リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Zeolite composite catalyst design, preparation and application in low-carbon C1 chemistry synthesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Zeolite composite catalyst design, preparation and application in low-carbon C1 chemistry synthesis

高 煒哲 富山大学

2022.09.28

概要

Zeolites are porous crystalline aluminosilicate materials, with excellent hydrothermal stability, which have been employed in areas of chemical industry such as ion exchange, adsorption, separation and shape-selective catalysis. In industry, the common methods for synthesis of zeolites include solvothermal, dry-gel conversion and ionothermal methods. However, these methods for preparation of zeolites, involves use of large amounts of water and other organic solvents. Excessively use solvents in the industrial process can result in many issues such as pollution from large amounts of wastewater, high autogenous pressure at relatively high temperatures and also low yield of product. Therefore, it is highly urgent to develop an effective method for synthesis of zeolites. To solve the above issues, the solvent-free method has been developed in recent years, which not only relieves the waste production, but also increases the yield of zeolite products.

 C1 chemistry synthesis mainly includes the process of converting carbon monoxide (CO), carbon dioxide (CO2), methane (CH4) and methanol (CH3OH) into high value-added chemicals. Among all of C1 molecules, the direct transformation of CO and CO2 has become increasingly important because of the increasing interest in the utilization of non-petroleum carbon resources to replace diminishing resources of crude oil for sustainable production of liquid fuels and chemicals. Generally, the conversion of CO and CO2 to hydrocarbons proceeds through two different routes: direct Fischer–Tropsch synthesis (FTS) route and indirect methanol route. For the FTS route, CO can be directly converted to hydrocarbons through FTS process. CO2 is firstly transformed to CO via reverse water-gas shift (RWGS) reaction with simultaneously catalyzing conversion of CO into hydrocarbons by the typical Fischer-Tropsch mechanism. However, the produced hydrocarbons obey the traditional Anderson-Schulz-Flory (ASF) distribution with very low selectivity. For the methanol route, CO/CO2 is firstly transformed into methanol, and subsequently methanol is converted to hydrocarbons via the classical methanol-to-hydrocarbons process. To increase the selectivity of target product, rational design of highly efficient catalysts via a series of strategies has been investigated extensively. In recent years, direct conversion of CO/CO2 to high value-added chemicals by utilizing a zeolite composite catalyst has become a hot topic in recent years.

 In this thesis, we mainly concentrated on the design, preparation and application of zeolite composite catalyst for conversion of CO and CO2. The relationship between zeolite composite catalyst components and catalytic performance were investigated using multiple characterized techniques. In addition, these zeolite composite catalysts exhibited more excellent performance than conventional catalysts in C1 chemical synthesis.

 In chapter 1, pure MOR zeolite has been synthesized successfully by using solvent-free method. MOR zeolite plays a crucial role in the chemical industry. Due to high thermal and acid stability, MOR zeolite has been used as catalyst for important reactions such as hydrocracking, hydro-isomerization, alkylation, reforming, dewaxing and for the production of dimethylamines. Commercially, MOR zeolite is mostly synthesized by the hydrothermal synthesis method. As stated earlier, this method is associated with challenges such as pollution and low yield. In this part, we design an effective method for solvent-free rapid synthesis of MOR zeolite that is based on mechanically grinding solid feedstock without the use of a solvent. This strategy provides a more facile approach for MOR zeolite synthesis in laboratory scale with fast, efficient and high yield.

 In chapter 2, an efficient Na-FeMn/HZSM-5@Silicalite-1 catalyst was designed for direct conversion of CO2 to para-Xylene. Typically, the ZSM-5@Silicalite-1 core-shell zeolite was prepared by environmentally unfriendly hydrothermal method, in which large amounts of organic solvents were employed and a large amount of wastewater was formed. In this part, the tailor-made HZSM-5@Silicalite-1 core-shell zeolite was prepared by a facile solvent-free method. This method by grinding and heating the solid raw materials, can significantly avoid the production of wastewater and increase the yield of zeolite. Compared with other common core-shell zeolites, such as HZSM-5@SiO2 and HZSM-5@Silicalite-1 obtained from conventional chemical liquid deposition and hydrothermal methods, the well-designed HZSM-5@Silicalite-1 core-shell zeolite synthesized via the solvent-free method exhibited higher para-Xylene selectivity.

 In chapter 3, a ZnCr2O4-ZSM-5 catalyst for directly converting CO2 to para-Xylene was designed and developed. In this part, we achieved the direct conversion of CO2 into para-Xylene with high selectivity over ZnCr2O4-ZSM-5 catalyst by one-pass coupling. Different from conventional ZSM-5 with complex treatments (such as coating) to regulate surface acidity properties, the as-synthesized ZSM-5 without any further modification, exhibited rather high PX/X (the C-mol ratio of para-Xylene to all Xylene) and PX/Aromatics (the C-mol ratio of para-Xylene to aromatics) ratios. The improved selectivity behavior was ascribed to the shape-selective zeolite, and this shape-selective ZSM-5 zeolite was tailor-made demonstrated adequately powerful in in situ separating PX from Xylene and aromatics. Moreover, the high PX/X ratio remained stable during 100 h continuous reaction and no significant deactivation appeared for the CO2 conversion and PX selectivity.

 In chapter 4, ternary Cu/ZnO/MgO catalysts were prepared via co-precipitation and tested for low-temperature methanol synthesis via autocatalysis of methanol. Catalytic conversion of CO2-containing syngas to methanol is one of important processes in industry. However, realizing high space time yield (STY) of methanol at low reaction temperature remains a challenge. In this part, the effects of Mg2+ ion and MgO content on the formation and composition of the precipitated precursors, as well as on the physicochemical properties of the calcined and the reduced catalysts were systemically investigated and discussed. Compared to Cu/ZnO, the total carbon turnover frequency (TOF) and space time yield (STY) of methanol on Cu/ZnO/MgO remarkably increased from 17.8 to 20.0 h-1 and from 425.2 to 538.3 g/kg∙h-1, respectively. In addition, the reaction conducted in the presence of methanol promoter exhibited much lower apparent activation energy than that of the reaction carried out without methanol promoter, indicating a catalytic and promotional role of methanol during low-temperature methanol synthesis reaction.

この論文で使われている画像

参考文献

Chapter 1

1. L.M. Ren, Q.M. Wu, C.G. Yang, L.F. Zhu, C.J. Li, P.L. Zhang, H.Y. Zhang, X.J. Meng, F.S. Xiao, J. Am. Chem. Soc. 2012, 134, 15173–15176.

2. Y.S. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc. 2003, 125, 6044–6045.

3. J. He, Z. Liu, Y. Yoneyama, N. Nishiyama, N. Tsubaki, Chem. Eur J. 2006, 12, 8296–8304.

4. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 2009, 461, 246–249.

5. B. Xie, H.Y. Zhang, C.G. Yang, S.Y. Liu, L.M. Ren, L. Zhang, X.J. Meng, B. Yilmaz, U. Muller, F.S. Xiao, Chem. Commun. 2011, 47, 3945–3947.

6. Z.C. Shan, H. Wang, X.J. Meng, S.Y. Liu, L.A. Wang, C.Y. Wang, F. Li, J.P. Lewis, F.S. Xiao, Chem. Commun. 2011, 47, 1048–1050.

7. X. Zhang, D.Q. Tong, J.J. Zhao, X.Y. Li, Mater. Lett. 2013, 104, 80–83.

8. X. Chen, T. Todorova, A. Vimont, V. Ruaux, Z. Qin, J.-P. Gilson, V. Valtchev, Microporous Mesoporous Mater. 2014, 200, 334–342.

9. P.A. Bazuła, P.M. Arnal, C. Galeano, B. Zibrowius, W. Schmidt, F. Schüth, Microporous Mesoporous Mater. 2014, 200, 317–325.

10. Y. Du, G. Zheng, J. Wang, L. Wang, J. Wu, H. Dai, Microporous Mesoporous Mater. 2014, 200, 27–34.

11. S. Liu, S. Li, H. Niu, T. Zeng, Y. Cai, C. Shi, B. Zhou, F. Wu, X. Zhao, Microporous Mesoporous Mater. 2014, 200, 151–158.

12. Y. Ma, W. Tong, H. Zhou, S.L. Suib, Microporous Mesoporous Mater. 2000, 37, 243–252.

13. E.B.G. Johnson, S.E. Arshad, Appl. Clay Sci. 2014, 97–98, 215–221.

14. M.Y. Jeon, D. Kim, P. Kumar, P.S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H.S. Lee, K. Narasimharao, S.N. Basahel, S. Al-Thabaiti, W. Xu, H.J. Cho, E.O. Fetisov, R. Thyagarajan, R.F. DeJaco, W. Fan, K.A. Mkhoyan, J.I. Siepmann, M. Tsapatsis, Nature 2017, 543, 690–694.

15. W. Luo, X. Yang, Z. Wang, W. Huang, J. Chen, W. Jiang, L. Wang, X. Cheng, Y. Deng, D. Zhao, Microporous Mesoporous Mater. 2017, 243, 112–118.

16. M. Li, J. Zhang, X. Liu, Y. Wang, C. Liu, D. Hu, G. Zeng, Y. Zhang, W. Wei, Y. Sun, Microporous Mesoporous Mater. 2016, 225, 261–271.

17. M. Zaarour, B. Dong, I. Naydenova, R. Retoux, S. Mintova, Microporous Mesoporous Mater. 2014, 189, 11–21.

18. X. Li, K. Li, S. Tao, H. Ma, R. Xu, B. Wang, P. Wang, Z. Tian, Microporous Mesoporous Mater. 2016, 228, 45–53.

19. M. Musa, D.M. Dawson, S.E. Ashbrook, R.E. Morris, Microporous Mesoporous Mater.2017, 239, 336–341.

20. O.Y. Golubeva, Microporous Mesoporous Mater. 2016, 224, 271–276.

21. C.S. Cundy, P.A. Cox, Microporous Mesoporous Mater. 2005, 82, 1–78.

22. C.S. Cundy, P.A. Cox, Chem. Rev. 2003, 103, 663–702.

23. W. Luo, X. Yang, Z. Wang, W. Huang, J. Chen, W. Jiang, L. Wang, X. Cheng, Y. Deng, D. Zhao, Microporous Mesoporous Mater. 2017, 243, 112–118.

24. J.K. Dong, S.C. Jong, G.K. Young, Ind. Eng. Chem. Res. 1995, 34, 1969–1975.

25. W. Xu, J. Dong, J. Li, F. Wu, Chem. Commun. 1990, 755–756.

26. S.P. Naik, A.S.T. Chiang, R.W. Thompson, J. Phys. Chem. B 2003, 107, 7006–7014.

27. D. Zhou, X. Lu, J. Xu, A. Yu, J. Li, F. Deng, Q. Xia, Chem. Mater. 2012, 24, 4160–4165.

28. E.R. Parnham, R.E. Morris, Acc. Chem. Res. 2007, 40, 1005–1013.

29. R.E. Morris, Chem. Commun. 2009, 2990–2998.

30. D.I. Petkowicz, S. Canal, P.H. Finger, M.L. Mignoni, J.H.Z. dos Santos, Microporous Mesoporous Mater. 2017, 241, 98–106.

31. C. Zhang, Q. Wu, C. Lei, S. Pan, C. Bian, L. Wang, X. Meng, F.-S. Xiao, Ind. Eng. Chem. Res. 2017, 56, 1450–1460.

32. B.P.S. Santos, N.C. Almeida, I.S. Santos, M.d.F.V. Marques, L.D. Fernandes, Catal. Lett. 2018, 148, 1870–1878.

33. T. Sano, S. Wakabayashi, Y. Oumi, T. Uozumi, Microporous Mesoporous Mater. 2001, 46, 67–74.

34. Y.Y. Jin, Q. Sun, G.D. Qi, C.G. Yang, J. Xu, F. Chen, X.J. Meng, F. Deng, F.S. Xiao, Angew. Chem. Int. Ed. 2013, 52, 9172–9175.

35. P.K. Bajpai, Zeolites 1986, 6, 2–8.

36. C. Shao, H.Y. Kim, X. Li, S.J. Park, D.R. Lee, Mater. Lett. 2002, 56, 24–29.

37. J.E. Gilbert, A. Mosset, Mater. Res. Bull. 1998, 33, 997–1003.

38. T. Selvam, W. Schwieger, Stud. Surf. Sci. Catal. 2002, 142, 407–414.

39. T. Tago, D. Aoki, K. Iwakai, T. Masuda, Top. Catal. 2009, 52, 865–871.

40. Y.J. Jin, S.L. Zhao, P. Li, Z.B. Lv, S.D. Zhang, Mater. Lett. 2011, 65, 2959–2962.

41. P. Cheung, A. Bhan, G.J. Sunley, E. Iglesia, Angew. Chem. Int. Ed. 2006, 45, 1617–1620.

42. M.M. Mohamed, T.M. Salama, I. Othman, I.A. Ellah, Microporous Mesoporous Mater. 2005, 84, 84–96.

43. C.A. Fyfe, G.C. Gobbi, J.S. Hartman, J. Klinowski, J.M. Thomas, J. Phys. Chem. 1981, 85, 2590–2594

44. C.L. Angell, J. Phys. Chem. 1973, 77, 222–227.

45. J. Twu, P.K. Dutta, C.T. Kresge, J. Phys. Chem. 1991, 95, 5267–5271.

46. P.-P. Knops-Gerrits, D.E. De Vos, E.J.P. Feijen, P.A. Jacobs, Microporous Mater. 1997, 8, 3–17.

47. L. Ren, Q. Guo, H. Zhang, L. Zhu, C. Yang, L. Wang, X. Meng, Z. Feng, C. Li, F.- S. Xiao, J. Mater. Chem. 2012, 22, 6564–6567.

48. Q. Wu, X. Meng, X. Gao, F.-S. Xiao, Acc. Chem. Res. 2018, 51, 1396-1403.

Chapter 2

1. C. Zhou, J. Shi, W. Zhou, K. Cheng, Q. Zhang, J. Kang, Y. Wang, ACS Catal. 2020, 10, 302–310.

2. Y. Wang, S. Kazumi, W. Gao, X. Gao, H. Li, X. Guo, Y. Yoneyama, G. Yang, N. Tsubaki, Appl. Catal. B-Environ. 2020, 269, 118792.

3. G. Song, M. Li, P. Yan, M.A. Nawaz, D. Liu, ACS Catal. 2020, 10, 11268–11279.

4. L. Guo, J. Li, Y. Zeng, R. Kosol, Y. Cui, N. Kodama, X. Guo, R. Prasert, V. Tharapong, G. Liu, J. Wu, G. Yang, Y. Yoneyama, N. Tsubaki, Fuel 2020, 276, 118102.

5. P. Zhang, F. Han, J. Yan, X. Qiao, Q. Guan, W. Li, Appl. Catal. B-Environ. 2021, 299, 120639.

6. X. Cui, S. Chen, H. Yang, Y. Liu, H. Wang, H. Zhang, Y. Xue, G. Wang, Y. Niu, T. Deng, W. Fan, Appl. Catal. B-Environ. 2021, 298, 120590.

7. J. Zhang, S. Lu, X. Su, S. Fan, Q. Ma, T. Zhao, J. CO2 Util. 2015, 12, 95–100.

8. W. Gao, L. Guo, Y. Cui, G. Yang, Y. He, C. Zeng, A. Taguchi, T. Abe, Q. Ma, Y. Yoneyama, N. Tsubaki, ChemSusChem 2020, 13, 6541–6545.

9. X. Zhao, W. Chen, G. Li, G. Feng, S. Li, X. Dong, Y. Song, X. Yu, X. Chen, W. Wei, Y. Sun, Appl. Catal. A-Gen. 2020, 595, 117503.

10. G. Yang, Y. Kuwaharu, K. Mori, C. Louis, H. Yamashita, Appl. Catal. B-Environ. 2021, 283, 119628.

11. J. Wei, R. Yao, Q. Ge, D. Xu, C. Fang, J. Zhang, H. Xu, J. Sun, Appl. Catal. B-Environ. 2021, 283, 119648.

12. F. Zeng, C. Mebrahtu, X. Xi, L. Liao, J. Ren, J. Xie, H.J. Heeres, R. Palkovits, Appl. Catal. B-Environ. 2021, 291, 120073.

13. R. Liu, Z. Ma, J.D. Sears, M. Juneau, M.L. Neidig, M.D. Porosoff, J. CO2 Util. 2020, 41, 101290.

14. X. Wang, D. Wu, J. Zhang, X. Gao, Q. Ma, S. Fan, T.S. Zhao, Appl. Catal. A-Gen. 2019, 573, 32–40.

15. Y. Xu, C. Shi, B. Liu, T. Wang, J. Zheng, W. Li, D. Liu, X. Liu, Catal. Sci. Technol. 2019, 9, 593–610.

16. Q. Yang, A. Skrypnik, A. Matvienko, H. Lund, M. Holena, E.V. Kondratenko, Appl. Catal. B-Environ. 2021, 282, 119554.

17. A.S. Skrypnik, Q. Yang, A.A. Matvienko, V.Y. Bychkov, Y.P. Tulenin, H. Lund, S. A. Petrov, R. Kraehnert, A. Arinchtein, J. Weiss, A. Brueckner, E.V. Kondratenko, Appl. Catal. B-Environ. 2021, 291, 120121.

18. J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat. Commun. 2017, 8, 15174.

19. T. Numpilai, T. Witoon, N. Chanlek, W. Limphirat, G. Bonura, M. Chareonpanich, J. Limtrakul, Appl. Catal. A-Gen. 2017, 547, 219–229.

20. R. Yao, J. Wei, Q. Ge, J. Xu, Y. Han, Q. Ma, H. Xu, J. Sun, Appl. Catal. B-Environ. 2021, 298, 120556.

21. X. Liu, W. Zhou, Y. Yang, K. Cheng, J. Kang, L. Zhang, G. Zhang, X. Min, Q. Zhang, Y. Wang, Chem. Sci. 2018, 9, 4708–4718.

22. Y. Shi, Q. Zhou, Z. Qin, Z. Wu, W. Jiao, M. Dong, W. Fan, J. Wang, Micro Mesopor. Mater. 2021, 324, 111308.

23. B. Zhao, P. Zhai, P. Wang, J. Li, T. Li, M. Peng, M. Zhao, G. Hu, Y. Yang, Y.W. Li, Q. Zhang, W. Fan, D. Ma, Chem 2017, 3, 323–333.

24. P. Zhang, L. Tan, G. Yang, N. Tsubaki, Chem. Sci. 2017, 8, 7941–7946.

25. I. Nezam, W. Zhou, G.S. Gusm ao, M.J. Realff, Y. Wang, A.J. Medford, C.W. Jones, J. CO2 Util. 2021, 45, 101405.

26. K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Chem 2017, 3, 334–347.

27. T. Wang, C. Yang, P. Gao, S. Zhou, S. Li, H. Wang, Y. Sun, Appl. Catal. B-Environ. 2021, 286, 119929.

28. S. Wang, T. Wu, J. Lin, J. Tian, Y. Ji, Y. Pei, S. Yan, M. Qiao, H. Xu, B. Zong, ACS Sustain. Chem. Eng. 2019, 7, 17825–17833.

29. A. Ramirez, A. Dutta Chowdhury, A. Dokania, P. Cnudde, M. Caglayan, I. Yarulina, E. Abou-Hamad, L. Gevers, S. Ould-Chikh, K. De Wispelaere, V.V. Speybroeck, J. Gascon, ACS Catal. 2019, 9, 6320–6334.

30. Y. Xu, T. Wang, C. Shi, B. Liu, F. Jiang, X. Liu, Ind. Eng. Chem. Res. 2020, 59, 8581–8591.

31. X. Cui, P. Gao, S. Li, C. Yang, Z. Liu, H. Wang, L. Zhong, Y. Sun, ACS Catal. 2019, 9, 3866–3876.

32. Y. Wang, W. Gao, S. Kazumi, H. Li, G. Yang, N. Tsubaki, Chem. Eur. J. 2019, 25, 5149– 5153.

33. J. Zhang, W. Qian, C. Kong, F. Wei, ACS Catal. 2015, 5, 2982–2988.

34. K. Miyake, Y. Hirota, K. Ono, Y. Uchida, S. Tanaka, N. Nishiyama, J. Catal. 2016, 342, 63– 66.

35. Y. Wang, L. Tan, M. Tan, P. Zhang, Y. Fang, Y. Yoneyama, G. Yang, N. Tsubaki, ACS Catal. 2019, 9, 895–901.

36. Q. Wu, X. Meng, X. Gao, F.S. Xiao, Acc. Chem. Res. 2018, 51, 1396–1403.

37. W. Gao, C.C. Amoo, G. Zhang, M. Javed, B. Mazonde, C. Lu, R. Yang, C. Xing, N. Tsubaki, Micro Mesopor. Mater. 2019, 280, 187–194.

38. J. Zhang, L. Wang, Z. Wu, H. Wang, C. Wang, S. Han, F.S. Xiao, Ind. Eng. Chem. Res. 2019, 58, 15453–15458.

39. Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F.S. Xiao, Angew. Chem. 2013, 52, 9172–9175.

40. L. Ren, Q. Wu, C. Yang, L. Zhu, C. Li, P. Zhang, H. Zhang, X. Meng, F.S. Xiao, J. Am. Chem. Soc. 2012, 134, 15173–15176.

41. Y. Xu, P. Zhai, Y. Deng, J. Xie, X. Liu, S. Wang, D. Ma, Angew. Chem. Int. Ed. 2020, 132, 21736–21744.

42. Y. Xu, D. Liu, X. Liu, Appl. Catal. A-Gen. 2018, 552, 168–183.

43. K. Wang, S. Fan, J. Zhang, Q. Ma, W. Zhang, T.S. Zhao, Fuel Process. Technol. 2018, 179, 53–59.

44. K. Wang, J. Zhang, S. Fan, X. Peng, N. Tsubaki, T.S. Zhao, N. J. Chem. 2021, 45, 4860– 4866.

45. B. Liu, S. Geng, J. Zheng, X. Jia, F. Jiang, X. Liu, ChemCatChem 2018, 10, 4718–4732.

Chapter 3

1. Z. Li, Y. Qu, J. Wang, H. Liu, M. Li, S. Miao, C. Li, Joule, 2019, 3, 570-583.

2. M. Ghasemi, M. Mohammadi, M. Sedighi, Microporous Mesoporous Mater. 2020, 297, 110029.

3. Y. Ni, Z. Chen, Y. Fu, Y. Liu, W. Zhu, Z. Liu, Nat. Commun. 2018, 9, 3457.

4. P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, C. Yang, H. Wang, L. Zhong, Y. Han, Q. Liu, W. Wei, Y. Sun, ACS Catal. 2018, 8, 571-578.

5. J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat. Commun. 2017, 8, 15174.

6. S. Kattel, P. Liu, J. Chen, J. Am. Chem. Soc. 2017, 139, 9739-9754.

7. A. Ramirez, A. Dutta Chowdhury, A. Dokania, P. Cnudde, M. Caglayan, I. Yarulina, E. Abou-Hamad, L. Gevers, S. Ould-Chikh, K. De Wispelaere, V. Van Speybroeck, J. Gascon, ACS Catal. 2019, 9, 6320-6334.

8. X. Cui, P. Gao, S. Li, C. Yang, Z. Liu, H. Wang, L. Zhong, Y. Sun, ACS Catal. 2019, 9, 3866-3876.

9. H. Yang, C. Zhang, P. Gao, H. Wang, X. Li, L. Zhong, W. Wei, Y. Sun, Catal. Sci. Technol. 2017, 7, 4580-4598.

10. X. Liu, M. Wang, C. Zhou, W. Zhou, K. Cheng, J. Kang, Q. Zhang, W. Deng, Y. Wang, Chem. Commun. 2018, 54, 140-143.

11. J. Zhang, M. Zhang, S. Chen, X. Wang, Z. Zhou, Y. Wu, T. Zhang, G. Yang, Y. Han, Y. Tan, Chem. Commun. 2019, 55, 973-976.

12. Y. Wang, L. Tan, M. Tan, P. Zhang, Y. Fang, Y. Yoneyama, G. Yang, N. Tsubaki, ACS Catal. 2019, 9, 895-901.

13. K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Chem, 2017, 3, 334-347.

14. J. Yang, X. Pan, F. Jiao, J. Li, X. Bao, Chem. Commun. 2017, 53, 11146-11149.

15. J. Zhang, L. Wang, Z. Wu, H. Wang, C. Wang, S. Han, F. Xiao, Ind. Eng. Chem. Res. 2019, 58, 15453-15458.

16. Y. Wang, W. Gao, S. Kazumi, H. Li, G. Yang, N. Tsubaki, Chem. – Eur. J. 2019, 25, 5149- 5153.

17. J. Zhang, W. Qian, C. Kong, F. Wei, ACS Catal. 2015, 5, 2982-2988.

18. K. Miyake, Y. Hirota, K. Ono, Y. Uchida, S. Tanaka, N. Nishiyama, J. Catal. 2016, 342, 63-66.

19. C. Wang, L. Zhang, X. Huang, Y. Zhu, G. Li, Q. Gu, J. Chen, L. Ma, X. Li, Q. He, J. Xu,Q. Sun, C. Song, M. Peng, J. Sun, D. Ma, Nat. Commun. 2019, 10, 4348.

20. T. Liang, J. Chen, Z. Qin, J. Li, P. Wang, S. Wang, G. Wang, M. Dong, W. Fan, J. Wang, ACS Catal. 2016, 6, 7311-7325.

21. S. Wang, P. Wang, Z. Qin, Y. Chen, M. Dong, J. Li, K. Zhang, P. Liu, J. Wang, W. Fan, ACS Catal. 2018, 8, 5485-5505.

22. F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 2016, 351, 1065-1068.

23. L. Tan, F. Wang, P. Zhang, Y. Suzuki, Y. Wu, J. Chen, G. Yang, N. Tsubaki, Chem. Sci. 2020, 11, 4097-4105.

24. C. Zhou, J. Shi, W. Zhou, K. Cheng, Q. Zhang, J. Kang, Y. Wang, ACS Catal. 2019, 10, 302-310.

25. Z. Sousa, C. Veloso, C. Henriques, V. Teixeira da Silva, J. Mol. Catal. A: Chem. 2016, 422, 266-274.

26. Y. Xu, C. Shi, B. Liu, T. Wang, J. Zheng, W. Li, D. Liu, X. Liu, Catal. Sci. Technol. 2019, 9, 593-610.

Chapter 4

1. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, Chem. Soc. Rev. 2020, 49, 1385– 413.

2. K. A. Ali, A. Z. Abdullah, A. R. Mohamed, Sust. Energy. Rev. 2015, 44, 508–18.

3. M. H. M. Yasin, T. Yusaf, R. Mamat, A. F. Yusop, Appl. Energy 2014, 114, 865–73.

4. N. Tsubaki, J. Zeng, Y. Yoneyama, K. Fujimoto. Catal. Commun. 2001, 2, 213–7.

5. Brookhaven National Laboratory, US Patent, 461479, 4619946, 4623634, 4613623 (1986), 4935395 (1990).

6. N. Tsubaki, M. Ito, K. Fujimoto, J. Catal. 2001, 197, 224–7.

7. L. Shi, G. Yang, K. Tao, Y. Yoneyama, Y. Tan, N. Tsubaki, Acc. Chem. Res. 2013, 46, 1838– 47.

8. F. Chen, P. Zhang, Y. Zeng, R. Kosol, L. Xiao, X. Feng, J. Li, G. Liu, J. Wu, G. Yang, Y. Yoneyama, N. Tsubaki, Appl. Catal. B-Environ. 2020, 279, 1193

9. F. Chen, P. Zhang, L. Xiao, J. Liang, B. Zhang, H. Zhao, R. Kosol, Q. Ma, J. Chen, X. Peng, G. Yang, N. Tsubaki, ACS Appl. Mater. Interfaces 2021, 13, 8191–205.

10. X. Tang, N. Tsubaki, H. Xie, Y. Han, Y. Tan, J. Fuel Chem. Technol. 2014, 42, 704–9.

11. P. Gao, F. Li, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Appl. Catal. A-Gen. 2013, 468, 442–52.

12. J. Xiao, D. Mao, X. Guo, J. Yu, Energy Technol. 2015, 3, 32–9.

13. JM. Camposmartin, A. Guerreroruiz, JLG. Fierro, J. Catal. 1995, 156, 208–18.

14. M. K. Koh, M. Khavarian, S. P. Chai, A. R. Mohamed, Int. J. Hydrogen Energy 2018, 43, 9334–42.

15. G. Wang, D. Mao, X. Guo, J. Yu, Appl. Surf. Sci. 2018, 456, 403–9.

16. T. Witoon, T. Numpilai, T. Phongamwong, W. Donphai, C. Boonyuen, C. Warakulwit, M. Chareonpanich, J. Limtrakul, Chem. Eng. J. 2018, 334, 1781–91.

17. M. M-J. Li, C. Chen, T. Ayvalı, H. Suo, J. Zheng, I. F. Teixeira, L. Ye, H. Zou, D. O’Hare, S. C. E. Tsang, ACS Catal. 2018, 8, 4390–401.

18. M. Sadeghinia, M. Rezaei, A. N. Kharat, M. N. Jorabchi, B. Nematollahi, F. Zareiekordshouli, Mol. Catal. 2020, 484, 110776.

19. S. K. Sharma, B. Paul, R. S. Pal, P. Bhanja, A. Banerjee, C. Samanta, R. Bal, ACS Appl. Mater. Interfaces 2021, 13, 28201–13.

20. S. K. Sharma, A. Banerjee, B. Paul, M. K. Poddar, T. Sasaki, C. Samanta, R. Bal, J. CO2 Util. 2021, 50, 101576.

21. S. K. Sharma, B. Paul, P. Bhanja, M. K. Poddar, C. Samanta, T. S. Khan, M. A. Haider, R. Bal, ChemCatChem 2021, 13, 3290–302.

22. Sharma SK, Khan TS, Singha RK, Paul B, Poddar MK, Sasaki T, M. A. Haider, R. Bal, Appl. Catal. A-Gen. 2021, 623, 118239.

23. C. Zhong, X. Guo, D. Mao, S. Wang, G. Wu, G. Lu, RSC Adv. 2015, 5, 52958–65.

24. V. D. B. C. Dasireddy, N. S. ˇStefanˇciˇc, M. Huˇs, B. Likozar, Fuel 2018, 233, 103–12.

25. X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, T. Du, P. A.Webley, J. CO2 Util. 2019, 29, 57–64.

26. R. Fan, M. Kyodo, L. Tan, X. Peng, G. Yang, Y. Yoneyama, R. Yang, Q. Zhang, N. Tsubaki, Fuel Process. Technol. 2017, 167, 69–77.

27. S. Asthana, C. Samanta, A. Bhaumik, B. Banerjee, R. K. Voolapalli, B. Saha B, J. Catal. 2016, 334, 89–101.

28. G. J. Millar, I. H. Holm, P. J. R. Uwins, J. Drennan, J. Chem. Soc., Faraday Trans. 1998, 94, 593–600.

29. X. Jiang, C. Ling, Z. Wang, J. Lu, J. Therm. Anal. Calorim. 2019, 137, 1519–25.

30. F. Zhang, Y. Zhang, Y. Liu, K. A. M. Gasem, J. Chen, F. Chiang, Y. Wang, M. Fan, Mol. Catal. 2017, 441, 190–8.

31. M. Bahmani, B. V. Farahani, S. Sahebdelfar, Appl. Catal. A-Gen. 2016, 520, 178–87.

32. J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. C. A. Galv ́an, R. Schl ogl, M. Behrens, ACS Catal. 2015, 5, 3260–70.

33. M. Behrens, F. Girgsdies, Anorg. Allg. Chem. 2010, 636, 919–27.

34. M. Mureddu, F. Ferrara, A. Pettinau, Appl. Catal. B-Environ. 2019, 258, 117941.

35. T. W. van Deelen, C. H. Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–70.

36. I. Beinik, M. Hellstr 8845. m, T. N. Jensen, P. Broqvist, J. V. Lauritsen, Nat. Commun. 2015, 6,

37. P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, Y. Sun, J. Catal. 2013, 298, 51–60.

38. L. Wang, Y. Liu, M. Chen, Y. Cao, H. He, G. Wu, W. Dai, K. Fan, J. Catal. 2007, 246, 193–204.

39. L. Jing, Z. Xu, X. Sun, J. Shang, W. Cai, Appl. Surf. Sci. 2001, 180, 308–14.

40. J. Song, S. Liu, C. Yang, G. Wang, H. Tian, Z. Zhao, R. Mu, J. Gong, Appl. Catal. B-Environ. 2020, 263, 118367.

41. C. Yang, Y. Wang, H. Fan, G. de Falco, S. Yang, J. Shangguan, T. J. Bandosz, Appl. Catal. B-Environ. 2020, 266, 118674.

42. Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu, W. Huang, J. Phys. Chem. C 2007, 111, 12434–9.

43. S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Surf. Sci. 2013, 608, 129–34.

44. F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S. C. Tsang, Angew. Chem. Int. Ed. 2011, 123, 2210–3.

45. P. Zhang, Y. Araki, X. Feng, H. Li, Y. Fang, F. Chen, L. Shi, X. Peng, Y. Yoneyama, G. Yang, N. Tsubaki, Fuel 2020, 268, 117213.

46. Y. Rao, W. Wang, F. Tan, Y. Cai, J. Lu, X. Qiao, Appl. Surf. Sci. 2013, 284, 726–31.

47. H. Ye, W. Na, W. Gao, H. Wang, ol. Energy Technol. 2020, 8, 2000194.

48. ˇS. Hajduk, V. D. B. C. Dasireddy, B. Likozar, G. Draˇzi ́c, Z. C. Orel, Appl. Catal. B- Environ. 2017, 211, 57–67.

49. X. Dong, F. Li, N. Zhao, F. Xiao, J. Wang, Y. Tan, Appl. Catal. B-Environ. 2016, 191, 8– 17.

50. K. Tripathi, R. Singh, K. K. Pant, Top. Catal. 2021, 64, 395–413.

51. R. Yang, Y. Fu, Y. Zhang, N. Tsubaki, J. Catal. 2004, 228, 23–35.

52. S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei, Y. Sun, Catal. Today 2017, 281, 327–36.

53. S. Natesakhawat, J. W. Lekse, J. P. Baltrus, P. R. Ohodnicki, B. H. Howard, X. Deng, C. Matranga, ACS Catal. 2012, 2, 1667–76.

54. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. H avecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl Science 2012, 336, 893–7.

55. Y. Jeong, I. Kim, J. Y. Kang, N. Yan, H. Jeong, J. K. Park, J. H. Park, J. C. Jung, J. Mol. Catal. A-Chem. 2016, 418-419, 168–74.

56. X. Zhai, J. Shamoto, H. Xie, Y. Tan, Y. Han, N. Tsubaki, Fuel 2008, 87, 430–4.

57. P. Reubroycharoen, T. Vitidsant, Y. Yoneyama, N. Tsubaki, Catal. Today 2004, 89, 447-54.

58. SH. Kang, J. W. Bae, P. S. S. Prasad, JH. Oh, KW. Jun, SL. Song, KS. Min, J. Ind. Eng. Chem. 2009, 15, 665-9.

59. Q. Zhu, Q. Zhang, L. Wen, Fuel Process Technol. 2017, 156, 280-9.

60. X. Zhang, L. Zhong, Q. Guo, H. Fan, H. Zheng, K. Xie, Fuel 2010, 89, 1348-52.

61. F. Meshkini, M. Taghizadeh, M. Bahmani, Fuel 2010, 89, 170-5.

62. X. K. Phan, H. Bakhtiary-Davijany, R. Myrstad, P. Pfeifer, H. J. Venvik, A. Holmen, Appl. Catal. A-Gen. 2011, 40, 1-7.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る