リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigation of microcombustion reforming of ethane/air and micro-Tubular Solid Oxide Fuel Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigation of microcombustion reforming of ethane/air and micro-Tubular Solid Oxide Fuel Cells

Ryan J Milcarek Hisashi Nakamura Takuya Tezuka Kaoru Maruta Jeongmin Ahn 東北大学 DOI:10.1016/j.jpowsour.2019.227606

2020.02.29

概要

Thermal partial oxidation, or fuel-rich combustion, is a non-catalytic option for reforming hydrocarbons to synthesis gas for direct conversion in micro-Tubular Solid Oxide Fuel Cells (SOFCs). A number of studies have demonstrated the potential of using heat recirculation to sustain combustion at high equivalence ratios, where the concentration of synthesis gas can be maximized, but few have connected the fuel-rich combustion reforming to SOFCs to understand how the reforming effects the electrochemical reactions. This study investigates microcombustion of ethane/air at equivalence ratios from 1.0–5.0, flow rates of 10–250 mL.min-1 and maximum wall temperatures of 800 °C, 900 °C and 1000 °C. The weak flame, flame with repetitive extinction and ignition (FREI) and normal flame regimes are characterized along with the exhaust composition at each condition. Micro-Tubular SOFCs open circuit voltage, polarization and power density are found to be effected by FREI. High fuel utilization of ~64% is achieved. Long term testing and comparison with a H2 baseline is reported.

この論文で使われている画像

参考文献

[1] R. O’Hayre, S. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, Second, Wiley, New York, 2009.

[2] R.J. Milcarek, J. Ahn, J. Zhang, Review and analysis of fuel cell-based, micro-cogeneration for residential applications: Current state and future opportunities, Sci. Technol. Built Environ. 23 (2017) 1224–1243. doi:10.1080/23744731.2017.1296301.

[3] Y. Matsuzaki, I. Yasuda, Electrochemical oxidation of H2 and CO in a H2-H2O-CO-CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte, J. Electrochem. Soc. 147 (2000) 1630–1635. doi:10.1149/1.1393409.

[4] A. Iulianelli, S. Liguori, J. Wilcox, A. Basile, Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review, Catal. Rev. 58 (2016) 1–35. doi:10.1080/01614940.2015.1099882.

[5] R. Bove, P. Lunghi, N.M. Sammes, SOFC mathematic model for systems simulations - Part 2: Definition of an analytical model, Int. J. Hydrogen Energy. 30 (2005) 189–200. doi:10.1016/j.ijhydene.2004.04.018.

[6] K. Kendall, C.M. Finnerty, J.C. Austin, T. Alston, Ceramic fuel cells to replace metal burners, J. Mater. Sci. 36 (2001) 1119–1124. doi:10.1023/A:1004869522984.

[7] K. Kendall, Catalysts for butane reforming in zirconia fuel cells, Platin. Met. Rev. 42 (1998) 164– 167.

[8] K. Kendall, M. Kendall, High-temperature solid oxide fuel cells for the 21st century: Fundamentals, design and applications, Academic Press, New York, 2016.

[9] a L. Dicks, K.D. Pointon, a Siddle, Intrinsic reaction kinetics of methane steam reforming on a nickelrzirconia anode, J. Power Sources. 86 (2000) 523–530.

[10] C.M. Finnerty, R.M. Ormerod, Internal reforming over nickel/zirconia anodes in SOFCs operating on methane: Influence of anode formulation, pre-treatment and operating conditions, J. Power Sources. 86 (2000) 390–394. doi:10.1016/S0378-7753(99)00498-X.

[11] K. Ahmed, K. Foger, Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells, Catal. Today. 63 (2000) 479–487. doi:10.1016/S0920-5861(00)00494-6.

[12] A. Dhir, K. Kendall, Microtubular SOFC anode optimisation for direct use on methane, J. Power Sources. 181 (2008) 297–303. doi:10.1016/j.jpowsour.2007.11.005.

[13] S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature. 404 (2000) 265–267. doi:10.1038/35005040.

[14] K. Kendall, Progress in microtubular solid oxide fuel cells, Int. J. Appl. Ceram. Technol. 7 (2010) 1–9. doi:10.1111/j.1744-7402.2008.02350.x.

[15] N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100W anode supported micro-tubular SOFC stack, J. Power Sources. 145 (2005) 428–434. doi:10.1016/j.jpowsour.2005.01.079.

[16] H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, Y. Fujishiro, Electrochemical analysis for anode-supported microtubular solid oxide fuel cells in partial reducing and oxidizing conditions, Solid State Ionics. 262 (2014) 407–410. doi:10.1016/j.ssi.2014.01.012.

[17] K. Kendall, Hopes for a flame-free future, Nature. 404 (2000) 233–235. doi:10.1038/35005191.

[18] M. Kluger, S. Fuels, Adaptive Materials shows off 150 W SOFC with UGV demo, Fuel Cells Bull. 2009 (2009) 5–6. doi:10.1016/S1464-2859(09)70317-7.

[19] K.S. Howe, G.J. Thompson, K. Kendall, Micro-tubular solid oxide fuel cells and stacks, J. Power Sources. 196 (2011) 1677–1686. doi:10.1016/j.jpowsour.2010.09.043.

[20] R.J. Milcarek, K. Wang, R.L. Falkenstein-Smith, J. Ahn, Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems, J. Power Sources. 306 (2016) 148–151. doi:10.1016/j.jpowsour.2015.12.018.

[21] R.J. Milcarek, M.J. Garrett, K. Wang, J. Ahn, Micro-tubular flame-assisted fuel cells running methane, Int. J. Hydrogen Energy. 41 (2016) 20670–20679. doi:10.1016/j.ijhydene.2016.08.155.

[22] M. Horiuchi, S. Suganuma, M. Watanabe, Electrochemical power generation directly from combustion flame of gases, liquids, and solids, J. Electrochem. Soc. 151 (2004) A1402–A1405. doi:10.1149/1.1778168.

[23] M. Vogler, D. Barzan, H. Kronemayer, C. Schulz, M. Horiuchi, S. Suganuma, Y. Tokutake, J. Warnatz, W.G. Bessler, Direct-Flame Solid-Oxide Fuel Cell (DFFC): A Thermally Self-Sustained, Air Self- Breathing, Hydrocarbon-Operated SOFC System in a Simple, No-Chamber Setup, in: ECS Trans., ECS, 2007: pp. 555–564. doi:10.1149/1.2729136.

[24] H. Kronemayer, D. Barzan, M. Horiuchi, S. Suganuma, Y. Tokutake, C. Schulz, W.G. Bessler, A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane, J. Power Sources. 166 (2007) 120–126. doi:10.1016/j.jpowsour.2006.12.074.

[25] R.J. Milcarek, M.J. Garrett, J. Ahn, Micro-tubular flame-assisted fuel cell stacks, Int. J. Hydrogen Energy. 41 (2016) 21489–21496. doi:10.1016/j.ijhydene.2016.09.005.

[26] R.J. Milcarek, M.J. Garrett, J. Ahn, Micro-tubular flame-assisted fuel cells, J. Fluid Sci. Technol. 12 (2017) JFST0021–JFST0021. doi:10.1299/jfst.2017jfst0021.

[27] R.J. Milcarek, J. Ahn, Micro-tubular flame-assisted fuel cells running methane, propane and butane: On soot, efficiency and power density, Energy. 169 (2019) 776–782. doi:10.1016/j.energy.2018.12.098.

[28] R.J. Milcarek, M.J. Garrett, T.S. Welles, J. Ahn, Performance investigation of a micro-tubular flame-assisted fuel cell stack with 3,000 rapid thermal cycles, J. Power Sources. 394 (2018) 86–93. doi:10.1016/j.jpowsour.2018.05.060.

[29] Y. Wang, Y. Shi, T. Cao, H. Zeng, N. Cai, X. Ye, S. Wang, A flame fuel cell stack powered by a porous media combustor, Int. J. Hydrogen Energy. 43 (2018) 22595–22603. doi:10.1016/j.ijhydene.2018.10.084.

[30] H. Zeng, S. Gong, Y. Shi, Y. Wang, N. Cai, Micro-tubular solid oxide fuel cell stack operated with catalytically enhanced porous media fuel-rich combustor, Energy. 179 (2019) 154–162. doi:10.1016/j.energy.2019.04.125.

[31] K. Wang, R.J. Milcarek, P. Zeng, J. Ahn, Flame-assisted fuel cells running methane, Int. J. Hydrogen Energy. 40 (2015) 4659–4665. doi:10.1016/j.ijhydene.2015.01.128.

[32] S.R. Turns, An Introduction to Combustion: Concepts and Applications, Second Edition, McGraw-Hill, New York, 2000.

[33] I. Schoegl, J.L. Ellzey, Superadiabatic combustion in conducting tubes and heat exchangers of finite length, Combust. Flame. 151 (2007) 142–159. doi:10.1016/j.combustflame.2007.01.009.

[34] R.J. Milcarek, H. Nakamura, T. Tezuka, K. Maruta, J. Ahn, Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration, J. Power Sources. 413 (2019) 191–197. doi:10.1016/j.jpowsour.2018.12.043.

[35] B.S. Haynes, H.G. Wagner, Soot Formation, Prog. Energy Combust. Sci. 7 (1981) 229–273. doi:10.1016/0360-1285(81)90001-0.

[36] F.J. Weinberg, T.G. Bartleet, F.B. Carleton, P. Rimbotti, J.H. Brophy, R.P. Manning, Partial oxidation of fuel-rich mixtures in a spouted bed combustor, Combust. Flame. 72 (1988) 235–239. doi:10.1016/0010-2180(88)90124-1.

[37] L.A. Kennedy, J.P. Bingue, A. V. Saveliev, A.A. Fridman, S.I. Foutko, Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions, Proc. Combust. Inst. 28 (2000) 1431–1438. doi:10.1016/S0082-0784(00)80359-8.

[38] H. Pedersenmjaanes, L. Chan, E. Mastorakos, Hydrogen production from rich combustion in porous media, Int. J. Hydrogen Energy. 30 (2005) 579–592. doi:10.1016/j.ijhydene.2004.05.006.

[39] R.S. Dhamrat, J.L. Ellzey, Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor, Combust. Flame. 144 (2006) 698–709. doi:10.1016/j.combustflame.2005.08.038.

[40] M. Toledo, V. Bubnovich, A. Saveliev, L. Kennedy, Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media, Int. J. Hydrogen Energy. 34 (2009) 1818–1827. doi:10.1016/j.ijhydene.2008.12.001.

[41] Z. Al-Hamamre, S. Voß, D. Trimis, Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer, Int. J. Hydrogen Energy. 34 (2009) 827–832. doi:10.1016/j.ijhydene.2008.10.085.

[42] A. Loukou, I. Frenzel, J. Klein, D. Trimis, Experimental study of hydrogen production and soot particulate matter emissions from methane rich-combustion in inert porous media, Int. J. Hydrogen Energy. 37 (2012) 16686–16696. doi:10.1016/j.ijhydene.2012.02.041.

[43] I. Schoegl, J.L. Ellzey, A mesoscale fuel reformer to produce syngas in portable power systems, Proc. Combust. Inst. 32 (2009) 3223–3230. doi:10.1016/j.proci.2008.06.079.

[44] P.H. Lee, S.S. Hwang, Superadiabatic flame for production of hydrogen rich gas from methane, Int. J. Hydrogen Energy. 41 (2016) 11801–11810. doi:10.1016/j.ijhydene.2016.04.231.

[45] M.G. Toledo, K.S. Utria, F.A. González, J.P. Zuñiga, A. V. Saveliev, Hybrid filtration combustion of natural gas and coal, Int. J. Hydrogen Energy. 37 (2012) 6942–6948. doi:10.1016/j.ijhydene.2012.01.061.

[46] I. Schoegl, S.R. Newcomb, J.L. Ellzey, Ultra-rich combustion in parallel channels to produce hydrogen-rich syngas from propane, Int. J. Hydrogen Energy. 34 (2009) 5152–5163. doi:10.1016/j.ijhydene.2009.03.036.

[47] P. Gentillon, M. Toledo, Hydrogen and syngas production from propane and polyethylene, Int. J. Hydrogen Energy. 38 (2013) 9223–9228. doi:10.1016/j.ijhydene.2013.05.058.

[48] C. Chen, B. Richard, Y. Zheng, H. Pearlman, S. Trivedi, S. Koli, A. Lawson, P. Ronney, Proceedings on the development of a “swiss-roll” fuel reformer for syngas production, in: Summer Heat Transf. Conf. ASME, 2016: pp. 1–5.

[49] M. Sharma, I. Schoegl, A comparative assessment of homogeneous propane reforming at intermediate temperatures, Int. J. Hydrogen Energy. 38 (2013) 13272–13281. doi:10.1016/j.ijhydene.2013.07.069.

[50] K. Maruta, T. Kataoka, N. Il Kim, S. Minaev, R. Fursenko, Characteristics of combustion in a narrow channel with a temperature gradient, Proc. Combust. Inst. 30 (2005) 2429–2436. doi:10.1016/j.proci.2004.08.245.

[51] A.K. Dubey, T. Tezuka, S. Hasegawa, H. Nakamura, K. Maruta, Study on sooting behavior of premixed C 1 –C 4 n -alkanes/air flames using a micro flow reactor with a controlled temperature profile, Combust. Flame. 174 (2016) 100–110. doi:10.1016/j.combustflame.2016.09.007.

[52] H. Nakamura, S. Suzuki, T. Tezuka, S. Hasegawa, K. Maruta, Sooting limits and PAH formation of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane in a micro flow reactor with a controlled temperature profile, Proc. Combust. Inst. 35 (2015) 3397–3404. doi:10.1016/j.proci.2014.05.148.

[53] R.J. Milcarek, K. Wang, R.L. Falkenstein-Smith, J. Ahn, Performance variation with SDC buffer layer thickness, Int. J. Hydrogen Energy. 41 (2016). doi:10.1016/j.ijhydene.2016.04.113.

[54] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Effect of anode microstructure on the performance of micro tubular SOFCs, Solid State Ionics. 180 (2009) 546–549. doi:10.1016/j.ssi.2008.09.023.

[55] Z. Lu, X. Zhou, D. Fisher, J. Templeton, J. Stevenson, N. Wu, A. Ignatiev, Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer, Electrochem. Commun. 12 (2010) 179–182. doi:10.1016/j.elecom.2009.11.015.

[56] F. Takahashi, I. Glassman, Sooting Correlations for Premixed Flames, Combust. Sci. Technol. 37 (1984) 1–19. doi:10.1080/00102208408923743.

[57] D.B. Olson, S. Madronich, The effect of temperature on soot formation in premixed flames, Combust. Flame. 60 (1985) 203–213. doi:10.1016/0010-2180(85)90008-2.

[58] M.H.B.M. Hanafi, H. Nakamura, S. Hasegawa, T. Tezuka, K. Maruta, Effects of n -butanol addition on sooting tendency and formation of C 1 –C 2 primary intermediates of n -heptane/air mixture in a micro flow reactor with a controlled temperature profile, Combust. Sci. Technol. 190 (2018) 2066–2081. doi:10.1080/00102202.2018.1488694.

[59] A.K. Dubey, T. Tezuka, S. Hasegawa, H. Nakamura, K. Maruta, Analysis of kinetic models for rich to ultra-rich premixed CH4/air weak flames using a micro flow reactor with a controlled temperature profile, Combust. Flame. 206 (2019) 68–82. doi:10.1016/j.combustflame.2019.04.041.

[60] M. Frenklach, M.K. Ramachandra, R.A. Matula, Soot formation in shock-tube oxidation of hydrocarbons, Symp. Combust. 20 (1985) 871–878. doi:10.1016/S0082-0784(85)80576-2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る