リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis

Yonekura-Sakakibara, Keiko Yamamura, Masaomi Matsuda, Fumio Ono, Eiichiro Nakabayashi, Ryo Sugawara, Satoko Mori, Tetsuya Tobimatsu, Yuki Umezawa, Toshiaki Saito, Kazuki 京都大学 DOI:10.1093/plcell/koaa014

2021.01

概要

Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4′ coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3, 5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8′ coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.

この論文で使われている画像

参考文献

Attoumbre J, Bienaime C, Dubois F, Fliniaux MA, Chabbert B,

Baltora-Rosset S (2010) Development of antibodies against secoisolariciresinol–application to the immunolocalization of lignans in

Linum usitatissimum seeds. Phytochemistry 71: 1979–1987

Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:

672–674

Barbosa ICR, Rojas-Murcia N, Geldner N (2019) The Casparian

strip-one ring to bring cell biology to lignification? Curr Opin

Biotechnol 56: 121–129

Berridge MV, Tan AS, McCoy KD, Wang R (1996) The biochemical

and cellular basis of cell proliferation assays that use tetrazolium

salts. Biochemica 4: 15–20

Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le

Bris P, Borrega N, Herve J, Blondet E, Balzergue S, et al. (2011)

Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:

1124–1137

Bo¨ttcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C,

Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of

biosynthetic mutants reveals a diversity of metabolic changes and

allows identification of a large number of new compounds in

Arabidopsis. Plant Physiol 147: 2107–2120

Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins

and dirigent sites in lignifying tissues. Phytochemistry 57: 883–897

Caparros-Ruiz D, Fornale S, Civardi L, Puigdomenech P, Rigau J

(2006) Isolation and characterisation of a family of laccases in

maize. Plant Sci 171: 217–225

Cesarino I, Araujo P, Sampaio Mayer JL, Vicentini R, Berthet S,

Demedts B, Vanholme B, Boerjan W, Mazzafera P (2013)

Expression of SofLAC, a new laccase in sugarcane, restores lignin

content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot

64: 1769–1781

Clough SJ, Bent AF (1998) Floral dip: a simplified method for

Agrobacterium-mediated transformation of Arabidopsis thaliana.

Plant Journal 16: 735–743

Corbin C, Drouet S, Markulin L, Auguin D, Laine E, Davin LB,

Cort JR, Lewis NG, Hano C (2018) A genome-wide analysis of the

flax (Linum usitatissimum L.) dirigent protein family: from gene

identification and evolution to differential regulation. Plant Mol

Biol 97: 73–101

Dalisay DS, Kim KW, Lee C, Yang H, Rubel O, Bowen BP, Davin

LB, Lewis NG (2015) Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and

MALDI mass spectrometry imaging. J Nat Prod 78: 1231–1242

Davin LB, Lewis NG (2003) An historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2: 257–288

Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM,

Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy

radical coupling by an auxiliary (dirigent) protein without an active

center. Science 275: 362–366

Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R,

Selvaraj G, Datla R, Haughn G (2011) Analysis of gene expression

patterns during seed coat development in Arabidopsis. Mol Plant

4: 1074–1091

Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence

of the testa on seed dormancy, germination, and longevity in

Arabidopsis. Plant Physiol 122: 403–413

Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M,

Lepiniec L (2003) Proanthocyanidin-accumulating cells in

Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15: 2514–2531

Dima O, Morreel K, Vanholme B, Kim H, Ralph J, Boerjan W

(2015) Small glycosylated lignin oligomers are stored in

Arabidopsis leaf vacuoles. Plant Cell 27: 695–710

Effenberger I, Harport M, Pfannstiel J, Klaiber I, Schaller A (2017)

Expression in Pichia pastoris and characterization of two novel dirigent proteins for atropselective formation of gossypol. Appl

Microbiol Biotechnol 101: 2021–2032

Effenberger I, Zhang B, Li L, Wang Q, Liu Y, Klaiber I, Pfannstiel J,

Wang Q, Schaller A (2015) Dirigent proteins from cotton

(Gossypium sp.) for the atropselective synthesis of gossypol.

Angew Chem Int Ed Engl 54: 14660–14663

Endo S, Pesquet E, Yamaguchi M, Tashiro G, Sato M, Toyooka K,

Nishikubo N, Udagawa-Motose M, Kubo M, Fukuda H, et al.

(2009) Identifying new components participating in the secondary

cell wall formation of vessel elements in zinnia and Arabidopsis.

Plant Cell 21: 1155–1165

Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB,

Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999)

Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6: 143–151

Gasper R, Effenberger I, Kolesinski P, Terlecka B, Hofmann E,

Schaller A (2016) Dirigent protein mode of action revealed by the

crystal structure of AtDIR6. Plant Physiol 172: 2165–2175

Hause B, Meyer K, Viitanen PV, Chapple C, Strack D (2002)

Immunolocalization of 1-O-sinapoylglucose:malate sinapoyltransferase in Arabidopsis thaliana. Planta 215: 26–32

Helm RF, Ralph J (1992) Lignin-hydroxycinnamyl model compounds

related to forage cell wall structure. 1. Ether-linked structures.

J Agric Food Chem 40: 2167–2175

Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot

ML, Salt DE (2013) Dirigent domain-containing protein is part of

the machinery required for formation of the lignin-based

Casparian strip in the root. Proc Natl Acad Sci USA 110:

14498–14503

Katayama T, Kado Y (1998) Formation of optically active neolignans

from achiral coniferyl alcohol by cell-free extracts of Eucommia

ulmoides. J Wood Sci 44: 244–246

Kim KW, Moinuddin SG, Atwell KM, Costa MA, Davin LB, Lewis

NG (2012) Opposite stereoselectivities of dirigent proteins in

Arabidopsis and schizandra species. J Biol Chem 287: 33957–33972

Kim KW, Smith CA, Daily MD, Cort JR, Davin LB, Lewis NG

(2015). Trimeric structure of ( + )-pinoresinol-forming dirigent protein at 1.95: a resolution with three isolated active sites. J Biol

Chem 290: 1308–1318

Downloaded from https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koaa014/6007532 by 81618471 user on 15 January 2021

Acknowledgments

Yonekura-Sakakibara et al.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

The Plant Cell, 2020

| 23

Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, YonekuraSakakibara K, Saito K, Shen G, Sumner LW, Tang Y, et al.

(2013). Medicago glucosyltransferase UGT72L1: potential roles in

proanthocyanidin biosynthesis. Planta 238: 139–154

Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V,

Houser J, Gigli-Bisceglia N, Wimmerova M, Budinska E, et al.

(2017) Dirigent proteins in plants: modulating cell wall metabolism

during abiotic and biotic stress exposure. J Exp Bot 68: 3287–3301

Petersen M, Hans J, Matern U (2010). Biosynthesis of phenylpropanoids and related compounds. In M Wink, ed, Annual Plant

Reviews. Wiley-Blackwell, Chichester, West Sussex; Ames, IA, pp

182–257

Pickel B, Constantin MA, Pfannstiel J, Conrad J, Beifuss U,

Schaller A (2010) An enantiocomplementary dirigent protein for

the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed Engl 49: 202–204

Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L,

Debeaujon I (2005) TRANSPARENT TESTA10 encodes a

laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17: 2966–2980

Ralph J, Helm RF (1991) Rapid proton NMR method for determination of threo:erythro ratios in lignin model compounds and examination of reduction stereochemistry. J Agric Food Chem 39:

705–709

Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56: 240–249.

Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer

defense II: extended gene discovery, phylogeny, and constitutive

and stress-induced gene expression in spruce (Picea spp.).

Phytochemistry 68: 1975–1991

Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A,

Boudet AM, Goffner D (2002) Laccase down-regulation causes

alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129: 145–155

Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes

with coexpression networks and metabolomics – ‘majority report

by precogs’. Trends Plant Sci 13: 36–43

Saitou N, Nei M (1987) The neighbor-joining method: a new

method for reconstructing phylogenetic trees. Mol Biol Evol 4:

406–425

Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M,

Umezawa T (2007) Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a

stable-isotope-dilution method. Org Biomol Chem 5: 802–815

Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M

(2016). Staying alive: molecular aspects of seed longevity. Plant Cell

Physiol 57: 660–674

Sartorelli P, Benevides PJC, Ellensohn RM, Rocha MVAF, Moreno

PRH, Kato MJ (2001) Enantioselective conversion of p-hydroxypropenylbenzene to ( + )-conocarpan in Piper regnellii. Plant Sci 161:

1083–1088

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M,

Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression

map of Arabidopsis thaliana development. Nat Genet 37: 501–506

Schroeder FC, del Campo ML, Grant JB, Weibel DB, Smedley SR,

Bolton KL, Meinwald J, Eisner T (2006). Pinoresinol: a lignol of

plant origin serving for defense in a caterpillar. Proc Natl Acad Sci

USA 103: 15497–15501

Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y,

Ralph J, Demura T, Ellis B, Samuels AL (2014). Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166: 798–807

Seneviratne HK, Dalisay DS, Kim KW, Moinuddin SG, Yang H,

Hartshorn CM, Davin LB, Lewis NG (2015) Non-host disease

resistance response in pea (Pisum sativum) pods: biochemical

function of DRR206 and phytoalexin pathway localization.

Phytochemistry 113: 140–148

Downloaded from https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koaa014/6007532 by 81618471 user on 15 January 2021

Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8-8’ DIRIGENT family displays diverse

expression patterns and conserved monolignol coupling specificity.

Plant Mol Biol 49: 199–214

Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K,

Yamazaki M, Saito K, Narumi I (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of

Arabidopsis thaliana flavonoid accumulation mutants. Plant J 62:

549–559

Kulik T, Busko M, Pszczolkowska A, Perkowski J, Okorski A (2014)

Plant lignans inhibit growth and trichothecene biosynthesis in

Fusarium graminearum. Lett Appl Microbiol 59: 99–107

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X:

molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549.

Lapierre C, Monties B, Rolando C (1986) Preparative thioacidolysis

of spruce lignin: isolation and identification of main monomeric

products. Holzforschung 40: 47–50

Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple

C (2012) Benzoylation and sinapoylation of glucosinolate R-groups

in Arabidopsis. Plant J 72: 411–422

Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC,

Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1

gene of Arabidopsis reveals a role for a serine carboxypeptidase-like

protein as an acyltransferase in secondary metabolism. Plant Cell

12: 1295–1306

Liang M, Davis E, Gardner D, Cai X, Wu Y (2006) Involvement of

AtLAC15 in lignin synthesis in seeds and in root elongation of

Arabidopsis. Planta 224: 1185–1196

Lourith N, Katayama T, Ishikawa K, Suzuki T (2005) Biosynthesis

of a syringyl 8-O-4 ‘ neolignan in Eucommia ulmoides: formation

of syringylglycerol-8-O-4 ’-(sinapyl alcohol) ether from sinapyl alcohol. J Wood Sci 51: 379–386

Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T,

Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation

of non-targeted profile of plant secondary metabolites. Plant J 57:

555–577

Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara

K, Provart NJ, Sakurai T, Shimada Y, Saito K (2010)

AtMetExpress development: a phytochemical atlas of Arabidopsis

development. Plant Physiol 152: 566–578

Meng Q, Moinuddin SGA, Kim SJ, Bedgar DL, Costa MA, Thomas

DG, Young RP, Smith C, Cort JR, Davin LB, et al. (2020)

Pterocarpan synthase (PTS) structures suggest a common quinone

methide-stabilizing function in dirigent proteins and proteins with

dirigent-like domains. J Biol Chem 295: 11584–11601

Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC

Recommendations 2000). Pure Appl Chem 72: 1493–1523

Mugford ST, Louveau T, Melton R, Qi X, Bakht S, Hill L,

Tsurushima T, Honkanen S, Rosser SJ, Lomonossoff GP, et al.

(2013) Modularity of plant metabolic gene clusters: a trio of linked

genes that are collectively required for acylation of triterpenes in

oat. Plant Cell 25: 1078–1092

Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008)

Characterization of Arabidopsis thaliana pinoresinol reductase, a

new type of enzyme involved in lignan biosynthesis. J Biol Chem

283: 15550–15557

Nitao JK, Johnson KS, Scriber JM, Nair MG (1992) Magnolia virginiana Neolignan compounds as chemical barriers to swallowtail butterfly host use. J Chem Ecol 18: 1661–1671

Okazawa A, Hori K, Okumura R, Izumi Y, Hata N, Bamba T,

Fukusaki E, Ono E, Satake H, Kobayashi A (2011) Simultaneous

quantification of lignans in Arabidopsis thaliana by highly sensitive

capillary liquid chromatography-electrospray ionization-ion trap

mass spectrometry. Plant Biotechnol 28: 287–293

Orr JD, Lynn DG (1992). Biosynthesis of dehydrodiconiferyl alcohol

glucosides: implications for the control of tobacco cell growth.

Plant Physiol 98: 343–352.

THE PLANT CELL 2020: Page 23 of 24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

24

| THE PLANT CELL 2020: Page 24 of 24

Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, Chen F,

Dixon RA (2020) Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed

coat of Cleome hassleriana. Plant Cell 32: 3825–3845

Wang YP, Tan X, Paterson AH (2013) Different patterns of gene

structure divergence following gene duplication in Arabidopsis.

BMC Genomics 14: 652

Weng JK, Chapple C (2010). The origin and evolution of lignin biosynthesis. New Phytol 187: 273–285

Western TL, Burn J, Tan WL, Skinner DJ, Martin-McCaffrey L,

Moffatt BA, Haughn GW (2001) Isolation and characterization of

mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiol 127: 998–1011

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ

(2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLOS One 2:

e718

Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W,

Strack D (2010) Profiling of phenylpropanoids in transgenic

low-sinapine oilseed rape (Brassica napus). Phytochemistry 71:

1076–1084

Wong WS, Guo D, Wang XL, Yin ZQ, Xia B, Li N (2005). Study of

cis-cinnamic acid in Arabidopsis thaliana. Plant Physiol Biochem

43: 929–937

Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012)

Microscale thioacidolysis method for the rapid analysis of b-O-4

substructures in lignin. Plant Biotechnol 29: 419–423

Yang XX, Choi HW, Yang SF, Li N (1999) A UV-light activated cinnamic acid isomer regulates plant growth and gravitropism via an

ethylene receptor-independent pathway. Aust J Plant Physiol 26:

325–335

Yonekura-Sakakibara K, Tohge T, Niida R, Saito K (2007)

Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282:

14932–14941

Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R,

Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K

(2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations

in Arabidopsis. Plant Cell 20: 2160–2176

Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito

T, Koyanagi M, Kitajima M, Takayama H, Saito K (2014) A flavonoid 3-O-glucoside:2"-O-glucosyltransferase responsible for terminal

modification of pollen-specific flavonols in Arabidopsis thaliana.

Plant J 79: 769–782

Yue F, Lu F, Sun R-C, Ralph J (2012) Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards.

J Agric Food Chem 60: 922–928

Zhang K, Lu K, Qu C, Liang Y, Wang R, Chai Y, Li J (2013) Gene silencing of BnTT10 family genes causes retarded pigmentation and

lignin reduction in the seed coat of Brassica napus. PLoS One 8:

e61247

Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang

X, Wang ZY, Dixon RA (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular

development in Arabidopsis. Plant Cell 25: 3976–3987

Downloaded from https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koaa014/6007532 by 81618471 user on 15 January 2021

Shirley AM, Chapple C (2003) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like

protein that functions as an acyltransferase in plant secondary metabolism. J Biol Chem 278: 19870–19877

Shirley AM, McMichael CM, Chapple C (2001) The sng2 mutant of

Arabidopsis is defective in the gene encoding the serine

carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J 28: 83–94

Sterjiades R, Dean JF, Eriksson KE (1992). Laccase from sycamore

maple (Acer pseudoplatanus) polymerizes monolignols. Plant

Physiol 99: 1162–1168

Suzuki S, Umezawa T (2007). Biosynthesis of lignans and norlignans.

J Wood Sci 53: 273–284

Tobimatsu Y, Schuetz M (2019) Lignin polymerization: how do

plants manage the chemistry so well? Curr Opin Biotechnol 56:

75–81

Tobimatsu Y, Chen F, Nakashima J, Escamilla-Trevino LL, Jackson

L, Dixon RA, Ralph J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed

coats. Plant Cell 25: 2587–2600

Tohge T, Matsui K, Ohme-Takagi M, Yamazaki M, Saito K (2005)

Enhanced radical scavenging activity of genetically modified

Arabidopsis seeds. Biotechnol Lett 27: 297–303

Turlapati PV, Kim KW, Davin LB, Lewis NG (2011) The laccase

multigene family in Arabidopsis thaliana: towards addressing the

mystery of their gene function(s). Planta 233: 439–470

Turner LB, Mueller-Harvey I, McAllan AB (1993) Light-induced

isomerization and dimerization of cinnamic acid derivatives in cell

walls. Phytochemisty 33: 791–796

Uchida K, Akashi T, Aoki T (2017) The missing link in leguminous

pterocarpan biosynthesis is a dirigent domain-containing protein

with isoflavanol dehydratase activity. Plant Cell Physiol 58: 398–408

Umezawa T (2003a) Diversity in lignan biosynthesis. Phytochem Rev

2: 371–390

Umezawa T (2003b) Phylogenetic distribution of lignan producing

plants. Wood Res 90: 27–110

Umezawa T, Yamamura M, Nakatsubo T, Suzuki S, Hattori T

(2011). Stereoselectivity of the biosynthesis of norlignans and related compounds. In D Gang ed, The Biological Activity of

Phytochemicals. Springer, New York, pp 179–197

Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH,

Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W (2012)

A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24: 3506–3529

Vishwanath SJ, Domergue F, Rowland D (2014) Seed coat permeability test: tetrazolium penetration assay. In Bio-protocol. pp e1173.

Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S,

Joubes J, Dittrich-Domergue F, Lessire R, Rowland O,

Domergue F (2013). Suberin-associated fatty alcohols in

Arabidopsis: distributions in roots and contributions to seed coat

barrier properties. Plant Physiol 163: 1118–1132

Vogt T (2010). Phenylpropanoid biosynthesis. Mol Plant 3: 2–20

Wang J, Wang CL, Zhu ML, Yu Y, Zhang YB, Wei ZM (2008)

Generation and characterization of transgenic poplar plants overexpressing a cotton laccase gene. Plant Cell Tissue Organ Cult 93:

303–310

Yonekura-Sakakibara et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る