リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Roles of Rossby wave and gravity wave generation in the middle atmosphere in the interhemispheric coupling」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Roles of Rossby wave and gravity wave generation in the middle atmosphere in the interhemispheric coupling

安井, 良輔 東京大学 DOI:10.15083/0002006204

2023.03.24

概要

論文審査の結果の要旨
氏名









北極域成層圏では冬季、数日間のうちに気温が数十度上昇する成層圏突然昇温(SSW)
がたびたび発生する。近年、北極域での SSW に引き続いて南半球で中間圏から下部熱圏
に気温上昇が現れることが衛星観測や数値シミュレーションから明らかになった。本論
文は、この南北半球間結合について、先行研究において提案されたメカニズムを見直し、
数値シミュレーションデータの解析に基づき新たなメカニズムを提示したものである。
本論文は 5 章からなる。第 1 章はイントロダクションであり、まず中層大気(成層圏・
中間圏・下部熱圏)の基本的な温度構造・大気循環と SSW の駆動メカニズムについて総
括したのち、本論文の主題である南北半球間結合について、観測あるいはモデルで再現さ
れた特徴と、提案されているメカニズムを先行研究に基づきまとめている。さらに、この
提示されているメカニズムに欠けていた、中層大気中での波動生成に関する近年の研究
を概観し、南北半球間結合の形成メカニズムを再検討する必要性を論じ、本論文の目的と
構成を示している。
第 2 章ではまず、本論文で解析する、中性大気-電離大気結合モデル GAIA によるシミ
ュレーションデータ及び衛星観測・大気再解析データの概要が示される。本論文は GAIA
シミュレーションデータを主に用い、観測・再解析データはモデルの検証のために利用可
能なところで併用する。続いて、本論文で評価する力学的診断量が先行研究に基づいて導
入される。中層大気の子午面循環や気温構造を駆動するのは波動による東西平均東西風
加速であり、これを診断する Eliassen-Palm フラックスの発散(EPFD)が導入される。ま
た、第 3 章及び第 4 章で用いる合成図解析の手法も提示される。第 2 章の最後に、GAIA
シミュレーションにおける東西平均気温・東西風・EPFD の気候学的特徴を観測と比較す
ることでモデル評価を行い、以降の解析に同シミュレーションが利用できることを確か
めている。
第 3 章は本論文の核心であり、南北半球間結合に伴う東西平均量及び EPFD の偏差に
基づき、この結合変動のメカニズムを提示している。合成図解析では、SSW と付随する
赤道成層圏低温偏差の極大から数日後に南極域下部熱圏に高温偏差が形成され、これが 5
日程度かけて上部中間圏まで下降しながら中緯度まで張り出す特徴が見出された。波成
分ごとに分解した EPFD から、下部熱圏と上部中間圏の昇温がそれぞれ、解像された重力
波、ロスビー波と混合ロスビー重力波によって形成されていることが示され、特に後者に
は準 2 日波(主に東西波数 3 の混合ロスビー重力波)が寄与していることがわかった。
さらに、この準 2 日波及び重力波の一部はそれぞれ、中間圏における順圧・傾圧不安定と
シア不安定によって生成されていることも明らかになった。これらの不安定は、対流圏か
ら上方伝播する高波数の重力波が、赤道成層圏低温偏差に伴う南半球成層圏の東西平均
東西風偏差によって変調され、中間圏の風速場を変えることで作り出されていることが
1

示唆された。以上のメカニズムは、下方からの影響で形成された中間圏大気循環の不安定
によって 2 次的に励起される準 2 日波や重力波の重要性を明らかにした点で、対流圏か
らの重力波の変調による直接影響だけで半球間結合を説明しようとした先行研究のメカ
ニズムを書き換えるものである。
第 4 章では、南北半球間結合に伴う一連の偏差の東西構造を議論している。南半球中
間圏において、シア不安定は対流圏からの重力波強制偏差が見られる 60ºW~60ºE で頻度
が増加しており、そこから上方に放射される西向き伝播重力波によって下部熱圏の高温
偏差が赤道成層圏低温偏差よりも西方に形成されていた。一方、順圧・傾圧不安定は
80ºE~160ºW で強化され、そこで準 2 日波の活動も強くなっていた。これらの結果は、第
3 章で論じた中間圏内部での不安定による波動生成を支持する。
第 5 章では、本論文の結果を総括するとともに、今後のさらなる発展への方向性が述
べられている。特に、本論文で用いた GAIA シミュレーションは水平解像度が高くない
ため、より高解像なモデルを用いた検証が必要であること、また、中性大気南北半球間結
合に伴う電離大気変動の可能性についても論じられている。
以上のように、本論文は、観測データとモデルシミュレーションデータを組み合わせた
解析により、南北半球間結合について先行研究で提示されていた形成メカニズムを刷新
し、中層大気に対する理解の向上に大きく貢献するものである。なお、本論文第 3 章と第
4 章は佐藤薫教授及び九州大学の三好勉信准教授との共同研究であるが、論文提出者が主
体となって解析及び検討を行ったもので、論文提出者の寄与が十分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

2

この論文で使われている画像

参考文献

Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics.

Academic Press.

Baumgaertner, A. J. G., A. J. McDonald, R. E. Hibbins, D. C. Fritts, D. J. Murphy, and

R. A. Vincent, 2008: Short-period planetary waves in the Antarctic middle

atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1336–

1350, https://doi.org/10.1016/j.jastp.2008.04.007.

Becker, E., 2004: High Rossby-wave activity in austral winter 2002: Modulation of the

general circulation of the MLT during the MaCWAVE/MIDAS northern summer

program.

Geophysical

Research

Letters,

31,

L24S03,

https://doi.org/10.1029/2004GL019615.

Becker, E., 2012: Dynamical Control of the Middle Atmosphere. Space Science Reviews,

168, 283–314, https://doi.org/10.1007/s11214-011-9841-5.

Becker, E., and D. C. Fritts, 2006: Enhanced gravity-wave activity and interhemispheric

coupling during the MaCWAVE/MIDAS northern summer program 2002.

Annales Geophysicae, 24, 1175–1188, https://doi.org/10.5194/angeo-24-11752006.

Becker, E., and S. L. Vadas, 2018: Secondary Gravity Waves in the Winter Mesosphere:

Results From a High-Resolution Global Circulation Model. Journal of

Geophysical

Research:

Atmospheres,

123,

2605–2627,

https://doi.org/10.1002/2017JD027460.

Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into

the extratropical lowermost stratosphere. Atmospheric Chemistry and Physics, 11,

817–827, https://doi.org/10.5194/acp-11-817-2011.

Bühler, O., and M. E. McIntyre, 1999: On Shear-Generated Gravity Waves that Reach

the Mesosphere. Part II: Wave Propagation. Journal of the Atmospheric Sciences,

56,

3764–3773,

https://doi.org/10.1175/15200469(1999)056<3764:OSGGWT>2.0.CO;2.

——, ——, and J. F. Scinocca, 1999: On Shear-Generated Gravity Waves that Reach the

36

Mesosphere. Part I: Wave Generation. Journal of the Atmospheric Sciences, 56,

3749–3763,

https://doi.org/10.1175/15200469(1999)056<3749:OSGGWT>2.0.CO;2.

Burks, D., and C. Leovy, 1986: Planetary waves near the mesospheric easterly jet.

Geophysical

Research

Letters,

13,

193–196,

https://doi.org/10.1029/GL013i003p00193.

Butchart, N., 2014: The Brewer-Dobson circulation. Reviews of Geophysics, 52, 157–184,

https://doi.org/10.1002/2013RG000448.

Charlton, A. J., and L. M. Polvani, 2007: A New Look at Stratospheric Sudden Warmings.

Part I: Climatology and Modeling Benchmarks. Journal of Climate, 20, 449–469,

https://doi.org/10.1175/JCLI3996.1.

Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from

the lower into the upper atmosphere. Journal of Geophysical Research, 66, 83–

109, https://doi.org/10.1029/JZ066i001p00083.

Chau, J. L., B. G. Fejer, and L. P. Goncharenko, 2009: Quiet variability of equatorial E

× B drifts during a sudden stratospheric warming event. Geophysical Research

Letters, 36, L05101, https://doi.org/10.1029/2008GL036785.

Dunkerton, T. J., 1989: Nonlinear Hadley Circulation Driven by Asymmetric Differential

Heating. Journal of the Atmospheric Sciences, 46, 956–974,

https://doi.org/10.1175/1520-0469(1989)046<0956:NHCDBA>2.0.CO;2.

Eckermann, S. D., and Coauthors, 2018: High-Altitude (0–100 km) Global Atmospheric

Reanalysis System: Description and Application to the 2014 Austral Winter of the

Deep Propagating Gravity Wave Experiment (DEEPWAVE). Monthly Weather

Review, 146, 2639–2666, https://doi.org/10.1175/MWR-D-17-0386.1.

Ern, M., P. Preusse, S. Kalisch, M. Kaufmann, and M. Riese, 2013: Role of gravity waves

in the forcing of quasi two-day waves in the mesosphere: An observational study.

Journal of Geophysical Research:

https://doi.org/10.1029/2012JD018208.

Atmospheres,

118,

3467–3485,

France, J. A., and Coauthors, 2018: Local and Remote Planetary Wave Effects on Polar

Mesospheric Clouds in the Northern Hemisphere in 2014. Journal of Geophysical

37

Research: Atmospheres, 123, 5149–5162, https://doi.org/10.1029/2017JD028224.

Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle

atmosphere.

Reviews

of

Geophysics,

41(1),

1003,

https://doi.org/10.1029/2001RG000106.

——, and ——, 2012: Correction to “Gravity wave dynamics and effects in the middle

atmosphere”.

Reviews

of

Geophysics,

50,

RG3004,

https://doi.org/10.1029/2012RG000409.

Garcia, R. R., R. Lieberman, J. M. Russell, and M. G. Mlynczak, 2005: Large-Scale

Waves in the Mesosphere and Lower Thermosphere Observed by SABER.

Journal

of

the

Atmospheric

Sciences,

62,

4384–4399,

https://doi.org/10.1175/JAS3612.1.

Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation

of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical

Research, 112, D09301, https://doi.org/10.1029/2006JD007485.

Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research

and Applications, Version 2 (MERRA-2). Journal of Climate, 30, 5419–5454,

https://doi.org/10.1175/JCLI-D-16-0758.1.

Goldberg, R. A., 2004: The MaCWAVE/MIDAS rocket and ground-based measurements

of polar summer dynamics: Overview and mean state structure. Geophysical

Research Letters, 31, L24S02, https://doi.org/10.1029/2004GL019411.

Goncharenko, L., and S.-R. Zhang, 2008: Ionospheric signatures of sudden stratospheric

warming: Ion temperature at middle latitude. Geophysical Research Letters, 35,

L21103, https://doi.org/10.1029/2008GL035684.

Gu, S.-Y., T. Li, X. Dou, Q. Wu, M. G. Mlynczak, and J. M. Russell, 2013: Observations

of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI. Journal of

Geophysical

Research:

Atmospheres,

118,

1624–1639,

https://doi.org/10.1002/jgrd.50191.

——, X. Dou, D. Pancheva, W. Yi, and T. Chen, 2018: Investigation of the Abnormal

Quasi 2-Day Wave Activities During the Sudden Stratospheric Warming Period

of January 2006. Journal of Geophysical Research: Space Physics, 123, 6031–

38

6041, https://doi.org/10.1029/2018JA025596.

Gumbel, J., and B. Karlsson, 2011: Intra- and inter-hemispheric coupling effects on the

polar summer mesosphere. Geophysical Research Letters, 38, L14804,

https://doi.org/10.1029/2011GL047968.

Herman, R. L., W. A. Robinson, and S. J. Franke, 1999: Observational evidence of quasi

two-day/gravity wave interaction using MF Radar. Geophysical Research Letters,

26, 1141–1144, https://doi.org/10.1029/1999GL900157.

Hitchman, M. H., C. B. Leovy, J. C. Gille, and P. L. Bailey, 1987: Quasi-Stationary

Zonally Asymmetric Circulations in the Equatorial Lower Mesosphere. Journal

of the Atmospheric Sciences, 44, 2219–2236, https://doi.org/10.1175/15200469(1987)044<2219:QSZACI>2.0.CO;2.

Holton, J. R., and C. Mass, 1976: Stratospheric Vacillation Cycles. Journal of the

Atmospheric Sciences, 33, 2218–2225, https://doi.org/10.1175/15200469(1976)033<2218:SVC>2.0.CO;2.

Inatsu, M., and B. J. Hoskins, 2004: The Zonal Asymmetry of the Southern Hemisphere

Winter

Storm

Track.

Journal

of

Climate,

17,

4882–4892,

https://doi.org/10.1175/JCLI-3232.1.

Jin, H., and Coauthors, 2011: Vertical connection from the tropospheric activities to the

ionospheric longitudinal structure simulated by a new Earth’s whole atmosphereionosphere coupled model. Journal of Geophysical Research: Space Physics, 116,

A01316, https://doi.org/10.1029/2010JA015925.

——, Y. Miyoshi, D. Pancheva, P. Mukhtarov, H. Fujiwara, and H. Shinagawa, 2012:

Response of migrating tides to the stratospheric sudden warming in 2009 and their

effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA

with COSMIC and TIMED/SABER observations. Journal of Geophysical

Research: Space Physics, 117, A10323, https://doi.org/10.1029/2012JA017650.

Karlsson, B., C. McLandress, and T. G. Shepherd, 2009a: Inter-hemispheric mesospheric

coupling in a comprehensive middle atmosphere model. Journal of Atmospheric

and

Solar-Terrestrial

Physics,

71,

518–530,

https://doi.org/10.1016/j.jastp.2008.08.006.

39

Karlsson, B., C. E. Randall, S. Benze, M. Mills, V. L. Harvey, S. M. Bailey, and J. M.

Russell III, 2009b: Intra-seasonal variability of polar mesospheric clouds due to

inter-hemispheric coupling. Geophysical Research Letters, 36, L20802,

https://doi.org/10.1029/2009GL040348.

Kinoshita, T., and K. Sato, 2013a: A Formulation of Three-Dimensional Residual Mean

Flow Applicable Both to Inertia–Gravity Waves and to Rossby Waves. Journal

of the Atmospheric Sciences, 70, 1577–1602, https://doi.org/10.1175/JAS-D-120137.1.

——, and ——, 2013b: A Formulation of Unified Three-Dimensional Wave Activity

Flux of Inertia–Gravity Waves and Rossby Waves. Journal of the Atmospheric

Sciences, 70, 1603–1615, https://doi.org/10.1175/JAS-D-12-0138.1.

Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009:

Introduction of the GSI into the NCEP Global Data Assimilation System. Weather

and Forecasting, 24, 1691–1705, https://doi.org/10.1175/2009WAF2222201.1.

Körnich, H., and E. Becker, 2010: A simple model for the interhemispheric coupling of

the middle atmosphere circulation. Advances in Space Research, 45, 661–668,

https://doi.org/10.1016/j.asr.2009.11.001.

Lait, L. R., 1994: An Alternative Form for Potential Vorticity. Journal of the Atmospheric

Sciences,

51,

1754–1759,

https://doi.org/10.1175/15200469(1994)051<1754:AAFFPV>2.0.CO;2.

Lawrence, B. N., and W. J. Randel, 1996: Variability in the mesosphere observed by the

Nimbus 6 pressure modulator radiometer. Journal of Geophysical Research:

Atmospheres, 101, 23475–23489, https://doi.org/10.1029/96JD01652.

Leovy, C., 1964: Radiative Equilibrium of the Mesosphere. Journal of the Atmospheric

Sciences,

21,

238–248,

https://doi.org/10.1175/15200469(1964)021<0238:REOTM>2.0.CO;2.

Li, T., C.-Y. She, S. E. Palo, Q. Wu, H.-L. Liu, and M. L. Salby, 2008: Coordinated lidar

and TIMED observations of the quasi-two-day wave during August 2002–2004

and possible quasi-biennial oscillation influence. Advances in Space Research, 41,

1463–1471, https://doi.org/10.1016/j.asr.2007.03.052.

40

Lieberman, R. S., 1999: Eliassen–Palm Fluxes of the 2-Day Wave. Journal of the

Atmospheric Sciences, 56, 2846–2861, https://doi.org/10.1175/15200469(1999)056<2846:EPFOTD>2.0.CO;2.

——, 2002: CORRIGENDUM. Journal of the Atmospheric Sciences, 59, 2625–2627,

https://doi.org/10.1175/1520-0469(2002)059<2625:C>2.0.CO;2.

Lima, L. M., P. P. Batista, H. Takahashi, and B. R. Clemesha, 2004: Quasi-two-day wave

observed by meteor radar at 22.7°S. Journal of Atmospheric and Solar-Terrestrial

Physics, 66, 529–537, https://doi.org/10.1016/j.jastp.2004.01.007.

Limpasuvan, V., 2003: Two-day wave observations of UARS Microwave Limb Sounder

mesospheric water vapor and temperature. Journal of Geophysical Research, 108

(D10), 4307, https://doi.org/10.1029/2002JD002903.

Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown.

Journal

of

Geophysical

Research,

86,

9707–9714,

https://doi.org/10.1029/JC086iC10p09707.

Liu, H.-L., and R. G. Roble, 2002: A study of a self-generated stratospheric sudden

warming and its mesospheric-lower thermospheric impacts using the coupled

TIME-GCM/CCM3. Journal of Geophysical Research: Atmospheres, 107(D23),

4695, https://doi.org/10.1029/2001JD001533.

——, W. Wang, A. D. Richmond, and R. G. Roble, 2010: Ionospheric variability due to

planetary waves and tides for solar minimum conditions. Journal of Geophysical

Research: Space Physics, 115, A00G01, https://doi.org/10.1029/2009JA015188.

Matsuno, T., 1971: A Dynamical Model of the Stratospheric Sudden Warming. Journal

of the Atmospheric Sciences, 28, 1479–1494, https://doi.org/10.1175/15200469(1971)028<1479:ADMOTS>2.0.CO;2.

McCormack, J. P., L. Coy, and K. W. Hoppel, 2009: Evolution of the quasi 2-day wave

during January 2006. Journal of Geophysical Research, 114, D20115,

https://doi.org/10.1029/2009JD012239.

McFarlane, N. A., 1987: The Effect of Orographically Excited Gravity Wave Drag on the

General Circulation of the Lower Stratosphere and Troposphere. Journal of the

Atmospheric Sciences, 44, 1775–1800, https://doi.org/10.1175/152041

0469(1987)044<1775:TEOOEG>2.0.CO;2.

McIntyre, M. E., 1982: How Well do we Understand the Dynamics of Stratospheric

Warmings? Journal of the Meteorological Society of Japan. Ser. II, 60, 37–65,

https://doi.org/10.2151/jmsj1965.60.1_37.

McLandress, C., W. E. Ward, V. I. Fomichev, K. Semeniuk, S. R. Beagley, N. A.

McFarlane, and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere

and lower thermosphere: An analysis using the extended Canadian Middle

Atmosphere Model. Journal of Geophysical Research, 111, D17111,

https://doi.org/10.1029/2005JD006776.

Medvedeva, I. V., A. I. Semenov, V. I. Perminov, A. B. Beletsky, and A. V. Tatarnikov,

2014: Comparison of ground-based OH temperature data measured at Irkutsk

(52°N, 103°E) and Zvenigorod (56°N, 37°E) stations with Aura MLS v3.3. Acta

Geophysica, 62, 340–349, https://doi.org/10.2478/s11600-013-0161-x.

Miyoshi, Y., and H. Fujiwara, 2003: Day-to-day variations of migrating diurnal tide

simulated by a GCM from the ground surface to the exobase. Geophysical

Research Letters, 30(15), 1789, https://doi.org/10.1029/2003GL017695.

——, ——, H. Jin, and H. Shinagawa, 2014: A global view of gravity waves in the

thermosphere simulated by a general circulation model. Journal of Geophysical

Research:

Space

Physics,

119,

5807–5820,

https://doi.org/10.1002/2014JA019848.

——, ——, ——, and ——, 2015: Impacts of sudden stratospheric warming on general

circulation of the thermosphere. Journal of Geophysical Research: Space Physics,

120, 10,897–10,912, https://doi.org/10.1002/2015JA021894.

Mlynczak, M. G., C. J. Mertens, R. R. Garcia, and R. W. Portmann, 1999: A detailed

evaluation of the stratospheric heat budget: 2. Global radiation balance and

diabatic circulations. Journal of Geophysical Research: Atmospheres, 104, 6039–

6066, https://doi.org/10.1029/1998JD200099.

Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5

atmospheric general circulation model: evolution from MERRA to MERRA2.

Geoscientific Model Development, 8, 1339–1356, https://doi.org/10.5194/gmd-842

1339-2015.

Muller, H. G., and L. Nelson, 1978: A travelling quasi 2-day wave in the meteor region.

Journal of Atmospheric and Terrestrial Physics, 40, 761–766,

https://doi.org/10.1016/0021-9169(78)90136-8.

Murphy, D. J., W. J. R. French, and R. A. Vincent, 2007: Long-period planetary waves

in the mesosphere and lower thermosphere above Davis, Antarctica. Journal of

Atmospheric

and

Solar-Terrestrial

Physics,

69,

2118–2138,

https://doi.org/10.1016/j.jastp.2007.06.008.

Okamoto, K., K. Sato, and H. Akiyoshi, 2011: A study on the formation and trend of the

Brewer-Dobson circulation. Journal of Geophysical Research, 116, D10117,

https://doi.org/10.1029/2010JD014953.

Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. Journal of the Meteorological

Society of Japan. Ser. II, 85, 369–432, https://doi.org/10.2151/jmsj.85.369.

Pancheva, D., and Coauthors, 2004: Variability of the quasi-2-day wave observed in the

MLT region during the PSMOS campaign of June–August 1999. Journal of

Atmospheric

and

Solar-Terrestrial

Physics,

66,

539–565,

https://doi.org/10.1016/j.jastp.2004.01.008.

——, and Coauthors, 2008: Planetary waves in coupling the stratosphere and mesosphere

during the major stratospheric warming in 2003/2004. Journal of Geophysical

Research, 113, D12105, https://doi.org/10.1029/2007JD009011.

Pancheva, D., P. Mukhtarov, D. E. Siskind, and A. K. Smith, 2016: Global distribution

and variability of quasi 2 day waves based on the NOGAPS-ALPHA reanalysis

model: QTDWs in NOGAPS-ALPHA Reanalysis Model. Journal of Geophysical

Research:

Space

Physics,

121,

11,422–11,449,

https://doi.org/10.1002/2016JA023381.

——, ——, and ——, 2018: Climatology of the quasi-2-day waves observed in the

MLS/Aura measurements (2005–2014). Journal of Atmospheric and SolarTerrestrial Physics, 171, 210–224, https://doi.org/10.1016/j.jastp.2017.05.002.

Pfister, L., 1985: Baroclinic Instability of Easterly Jets with Applications to the Summer

Mesosphere. Journal of the Atmospheric Sciences, 42, 313–330,

43

https://doi.org/10.1175/1520-0469(1985)042<0313:BIOEJW>2.0.CO;2.

Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and

fronts.

Reviews

of

Geophysics,

52,

33–76,

https://doi.org/10.1002/2012RG000419.

Plumb, R. A., 1983: Baroclinic Instability of the Summer Mesosphere: A Mechanism for

the Quasi-Two-Day Wave? Journal of the Atmospheric Sciences, 40, 262–270,

https://doi.org/10.1175/1520-0469(1983)040<0262:BIOTSM>2.0.CO;2.

——, 2002: Stratospheric Transport. Journal of the Meteorological Society of Japan. Ser.

II, 80, 793–809, https://doi.org/10.2151/jmsj.80.793.

Randel, W. J., F. Wu, J. M. Russell, A. Roche, and J. W. Waters, 1998: Seasonal Cycles

and QBO Variations in Stratospheric CH 4 and H 2 O Observed in UARS HALOE

Data.

Journal

of

the

Atmospheric

Sciences,

55,

163–185,

https://doi.org/10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2.

Richards, P. G., J. A. Fennelly, and D. G. Torr, 1994: EUVAC: A solar EUV Flux Model

for aeronomic calculations. Journal of Geophysical Research, 99, 8981–8992,

https://doi.org/10.1029/94JA00518.

Rodgers, C. D., and A. J. Prata, 1981: Evidence for a traveling two-day wave in the middle

atmosphere. Journal of Geophysical

https://doi.org/10.1029/JC086iC10p09661.

Research,

86,

9661–9664,

Rojas, M., and W. Norton, 2007: Amplification of the 2-day wave from mutual interaction

of global Rossby-gravity and local modes in the summer mesosphere. Journal of

Geophysical Research, 112, D12114, https://doi.org/10.1029/2006JD008084.

Sakazaki, T., K. Sato, Y. Kawatani, and S. Watanabe, 2015: Three-dimensional structures

of tropical nonmigrating tides in a high-vertical-resolution general circulation

model: Nonmigrating tides in a GCM. Journal of Geophysical Research:

Atmospheres, 120, 1759–1775, https://doi.org/10.1002/2014JD022464.

Salby, M. L., 1981a: The 2-day wave in the middle atmosphere: Observations and theory.

Journal

of

Geophysical

Research,

86,

9654–9660,

https://doi.org/10.1029/JC086iC10p09654.

44

——, 1981b: Rossby Normal Modes in Nonuniform Background Configurations. Part II.

Equinox and Solstice Conditions. Journal of the Atmospheric Sciences, 38, 1827–

1840, https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2.

——, and R. G. Roper, 1980: Long-Period Oscillations in the Meteor Region. Journal of

the Atmospheric Sciences, 37, 237–244, https://doi.org/10.1175/15200469(1980)037<0237:LPOITM>2.0.CO;2.

——, and P. F. Callaghan, 2001: Seasonal Amplification of the 2-Day Wave:

Relationship between Normal Mode and Instability. Journal of the Atmospheric

Sciences,

58,

1858–1869,

https://doi.org/10.1175/15200469(2001)058<1858:SAOTDW>2.0.CO;2.

Sato, K., and M. Nomoto, 2015: Gravity Wave–Induced Anomalous Potential Vorticity

Gradient Generating Planetary Waves in the Winter Mesosphere. Journal of the

Atmospheric Sciences, 72, 3609–3624, https://doi.org/10.1175/JAS-D-15-0046.1.

——, and S. Hirano, 2019: The climatology of the Brewer–Dobson circulation and the

contribution of gravity waves. Atmospheric Chemistry and Physics, 19, 4517–

4539, https://doi.org/10.5194/acp-19-4517-2019.

——, R. Yasui, and Y. Miyoshi, 2018: The Momentum Budget in the Stratosphere,

Mesosphere, and Lower Thermosphere. Part I: Contributions of Different Wave

Types and In Situ Generation of Rossby Waves. Journal of the Atmospheric

Sciences, 75, 3613–3633, https://doi.org/10.1175/JAS-D-17-0336.1.

Satomura, T., and K. Sato, 1999: Secondary Generation of Gravity Waves Associated

with the Breaking of Mountain Waves. Journal of the Atmospheric Sciences, 56,

3847–3858,

https://doi.org/10.1175/15200469(1999)056<3847:SGOGWA>2.0.CO;2.

Schwartz, M. J., and Coauthors, 2008: Validation of the Aura Microwave Limb Sounder

temperature and geopotential height measurements. Journal of Geophysical

Research, 113, D15S11, https://doi.org/10.1029/2007JD008783.

Semeniuk, K., and T. G. Shepherd, 2001a: Mechanisms for Tropical Upwelling in the

Stratosphere. Journal of the Atmospheric Sciences, 58, 3097–3115,

https://doi.org/10.1175/1520-0469(2001)058<3097:MFTUIT>2.0.CO;2.

45

——, and ——, 2001b: The Middle-Atmosphere Hadley Circulation and Equatorial

Inertial Adjustment. Journal of the Atmospheric Sciences, 58, 3077–3096,

https://doi.org/10.1175/1520-0469(2001)058<3077:TMAHCA>2.0.CO;2.

Shine, K. P., 1987: The Middle Atmosphere In the Absence of Dynamical Heat Fluxes.

Quarterly Journal of the Royal Meteorological Society, 113, 603–633,

https://doi.org/10.1002/qj.49711347610.

Siskind, D. E., and J. P. McCormack, 2014: Summer mesospheric warmings and the quasi

2 day wave: Siskind and McCormack: Summer mesospheric warmings.

Geophysical

Research

Letters,

41,

717–722,

https://doi.org/10.1002/2013GL058875.

Sjoberg, J. P., and T. Birner, 2014: Stratospheric Wave–Mean Flow Feedbacks and

Sudden Stratospheric Warmings in a Simple Model Forced by Upward Wave

Activity Flux. Journal of the Atmospheric Sciences, 71, 4055–4071,

https://doi.org/10.1175/JAS-D-14-0113.1.

Smith, A. K., 1992: Preconditioning for Stratospheric Sudden Warmings: Sensitivity

Studies with a Numerical Model. Journal of the Atmospheric Sciences, 49, 1003–

1019, https://doi.org/10.1175/1520-0469(1992)049<1003:PFSSWS>2.0.CO;2.

——, 1996: Longitudinal Variations in Mesospheric Winds: Evidence for Gravity Wave

Filtering by Planetary Waves. Journal of the Atmospheric Sciences, 53, 1156–

1173, https://doi.org/10.1175/1520-0469(1996)053<1156:LVIMWE>2.0.CO;2.

Strobel, D. F., 1978: Parameterization of the atmospheric heating rate from 15 to 120 km

due to O2 and O3 absorption of solar radiation. Journal of Geophysical Research,

83, 6225–6230, https://doi.org/10.1029/JC083iC12p06225.

Thayaparan, T., W. K. Hocking, J. MacDougall, A. H. Manson, and C. E. Meek, 1997:

Simultaneous observations of the 2-day wave at London (43°N, 81°W) and

Saskatoon (52°N, 107°W) near 91 km altitude during the two years of 1993 and

1994. Annales Geophysicae, 15, 1324–1339, https://doi.org/10.1007/s00585-9971324-3.

Tunbridge, V. M., D. J. Sandford, and N. J. Mitchell, 2011: Zonal wave numbers of the

summertime 2 day planetary wave observed in the mesosphere by EOS Aura

46

Microwave Limb Sounder. Journal of Geophysical Research, 116, D11103,

https://doi.org/10.1029/2010JD014567.

Vadas, S. L., and H. Liu, 2009: Generation of large-scale gravity waves and neutral winds

in the thermosphere from the dissipation of convectively generated gravity waves.

Journal of Geophysical Research: Space Physics, 114, A10310,

https://doi.org/10.1029/2009JA014108.

——, and G. Crowley, 2010: Sources of the traveling ionospheric disturbances observed

by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007.

Journal of Geophysical Research: Space Physics, 115, A07324,

https://doi.org/10.1029/2009JA015053.

——, D. C. Fritts, and M. J. Alexander, 2003: Mechanism for the Generation of

Secondary Waves in Wave Breaking Regions. Journal of the Atmospheric

Sciences,

60,

194–214,

https://doi.org/10.1175/15200469(2003)060<0194:MFTGOS>2.0.CO;2.

Venne, D. E., and J. L. Stanford, 1979: Observation of a 4–Day Temperature Wave in the

Polar Winter Stratosphere. Journal of the Atmospheric Sciences, 36, 2016–2019,

https://doi.org/10.1175/1520-0469(1979)036<2016:OOATWI>2.0.CO;2.

Watanabe, S., Y. Tomikawa, K. Sato, Y. Kawatani, K. Miyazaki, and M. Takahashi,

2009: Simulation of the eastward 4-day wave in the Antarctic winter mesosphere

using a gravity wave resolving general circulation model. Journal of Geophysical

Research, 114, D16111, https://doi.org/10.1029/2008JD011636.

Waters, J. W., and Coauthors, 2006: The Earth observing system microwave limb sounder

(EOS MLS) on the aura Satellite. IEEE Transactions on Geoscience and Remote

Sensing, 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771.

Wu, D. L., P. B. Hays, W. R. Skinner, A. R. Marshall, M. D. Burrage, R. S. Lieberman,

and D. A. Ortland, 1993: Observations of the quasi 2-day wave from the High

Resolution Doppler Imager on Uars. Geophysical Research Letters, 20, 2853–

2856, https://doi.org/10.1029/93GL03008.

——, E. F. Fishbein, W. G. Read, and J. W. Waters, 1996: Excitation and Evolution of

the Quasi-2-Day Wave Observed in UARS /MLS Temperature Measurements.

47

Journal of the Atmospheric Sciences, 53, 728–738, https://doi.org/10.1175/15200469(1996)053<0728:EAEOTQ>2.0.CO;2.

Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-Dimensional Variational Analysis

with Spatially Inhomogeneous Covariances. Monthly Weather Review, 130,

2905–2916,

https://doi.org/10.1175/15200493(2002)130<2905:TDVAWS>2.0.CO;2.

Yasuda, Y., K. Sato, and N. Sugimoto, 2015a: A Theoretical Study on the Spontaneous

Radiation of Inertia–Gravity Waves Using the Renormalization Group Method.

Part I: Derivation of the Renormalization Group Equations. Journal of the

Atmospheric Sciences, 72, 957–983, https://doi.org/10.1175/JAS-D-13-0370.1.

——, ——, and ——, 2015b: A Theoretical Study on the Spontaneous Radiation of

Inertia–Gravity Waves Using the Renormalization Group Method. Part II:

Verification of the Theoretical Equations by Numerical Simulation. Journal of the

Atmospheric Sciences, 72, 984–1009, https://doi.org/10.1175/JAS-D-13-0371.1.

——, F. Bouchet, and A. Venaille, 2017: A New Interpretation of Vortex-Split Sudden

Stratospheric Warmings in Terms of Equilibrium Statistical Mechanics. Journal

of the Atmospheric Sciences, 74, 3915–3936, https://doi.org/10.1175/JAS-D-170045.1.

Yasui, R., K. Sato, and Y. Miyoshi, 2018: The Momentum Budget in the Stratosphere,

Mesosphere, and Lower Thermosphere. Part II: The In Situ Generation of Gravity

Waves. Journal of the Atmospheric Sciences, 75, 3635–3651,

https://doi.org/10.1175/JAS-D-17-0337.1.

Yiğit, E., P. Koucká Knížová, K. Georgieva, and W. Ward, 2016: A review of vertical

coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden

stratospheric warmings, space weather, and of solar activity. Journal of

Atmospheric

and

Solar-Terrestrial

Physics,

141,

1–12,

https://doi.org/10.1016/j.jastp.2016.02.011.

48

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る