P6)

Sakurai, Y. 京都大学

2022.07

概要

BACKGROUNDS AND PURPOSES:
Several types of accelerator-based irradiation system for boron neutron capture therapy (BNCT) are under de- velopment at present. But, there are a number of subjects, which should be improved for the further advance and generalization of BNCT.
In the viewpoints of medical physics and engineering, the advance for dose estimation is one of the important subjects. For the characterization of irradiation field, quality assurance and quality control (QA/QC), clinical irradiation to actual patient, and so on, an ultimate goal is to perform the three-dimensional and real-time dose es- timation in discriminating for thermal, epi-thermal and fast neutron doses, gamma-ray dose, and boron dose, with simplicity and low effort. Considering about this ultimate dose estimation, several kinds of dose estimation method are studied. It is so difficult to realize the ultimate dose estimation using only one method, but it is neces- sary to use simultaneously more than two methods.
The purposes of this project research are the advance for various dose estimation methods, and the establish- ment of an integrated system for dose estimation in BNCT.
In the second year of this research project, 2021, the advancement for the respective dose estimation methods were forwarded mainly using Heavy Water Neutron Irra- diation Facility (HWNIF) and E-3 Neutron Guide Tube (E-3) at KUR. The integrated system was considered for the simultaneous usage of several dose estimation meth- ods, same as the previous year.

RESEARCH SUBJECTS:
The collaboration and allotted research subjects (ARS) were organized as follows;

ARS-1 (R3P6-1): Establishment of characterization es- timation method in BNCT irradiation field using Bon- ner sphere and ionization chamber (V). (Y. Sakurai, S. Shiraishi, A. Sasaki, N. Matsubayashi, M. Nojiri, R. Narita, H. Kato, D. Fu, T. Takata, H. Tanaka)
ARS-2 (R3P6-2): Study on new type of neutron energy spectrometer for BNCT. (K. Watanabe, Y. Oshima, A. Ishikawa, A. Uritani, S. Yoshihashi, A. Yamazaki, Y. Sakurai)
ARS-3 (R3P6-3): Development and demonstration of Bonner sphere spectrometer for intense neutrons. (A. Masuda, T. Matsumoto, S. Manabe, H. Tanaka, H. Harano, Y. Sakurai, T. Takata)
ARS-4 (R3P6-4): Improvement of the SOF detector sys- tem for energy-dependent discrimination and long-term stability. (M. Ishikawa1, S. Ishiguri, H. Handa, K. Baba, K. Takamiya, Y. Sakurai)
ARS-5 (R3P6-5): First direct observation of boron dose distribution with a boron-added liquid scintillator. (A. Nohtomi, H. Maeda, N. Sakamoto, G. Wakabayashi, Y. Sakurai, T. Takata)
ARS-6 (R3P6-6): Development of absolute epi-thermal neutron flux intensity monitor for BNCT (I. Murata, S. Tada, D. Hatano, S. Tamaki, S. Kusaka, H. Tanaka, Y. Sakurai, T. Takada)
ARS-8 (R3P6-8): Study for microdosimetry using sili- con-on-insulator microdosimeter in the BNCT irradia- tion field (V). (Y. Sakurai, N. Ko, T. Takata, H. Tanaka, T. L. Tran, J. Davis, S. Guatelli, A. Rozenfeld, N. Kon- do, M. Suzuki)
ARS-10 (R3P6-10): Measurement of BNCT beam com- ponent fluence with multi imaging plate system. (K. Tanaka, Y. Sakurai, C. Hatori, T. Kajimoto, H. Tanaka, T. Takata, G. Bengua, S. Endo)
ARS-11 (R3P6-11): Development of 2D real-time neu- tron imaging system in the BNCT irradiation field. (S. Uno, T. Koike, K. Miyamoto, R. Hosoya, H.Tanaka)
ARS-12 (R3P6-12): Measurements of neutron fluence and gamma ray distribution using thermoluminescence slabs. (K. Shinsho, M. Tanaka, N. Sugioka, H. Tanaka, T. Takata, G. Wakabayashi, W. Chang, Y. Koba)
ARS-14 (R3P6-14): Development and evaluation of 3D gel dosimeter for the measurement of dose distribution in BNCT. (S. Hayashi, Y. Sakurai, M. Suzuki, T. Taka- ta)
ARS-15 (R3P6-15): Establishment of beam-quality es- timation method in BNCT irradiation field using dual phantom technique (V). (Y. Sakurai, N. Kondo, D. Fu, T. Takata, H. Tanaka, M. Suzuki)
ARS-16 (R3P6-16): Development of real-time thermal neutron monitor for BNCT. (H. Tanaka, N. Matsubayashi, S. Kurosawa, T. Takata, Y. Sakurai)
ARS-17 (R3P6-17): Quantitative measurement of 478 keV prompt gamma-rays of boron-neutron capture re- action with the ETCC. (T. Mizumoto, S. Komura, Y. Sakurai, T. Takata, T. Tanimori, A. Takada)
ARS-19 (R3P6-19): Evaluation of neutron irradiation fields for semiconductor device irradiation. (H. Tanaka, N. Matsubayashi, T. Takata, Y. Sakurai)
ARS-20 (R3P6-20): Optimization of bolus shape for boron neutron capture therapy - examination using simple shaped phantom for experimental verification -. (T. Takata, H. Tanaka, A. Sasaki, N. Matsubayashi, M. Nojiri, Y. Sakurai, M. Suzuki)
ARS-22 (R3P6-22): Annealing properties of boric acid infused PVA-GTA-I gel irradiated with neutrons. (H. Yasuda, JE. Taño, CAB. Gonzales, Y. Sakurai)
ARS-23 (R3P6-23): Three dimensional model for pre-clinical assessments in BNCT. (K. Igawa, A. Sasaki, K. Izumi, E. Naito, M. Suzuki, N. Kondo, Y. Sakurai)
ARS-7, ARS-9, ARS-13, ARS-18 and ARS-21 could not be performed because of the influence of COVID-19 infection.

この論文で使われている画像

参考文献

R3P6-1 REFERENCES:

[1] S. Shiraishi et al., Appl. Radiat. Isot. 163 (2020)  109213.

[2] Y. Sakurai and T. Kobayashi, Nucl. Instr. Meth. A 453  (2000) 569-596.

[3] H. Ueda, Doctoral Thesis (2016).

R3P6-2 REFERENCES:

[1] K. Watanabe et al., Nuclear Instruments and Meth-ods in Physics Research Section A , 802, 1 (2015).

[2] A. Ishikawa et al., Sensors and Materials, 32,1489-1495 (2020).

R3P6-3 REFERENCES:

[1] A. Masuda et al., Appl. Radiat. Isot., 127 (2017)  47-51.

[2] Y. Sakurai and T. Kobayashi, Nucl. Instr. Mes. Phys.  Res. A, 453 (2000).

[3] T. Matsumoto et al., Radiat. Prot. Dosim., 188 (2020)  117-122.

[4] A. Masuda et al., 2018 IEEE NSS/MIC Proceedings (2019) 10.1109/NSSMIC.2018.8824697.

R3P6-4 REFERENCES:

[1] M. Ishikawa et al., Appl. Radiat. Isot., 61 (2004) 775-779.

[2] M. Ishikawa et al., Nucl. Instr. Meth., A 551 (2005) 448-457.

[3] M. Komeda et al., Appl. Radiat. Isot., 67 (2009) 254-257.

R3P6-5 REFERENCES:

[1] A. Nohtomi et al., Radiol. Phys. Technol., 15 (2022)  37-44.

[2] T. Kobayashi and, K. Kanda. Nucl. Instrum. Meth., 204 (1983) 525–531.

R3P6-6 REFERENCES:

[1] Y. Kashiwagi et al., “Development of epi-thermal neutron beam intensity detector with 71Ga(n,γ)72Ga reaction for boron neutron capture therapy.” Appl. Radiat. Isot., 151, pp.145-149, 2019.

R3P6-8 REFERENCES:

[1] H. Tanaka et al., Nucl. Instr. Meth. B 267 (2009) 1970-1977.

[2] H. Kumada et al., Appl. Radiat. Isot. 88 (2014) 211-215.

[3] L. T. Tran et al., IEEE Trans. Nucl. Sci. 62 (2015) 3027-3033.

[4] Y. Sakurai and T. Kobayashi, Nucl. Instr. Meth. A 453 (2000) 569-596.

R3P6-10 REFERENCES:

[1] K.Tanaka et al. Appl. Rad. Isot. 115 (2016)212-220.

[2] Y.Sakurai and T.Kobayashi Nucl. Instr. Meth. A453 (2000)569-596.

[3] T.Sato et al. J. Nucl. Sci. Technol. 50 (2013)913-923.

R3P6-11 REFERENCES:

[1] F. Sauli, Nucl. Instrum. Meth. A 386 (1997)531.

[2] S. Uno et al, Physics Procedia 26 (2012)142.

[3] K.Komiya et al, J. Jpn. Soc. Prec. Eng.84.11 (2018)936.

[4] A.Nohtomi et al, KURNS.Prog.Rep.2018 (2019)68.

R3P6-12 REFERENCES:

[1] K. Shinsho et al., Sensors and Materials., 30 (2018) 1591-1598

R3P6-14 REFERENCES:

[1] M. Marrale and F. d’Errico, Gels 7 (2021) 74.

[2] S. Hayashi et al., Radiat. Meas. 131 (2020) 106226.

[3] S. Hayashi et al., J.Phys.; Conf. Ser. 2167 (2022) 012014.

[4] A. T. Nasr et al., Phys. Med. Biol. 60 (2015) 4685-704.

R3P6-15 REFERENCES:

[1] Y. Sakurai et al., Med. Phys. 42 (2015) 6651-6657.

R3P6-16 REFERENCES :

[1] Hirose K., Konno A., Hiratsuka J., Yoshimoto S.,  Kato T., Ono K., Otsuki N., Hatazawa J., Tanaka H., Ta-  kayama K., Wada H., Suzuki M., Sato M., Yamaguchi H.,  Seto I., Ueki Y., Iketani S., Imai S., Nakamura T., Ono T.,  Endo H., Azami Y., Kikuchi Y., Murakami M., Takai  Y.Boron neutron capture therapy using cyclotron-based  epithermal neutron source and borofalan (10B) for recur-  rent or locally advanced head and neck cancer (JHN002):  An open-label phase II trial, Radiotherapy and Oncology,  155, pp. 182 – 187(2021).

[2] Tanaka H., Sakurai Y., Takata T., Watanabe T., Ka-  wabata S., Suzuki M., Masunaga S.-I., Taki K., Akabori  K., Watanabe K., Ono K. Note: Development of real-time  epithermal neutron detector for boron neutron capture  therapy, (2017) Review of Scientific Instruments, 88 (5),  art. no. 056101.

R3P6-17 REFERENCES:

[1] S. Komura et al., KURNS Progress Report 2020.

R3P6-19 REFERENCES :

[1] Takashi Kato, Motonobu Tampo, Soshi Takeshita,  Hiroki Tanaka, Hideya Matsuyama, Masanori Hashimoto,  Yasuhiro Miyake, Muon-Induced Single-Event Upsets  in 20-nm SRAMs: Comparative Characterization with  Neutrons and Alpha Particles, IEEE Transactions on  Nuclear Science, 68,1436-1444,2021.

R3P6-20 REFERENCES:

[1] T. Takata et al., KURNS Progress Report 2019 (2020),56.

[2] T. Takata et al., KURNS Progress Report 2020 (2021),83.

R3P6-22 REFERENCES:

[1] Taño JE et al. 2020. Radiat Meas. 134 106311.

[2] Taño JE et al. 2021. Radiat Meas. 149 106674.

R3P6-23 REFERENCES:

[1] D Corallo et al., frontiers in Immunology vol.11 (2020) https://doi.org/10.3389/fimmu.2020.584214.

[2] K Haga et al., Translational Oncology 12 (2021) DOI: 10.1016/j.tranon.2021.101236.

[3] A Uenoyama et al., Biosci, Biotechnol, and Biochem, 80(2016)DOI:10.1080/09168451.2016.1153957.

参考文献をもっと見る