リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Adaptive radiation of invasive asexual Daphnia pulex in Japan: ecological implications of clonal variations in phenotypic traits and plasticity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Adaptive radiation of invasive asexual Daphnia pulex in Japan: ecological implications of clonal variations in phenotypic traits and plasticity

Tian Xiao Fei 東北大学

2020.03.25

概要

Daphnia pulex is a species complex and common zooplankton in small lakes and ponds in temperate regions (Hebert et al. 1989, Colbourne et al. 1998, Mergeay et al. 2006, Crease et al. 2012, Duggan et al. 2012, So et al. 2015, Ma et al. 2019). It contained at least 12 named lineages (1 in the pulex group, 9 in the pulicaria group, and 2 in the tenebrosa group) (Colbourne et al. 1998) and could switch reproductive mode between parthenogenetic (asexual) and sexual reproductions in response to changes in environmental conditions (Smirnov 2017). By sexual reproduction, they produce diapause eggs that play not only ecological roles for surviving unfavorable environmental conditions and dispersing to new habitats but also evolutional role for producing new genotypes by recombination. However, in a distinct lineage of this species called panarctic D. pulex (Fig. 1), individuals produce asexually even diapause eggs and thus can maintain the populations without sexual reproduction (Crease et al. 1989, Hebert et al. 1989). Since these obligate parthenogenesis individuals have no cost in sex (Innes et al. 2000), although it is questionable if they can adapt new habitats without recombination. In fact, asexual panarctic D. pulex that is North American origin has expanded their distribution to other continents. To date, as invading species, it has been reported in Africa (Mergeay et al. 2006), New Zealand (Duggan et al. 2012), China (Ma et al. 2019) and Japan (So et al. 2015). Invasive species are increasingly recognized as a lead threat to biodiversity worldwide (Walker and Steffen 1997, Mooney & Hobbs 2000, Sakai et al. 2001). Thus, uncovering ecological traits of the panarctic D. pulex in newly habitats would provide a chance to deepen our understandings on ecological and evolutional mechanisms behind the colonization success of invasive species.

In general, populations of invasive species are founded by a few common ancestral individuals. If heritable traits diverged among isolated populations that shared these common ancestral individuals, then we can describe evolution of the invasive species in new habitats. In addition, variations and covariations among heritable traits provide clues for identifying selective forces and understanding the evolution of these ecological traits (Spitze 1993, Lynch & Walsh 1998, Josephs 2017). Examination of the phenotypic and genetic variations among these invasive populations is, therefore, useful for unveiling ecological and evolutional processes that take place during the adaption of invasive species to new habitats (Lee 2002, Davidson et al. 2011).

In Japan, four asexual genetic lineages of panarctic D.pulex (Colbourne et al. 1998), named JPN1-4 respectively, have distributed (So et al. 2015). All these lineages were thought to have started the invasion as a single genotype but at different times: JPN1 and JPN2 at several hundred to thousand years ago, while JPN3 and JPN4 at more recent time points (So et al. 2015). Several genotypes (clones) were found within JPN1 and JPN2 lineages but not yet in JPN3 and JPN4 lineages. The fact indicates that at least JPN1 and 2 have genetically evolved without genetic recombination after the invasion.

To clarify ecological and evolutionary mechanisms that allow asexual D. pulex to expand their distribution in Japan, in the 2nd chapter, I first examined heritability of life history, morphology and digestive traits using genotypes within JPN1 lineage that distributed most widely in Japan. Then, I examined variations and covariations among these traits to clarify clue of selective forces driving these variations. In addition, I examined how these variations were related with genetic distance among the genotypes. In the 3rd chapter, I examined strength of intra-specific competition among the genotypes of JPN1 lineage. I hypothesized that if they diverged to enlarge the niche, intra-specific competition should be weakened. To test this hypothesis, I performed competition experiments using several genotypes of the JPN1 lineage by monitoring population dynamics of single and multiple genotypes for 60 days. In the 4th chapter, to clarify rapidly evolved and genetically conservative traits, I compared magnitudes of variations in digestive, life history and morphological traits not only among genotypes within lineages but also between JPN1 and JPN2, that have the largest and second largest distribution ranges in Japan, respectively. I also examined if magnitude and direction of univariate and multivariate plasticity were the same among these different lineages. Based on these results, I explored ecological and evolutionary mechanisms that allow for these asexual animals to rapidly adapt various habitats in Japan.

この論文で使われている画像

参考文献

Adams, D.C. & Collyer, M.L. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution. 63: 1143-1154.

Ahlgren, G., Goedkoop, W., Markensten, H., Sonesten, L. & Boberg, M. 1997. Seasonal variations in food quality for pelagic and benthic invertebrates in Lake Erken - the role of fatty acids. Freshw. Biol. 38: 555-570.

Anderson, J.T., Inouye, D.W., McKinney, A.M., Colautti, R.I. & Mitchell-Olds, T. 2012. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B-Biol. Sci. 279: 3843-3852.

Anderson, T.R., Hessen, D.O., Elser, J.J. & Urabe, J. 2005. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. Am. Nat. 165: 1-15. doi:10.2307/3473193.

Anderson, T.R. & Pond, D.W. 2000. Stoichiometric theory extended to micronutrients: Comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnol. Oceanogr. 45(5):1162-1167.

Andras, J.P. & Ebert, D. 2013. A novel approach to parasite population genetics: Experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia. Mol. Ecol. 22: 972-986.

Antonovics, J. 1976. Nature of limits to natural selection. Ann. Mo. Bot. Gard. 63: 224-247. Antunes, S.C., Castro, B.B. & Gonçalves, F. 2003. Chronic responses of different clones of Daphnia longispina (field and ephippia) to different food levels. Acta. Oecol. 24: S325- S332.

Barton, N.H. & Turelli, M. 1989. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23: 337-370. doi:10.1146/annurev.ge.23.120189.002005.

Beckerman, A., Petchey, O.L. & Morin, P.J. 2010. Adaptive foragers and community ecology: linking individuals to communities and ecosystems. Funct. Ecol. 24: 1-6.

Boersma, M. 1995. The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology. 76(4): 1251-1261.

Boersma, M., Spaak, P. & De Meester, L. 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: The uncoupling of responses. Am. Nat. 152(2): 237- 248.

Boersma, M., Schöps, C. & McCauley, E. 2001. Nutritional quality of seston for the freshwater herbivore Daphnia galeata × hyalina: biochemical versus mineral limitations. Oecologia. 129: 342-348.

Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115-155.

Brooks, J.L. & Dodson, S.I. 1965. Predation, body size, and composition of plankton. Science. 150: 228-235.

Brönmark, C., Pettersson, L. & Nilsson, A. 1999. Predator-induced defense in Crucian carp. In: Tollria R, Harvell CD, editors. The ecology and evolution of inducible defenses. Princeton: Princeton University Press; p. 203-217.

Burstin, J. & Charcosset, A. 1997. Relationship between phenotypic and marker distances: theoretical and experimental investigations. Heredity. 79: 477-483.

Cabe, P.R. 1998. The effects of founding bottlenecks on genetic variation in the European starling (Sturnus vulgaris) in North America. Heredity. 80: 519-525.

Carson, H.L. 1984. Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann. Rev. Ecol. Syst. 15: 97-131.

Chang, K.H. & Hanazato, T. 2003. Vulnerability of cladoceran species to predation by the copepod Mesocyclops leuckarti: laboratory observations on the behavioural interactions between predator and prey. Freshw. Biol. 48(3): 476-484.

Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high- throughput sequencing data. Gigascience. 7: 1-6.

Colbourne, J.K., Crease, T.J., Weider, L.J., Hebert, P.D.N., Dufresne, F. & Hobaek, A. 1998. Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Bio. J. Linn. Soc. 65: 347-365.

Colbourne, J.K., Pfrender, M.E., Gilbert, D., et al. 2011. The ecoresponsive genome of Daphnia pulex. Science. 331: 555-561.

Collyer, M.L. & Adams, D.C. 2007. Analysis of two-state multivariate phenotypic change in ecological studies. Ecology. 88. 683-692.

Crease, T.J., Omilian, A.R., Costanzo, K.S. & Taylor, D.J. 2012. Transcontinental phylogeography of the Daphnia pulex species complex. PLoS One. 7: e46620.

Crease, T.J., Stanton, D.J. & Hebert, P.D. 1989. Polyphyletic origins of asexuality in Daphnia pulex. II. Mitochondrial-DNA variation. Evolution. 43: 1016-1026.

Crispo, E., DiBattista, J.D., Correa, C., Thibert-Plante, X., McKellar, A.E., Schwartz, A.K., et al. 2010. The evolution of phenotypic plasticity in response to anthropogenic disturbance. Evol. Ecol. Res.12: 47-66.

Culver, D. & Kerfoot, W.C. 1980. Seasonal variation in the sizes at birth and at first reproduction in Cladocera. Chapter 34. In: Evolution and ecology of zooplankton communities.

Darchambeau, F., Faerøvig, P.J. & Hessen, D.O. 2003. How Daphnia copes with excess carbon in its food. Oecologia. 136: 336-346.

Davidson, A.M., Jennions, M. & Nicotra, A.B. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14: 419-431.

De Meester, L. 1989. An estimation of the heritability of phototaxis in Daphnia magna Straus. Oecologia. 78: 142-144.

De Meester, L., Gómez, A., Okamura, B. & Schwenk, K. 2002. The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta oecologica. 23(3): 121-135.

DeMott, M.R., Gulati, R.D. & Donk, E.V. 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large–bodied species by interfering filaments of cyanobacteria. Limnol. Oceanogr. 46(8): 2054-2060.

Dennis, S.R., Carter, M.J., Hentley, W.T. & Beckerman, A.P. 2011. Phenotypic convergence along a gradient of predation risk. Proc. R. Soc. B-Biol. Sci. 278: 1687-1696.

Dodson, S.I. 1974. Adaptive change in plankton morphology in response to size-selective predation: a new hypothesis of cyclomorphosis. Limnol. Oceanogr. 19: 721-729.

Donohue, K., Messiqua, D., Pyle, E.H., Heschel, M.S. & Schmitt, J. 2000. Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in impatiens capensis. Evolution. 54: 1956-1968.

Duggan, I.C., Robinson, K.V., Burns, C.W., Banks, J.C. & Hogg, I.D. 2012. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia ’pulex’ in New Zealand fresh waters. Aquat. Invasions. 7: 585-590.

Durand, C., Manuel, M., Boudouresque, C.F., Meinesz, A., Verlaque, M. & Le Parco, Y. 2002. Molecular data suggest a hybrid origin for the invasive Caulerpa racemosa (Caulerpales, Chlorophyta) in the Mediterranean Sea. J. Evol. Biol. 15(1): 122-133.

Dudycha, J.L. & Tessier, A.J. 1999. Natural genetic variation of life span, reproduction, and juvenile growth in Daphnia. Evolution. 53: 1744-1756.

Ebert, D. 1993. The trade-off between offspring size and number in Daphnia magna: the influence of genetic, environmental and maternal effects. Arch. Hydrobiol. Suppl. 90: 453-473.

Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A., et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature. 408: 578-580.

Elser, J.J., Hayakawa, K. & Urabe, J. 2001. Nutrient limitation resouces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology. 82(3): 898- 903.

Endler, J.A. 1995. Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol. Evol. 10: 22-29.

Flatt, T., Tu, M.P. & Tatar, M. 2005. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays. 27: 999-1010. doi:10.1002/bies.20290.

Forsman, A. 2015. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity. 115: 276-284.

Fukami, T., Martijn Bezemer, T., Mortimer, S.R., van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8 (12): 1283-1290.

Gliwicz, Z.M. 1990. Food thresholds and body size in cladocerans. Nature. 343: 638-640.

Gliwicz, Z.M. 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia. 272: 201-210.

Gliwicz, Z.M. & Boavida, M.J. 1996. Clutch size and body size at first reproduction in Daphnia pulicaria at different levels of food and predation. J. Plankton Res. 18(6): 863-880.

Hall, D.J., Threlkeld, S.T., Burns, C.W. & Crowley, P.H. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annu. Rev. Ecol. Syst. 7: 177-208.

Hebert, P.D.N. 1974. Ecological differences between genotypes in a natural population of Daphnia magna. Heredity. 33: 327-337.

Hebert, P.D.N., Beaton, M.J. Schwartz, S.S. & Stanton, D.J. 1989. Polyphyletic origins of asexuality in Daphnia pulex. I. Breeding-system variation and levels of clonal diversity. Evolution. 43: 1004-1015.

Hebert, P.D.N., Schwartz, S.S. & Hrbacek, J. 1989. Patterns of genotypic diversity in Czechoslovakian Daphnia. Heredity. 62: 207-216.

Hill, W.G. & Robertson, A. 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8: 269-294.

Holland, J.B., Nyquist, W.E. & Cervantes-Martínez, C.T. 2003. Estimating and interpreting heritability for plant breeding: an update. In: Janick, J., editor. Plant breeding reviews. New York: John Wiley & Sons; pp. 70-73.

Holmes, C.J., Pantel, J.H., Schulz, K.L. & Cáceres, C.E. 2016. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation. Mol. Ecol. 25: 3299-3308.

Holsinger, K.E. & Ellstrand, N.C. 1984. The evolution and ecology of permanent translocation heterozygotes. Am. Nat. 124: 48-71.

Huszar, V.L.M. & Caraco, N. 1998. The relationship between phytoplankton composition and physical-chemical variables: a comparison of taxonomic and morphological-functional descriptors in six temperate lakes. Freshw. Biol. 40(4): 679-696.

Innes, D.J., Fox, C.J. & Winsor, G.L. 2000. Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). Proc. R. Soc. B-Biol. Sci. 267: 991-997.

Ishida, S., Ohtsuki, H., Awano, T., Tsugeki, N.K., Makino, W., Suyama, Y. & Urabe, J. 2012. DNA extraction and amplification methods for ephippial cases of Daphnia resting eggs in lake sediments: a novel approach for reconstructing zooplankton population structure from the past. Limnology. 13: 261-267.

Kalinowski, S.T. 2002. Evolutionary and statistical properties of three genetic distances. Mol. Ecol. 11: 1263-1273.

Keller, S.R. & Taylor, D.R. 2008. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Eol. Lett. 11(8): 852-866.

Kerfoot, W.C. 1974. Egg-size cycle of a cladoceran. Ecology. 61: 417-431.

Kilham, S.S., Kreeger, D.A., Lynn, S.G., Goulden, C.E. & Herrera, L. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia. 377: 147- 159.

Knotz, S., Boersma, M. & Saborowski, R. 2006. Microassays for a set of enzymes in individual small marine copepods. Comp. Biochem. Physiol - A Mol. Integr. Physiol. 145: 406-411.

Koussoroplis, A.M., Schwarzenberger, A. & Wacker, A. 2017. Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex. Biol. Open. 6: 210-216. doi:10.1242/bio.022046.

Laforsch, C. & Tollrian, R. 2004. Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology. 85: 2302-2311.

Lampert, W. 1993. Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology. 74: 1455-1466.

Lampert, W. & Trubetskova, I. 1996. Juvenile growth rate as a measure of fitness in Daphnia. Funct. Ecol. 10: 631–635.

Lampert, W. 1988. The relative importance of food limitation and predation in the seasonal cycle of two Daphnia species. SIL Proceedings, 1922-2010. 23(2): 713-718.

LaMontagne, J.M. & McCauley, E. 2001. Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol. Lett. 4: 64-71.

Lande, R. 1984. The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet. Res. 44: 309. doi:10.1017/S0016672300026549.

Lande, R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22: 1435-1446.

Lee, C.E. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17: 386-391. doi:10.1016/S0169-5347(02)02554-5.

Lee, C.E. & Gelembiuk, G.W. 2008. Evolutionary origins of invasive populations. Evol. Appl. 1(3): 427-448.

Leibold, M. & Tessier, A.J. 1991. Constrasting patterns of body size for Daphnia species that segregate by habitat. Oecologia. 86: 342-348.

Leinonen, T., O’Hara, R.B., Cano, J.M. & Merilä, J. 2008. Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J. Evol. Biol. 21: 1-17.

Lee, T.H., Guo, H., Wang, X., Kim, C. & Paterson, A.H. 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics. 15: 1-6.

Li, H. & Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25: 1754-1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25: 2078-2079.

Lynch, M. 1977. Fitness and optimal body size in zooplankton population. Ecology. 58(4): 763-774.

Lynch, M. 1979. Predation, competition, and zooplankton community structure: an experimental study 1, 2. Limnol. Oceanogr. 24(2): 253-272.

Lynch, M. 1985. Spontaneous mutations for life-history characters in an obligate parthenogen. Evolution. 39: 804-818.

Lynch, M. & Walsh, B. 1998. Correlations between characters. In: Lynch M, editor. Genetics and analysis of quantitative traits. Sunderland: Sinauer Associates; p. 629-647.

Ma, X., Petrusek, A., Wolinska, J., Hu, W. & Yin, M. 2019. Lineage diversity and reproductive modes of the Daphnia pulex group in Chinese lakes and reservoirs. Mol. Phylogenet. Evol. 130: 424-433.

McCauley, E. & Murdoch, W.W. 1990. Predator-prey dynamics in environments rich and poor in nutrients. Nature. 343: 455-457.

McIlvaine, T.C. 1921. A buffer solution for colorimetric comparison. J. Biol. Chem. 49: 183- 186.

Mergeay, J., Verschuren, D. & De Meester, L. 2006. Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. Proc. R. Soc. B-Biol. Sci. 273: 2839-2844.

Merilä, J. & Sheldon, B.C. 1999. Testis size variation in the greenfinch Carduelis Chloris: relevance for some recent models of sexual selection. Behav. Ecol. Sociobiol. 45: 115-123.

Mooney, H. & Hobbs, R. 2000. Invasive Species in a Changing World (Island, Washington, DC).

Mousseau, T.A. & Roff, D.A. 1987. Natural selection and the heritability of fitness components. Heredity. 59: 181-197. doi:10.1038/hdy.1987.113.

Murren, C.J., Maclean, H.J., Diamond, S.E., Steiner, U.K., Heskel, M.A., Handelsman, C.A. et al. 2014. Evolutionary change in continuous reaction norms. Am. Nat. 183: 453-467.

Neil, W.E. 1974. The community matrix and interdependence of the competition coefficients. Am. Nat. 108(962): 399-408.

Nelson, W.A., McCauley, E. & Wrona, F.J. 2005. Stage-structure cycles promote genetic diversity in a predator-prey system of Daphnia and algae. Nature. 433: 413-417.

Pajk, F., Elert, E. & Fink, P. 2012. Interaction of changes in food quality and temperature reveals maternal effects on fitness parameters of a keystone aquatic herbivore. Limnol. Oceanogr. 57: 281-292.

Pál, C. 1998. Plasticity, memory and the adaptive landscape of the genotype. Proc. R. Soc. B- Biol. Sci. 265: 1319-1323.

Paland, S., Colbourne, J.K. & Lynch, M. 2005. Evolutionary history of contagious asexuality in Daphnia pulex. Evolution. 59: 800-813. doi: 10.1111/j.0014- 3820.2005.tb01754.x

Pfennig, D.W., Wund, M.A., Snell-Rood, E.C., Cruickshank, T., Schlichting, C.D. & Moczek, A.P. 2010. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25(8): 459-467.

Pigliucci, M. 2004. Studying the plasticity of phenotypic integration in a model organism. In: Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (M. Pigliucci & K. Preston, eds.). pp. 155-175. Oxford University Press, New York.

Pound, G.E., Cox, S.J. & Doncaster, C.P. 2004. The accumulation of deleterious mutations within the frozen niche variation hypothesis. J. Evol. Biol. 17(3): 651-662.

Prater C., Wagner, N.D. & Frost, P.C. 2017. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology. 98: 1399-1408.

Raubenheimer, D., Simpson, S.J. & Mayntz, D. 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23(1): 4-16.

R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Reed, D.H. & Frankham, R. 2001. How closely correlated are molecular and quantitative measures of genetic variation ? A meta-analysis. Evolution. 55: 1095-1103.

Relyea, R. 2004. Integrating phenotypic plasticity when death is on the line: insights from predator-prey systems. In: Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (M. Pigliucci, K. Preston, eds), pp. 176-190. Oxford University Press, New York.

Repka, S. 2003. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria. Freshw. Biol. 38(3): 675-683.

Richards, C.L., Bossdorf, O., Muth, N.Z., Gurevitch, J. & Pigliucci, M. 2006. Jack of all trades, master or some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9(8): 981-993.

Richards, C.L., Pennings, S.C. & Donovan, L.A. 2005. Habitat range and phenotypic variation in salt marsh plants. Plant Ecol.176: 263-273.

Riessen, H.P. 1999. Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Can. J. Fish. Aquat. Sci. 56: 2487-2494.

Roff, D. 2002. Life History Evolution. Sinauer Associates, Inc., Sunderland, MA. Rundle, H.D. & Nosil, P. 2005. Ecological speciation. Ecol. Lett. 8: 336-352.

Sakai, A.K., Allendorf, F.W., Holt, J.S., et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32: 305-332.

Schlichting, C.D. 1989a. Phenotypic integration and environmental change: what are the consequences of differential phenotypic plasticity of traits? Bioscience. 39: 460-464.

Schlichting, C.D. 1989b. Phenotypic plasticity in Phlox. II. Plasticity of character correlations. Oecologia. 78: 496-501.

Schlichting, C.D. & Pigliucci, M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer Associates, Sunderland, USA.

Schlichting, C.D. & Wund, M.A. 2014. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution. 68: 656-672.

Schluter, D. 2000. The ecology of adaptive radiation. New York, NY: Oxford University Press.

Schmitt, J., Dudley, S. & Pigliucci, M. 1999. Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade avoidance responses in plants. Am. Nat. 154: S43-S54.

Schwarzenberger, A. & Fink, P. 2018. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences. Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol. 218: 23-29. doi:10.1016/j.cbpb.2018.01.009.

Scoville, A.G. & Pfrender, M.E. 2010. Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc. Natl Acad. Sci. USA. 107: 4260-4263.

Shaw, R.G., Platenkamp, G.A., Shaw, F.H. & Podolsky, R.H. 1995. Quantitative genetics of response to competitors in Nemophtla menziesii: a field experiment. Genetics. 406: 397- 406.

Ślusarczyk, M. 2001. Food threshold for diapause in Daphnia under the threat of fish predation. Ecology. 82: 1089-1096.

Smirnov, N.N. 2017. Physiology of the Cladocera. Academic Press.

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. & Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.

Sommer, U. 2002. Competition and coexistence in plankton communities. In: Worm, B., editor. Competition and coexistence. Springer. pp 79-108.

So, M., Ohtsuki, H., Makino, W., Ishida, S., Kumagai, H,. Yamaki, K.G., Urabe, J. 2015. Invasion and molecular evolution of Daphnia pulex in Japan. Limnol. Oceanogr. 60: 1129- 1138.

Spaak, P. & Hoekstra, J.R. 1995. Life history variation and the coexistence of a Daphnia hybrid with its parental species. Ecology. 76(2): 553-564.

Spitze, K. 1992. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139(2): 229-247.

Spitze, K. 1993. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics. 135: 367-374.

Spitze, K., Burnson, J. & Lynch, M. 1991. The covariance structure of life-history characters in Daphnia pulex. Evolution. 45: 1081-1090. doi:10.2307/2409717.

Stearns, S.C. & Koella, J.C. 1986. The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evolution. 40(5): 893-913.

Stern, D.L. & Orgogozo, V. 2008. The loci of evolution: how predictable is genetic evolution? Evolution. 62: 2155-2177.

Sterner, R.W. & Elser, J.J. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press.

Stibor, H. 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia. 92: 162-165.

Stoks, R., Govaert, L., Pauwels, K., Jansen, B. & De Meester, L. 2016. Resurrecting complexity: the interplasy of plasticity and rapid evoltuion in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecol. Lett. 19: 180-190.

Sultan, S.E. 2001. Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology. 82: 328-343.

Sultan, S.E. 2003. Phenotypic plasticity in plants: a case study in ecological development. Evol. Dev. 5: 25-33.

Sultan, S.E., Wilczek, A.M., Hann, S.D. & Brosi, B.J. 1998a. Contrasting ecological breadth of co-occurring annual Polygonum species. J. Ecol. 86: 363-383.

Sultan, S.E., Wilczek, A.M., Bell, D.L. & Hand, G. 1998b. Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth. Oecologia. 115: 564-578.

Suzuki-Ohno, Y., Kawata, M. & Urabe, J. 2012. Optimal feeding under stoichiometric constraints: a model of compensatory feeding with functional response. Oikos. 121: 569- 578.

Taylor, B.E. & Gabriel, W. 1992. To grow or not to grow: optimal resource allocation for Daphnia. Am. Nat. 139(2): 248-266.

Templeton, G.F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst. 28: 41-58.

Tessier, A.J. & Consolatti, N.L. 1991. Resource quantity and offspring quality in Daphnia. Ecology. 72: 468-478.

Tian, X., Ohtsuki, H. & Urabe, J. 2019. Evolution of asexual Daphnia pulex in Japan: variations and covariations of the digestive, morphological and life history traits. BMC Evol. Biol. 19: 122.

Tucker, A.E., Ackerman, M.S., Eads, B.D., Xu, S. & Lynch, M. 2013. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc. Natl. Acad. Sci. USA. 110: 15740-15745.

Urabe, J. 1988. Effect of food conditions on the net production of Daphnia galeata: separate assessment of growth and reproduction. Bull. Plankton Soc. Jpn. 35: 159-174.

Urabe, J., Shimizu, Y. & Yamaguchi, T. 2018. Understanding the stoichiometric limitation of herbivore growth: the importance of feeding and assimilation flexibilities. Ecol. Lett. 21: 197-206.

Urabe, J. & Sterner, R.W. 2001. Contrasting effects of different types of resource depletion on life-history traits in Daphnia. Funct. Ecol. 15: 165–174. doi:10.1046/j.1365- 2435.2001.00511.x.

Vanni, M.J. 1987. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr. 57(1): 61-88.

Van Valen, L. 1965. Morphological variation and width of ecological niche. Am. Nat. 99: 377- 390.

Vrijenhoek, R.C. 1979. Factors affecting clonal diversity and coexistence. Integr. Comp. Biol. 19(3): 787-797.

Waddington, C.H. 1961. Genetic assimilation. Adv. Genet. 10: 257-293.

Walker, B. & Steffen, W. 1997. An overview of the implications of global change for natural and managed terrestrial ecosystems. Conserv. Ecol. 1: 1-17.

Weetman, D. & Atkinson, D. 2002. Antipredator reaction norms for life history traits in Daphnia pulex: dependence on temperature and food. Oikos. 98: 299-307.

Werner, E.E. & Hall, D.J. 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis Macrochirus). Ecology. 55: 1042-1052. doi:10.2307/1940354.

West-Eberhard, M.J. 2003. Developmental Plasticity and Evolution. Oxford University Press, Oxford, UK.

West-Eberhard, M.J. 2005. Developmental plasticity and the origin of species differences. Proc. Natl. Acad. Sci. USA. 102(suppl 1): 6543-6549.

Whitlock, M.C. 1996. The red queen beats the Jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148: S65-S77.

Wojewodzic, M.W., Kyle, M., Elser, J.J., Hessen, D.O. & Andersen, T. 2011. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna. Oecologia. 165(4): 837-846.

Xu, S., Schaack, S., Seyfert, A., Choi, E., Lynch, M. & Cristescu, M.E. 2012. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29: 763-769.

Ye, Z., Xu, S., Spitze, K., Asselman, J., Jiang, X., Ackerman, M.S., et al. 2017. A New Reference Genome Assembly for the Microcrustacean Daphnia pulex. G3 (Bethesda). 7: 1405-1416.

Young, T.P., Chase, J.M. & Huddleston, R.T. 2001. Community Succession and Assembly: Comparing, Contrasting and Combining Paradigms in the Context of Ecological Restoration. Ecological Rest. 19: 5-18.

Zaret, T.M. & Kerfoot, W.C. 1975. Fish predation on Bosmina longirostris: body-size selection versus visibility selection. Ecology. 56: 232-237. doi:10.2307/1935317.

Zaret, T.M. 1980. Life history and growth relationships of Cichla ocellaris, a predatory south American cichlid. Biotropica. 12: 144-157.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る