リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three-dimensional structure and processes characteristic of frontal-scale atmospheric features around the midlatitude western boundary currents : Significance of high-resolution sea-surface temperature for atmospheric reanalysis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three-dimensional structure and processes characteristic of frontal-scale atmospheric features around the midlatitude western boundary currents : Significance of high-resolution sea-surface temperature for atmospheric reanalysis

升永, 竜介 東京大学 DOI:10.15083/0002001521

2021.09.08

概要

中緯度海洋は比較的海面水温が低いため,大気変動に対して受動的に応答するのみであり,熱帯海域と異なり周辺の大気循環へ明瞭な影響を及ぼさないと長い間考えらえてきた.しかしながら,高解像度の衛星大気観測や数値モデリングの進展により,暖流としての亜熱帯の西岸境界流は熱帯から運んできた大量の熱を乱流顕熱・水蒸気フラックスの形で放出することで,中緯度であってもその近傍の大気へ顕著な影響を及ぼし得ることが近年指摘されるようになった.西岸境界流やそれらの続流に伴う強い水温前線に対する応答として,それらに沿う海上風収束や上昇流,降水の局所的強化が気候平均場に見出されるなど,主に北半球について西岸境界流が近傍の大気場へ及ぼす影響が明らかにされつつある.

しかしながら,南半球の西岸境界流から大気場への気候平均的影響に関する研究は立ち後れている.さらに,西岸境界流の変動に対する大気応答の理解は北半球も含めてまだ限定的である.それら気候平均場の大気場応答の形成過程に関する理解も未だ十分ではない.そこで本研究では,気象庁気象研究所との協力の下で高解像度の海面水温データを用いた全球大気再解析データを新規作成することで,南北両半球の西岸境界流域に特有の大気の三次元構造について,気候平均場の分布と経年変動,それらの形成過程について包括的な調査を行った.さらに,全く同一のデータ同化システムに低解像度の海面水温データを用いて作成された大気再解析との比較を行うことで,西岸境界流が果たす役割を定量的に調査した.

高解像度海面水温データを用いた大気再解析の南北半球におけるそれぞれの冬季気候平均場には,主要な西岸境界流に沿う強い水温前線と,その暖水側での局所的に強い上向き乱流熱放出が表現されている.それに伴う海上風収束や降水,気柱積算雲水量の増加も表現されており,それらは独立な衛星観測データと整合的であることが確認された.それに加えて,黒潮続流の十年規模の流路変動に伴う海面水温変動に対する応答として,これらの大気構造も変動することが確認された.さらに,夏季気候平均場においても同様の特徴が見出された.一方,大気観測データが同化されているにもかかわらず,低い解像度の海面水温データを用いた再解析データでは,西岸境界流に沿う水温前線の表現が不十分であることを反映して上述のような水温前線域特有の大気構造が不明瞭なことが示された.

さらに,水温前線が大気鉛直流へ及ぼす影響も評価した.両大気再解析の比較から,水温前線はどの海域・季節でもその暖水側で上昇流を強化するよう働くことが見出された.さらに,黒潮・続流域やメキシコ湾流域には明瞭な季節性があり,冬季には水温前線による上昇流の強化が対流圏下層に極大を持つのに対し,夏季にはより活発な対流性降水の反映としてその極大が対流圏中層に位置することが見出された.一方,アガラス反転流域やブラジル・マルビナス合流域では季節によらず対流圏下層に極大をもつことが見出された.このような,水温前線が鉛直流の構造に及ぼす影響の季節性や海域毎の違いは,平均風による海上温度移流や大気成層度が海域や季節によって異なることなどの反映と解釈できることが示唆された.これらは,西岸境界流が大気へ及ぼす影響を明瞭に示した結果であると共に,大気再解析の品質向上に対する高解像度海面水温データの重要性を示すものである.

さらに,冬季の黒潮続流・親潮域に着目し,気候平均場に見られる上記のような水温前線域特有の大気の三次元構造が日スケールで形成される様子を調査した.統計的な解析と事例解析から,黒潮続流沿いの水温前線の暖水側で中程度の強さをもつ海上風収束の事例が頻発しており,それらが気候平均場における海上風収束極大の形成に最大の寄与をもたらすことが定量的に示された.一方で,総観規模擾乱に直接伴う極端事例は,空間一様な収束を気候平均場にもたらすこと示唆された.

クラスター解析から,それら中程度の強さの収束が,黒潮続流上で形成されるメソ低気圧や,顕著な総観規模擾乱の通過後に大気の前線が黒潮続流に沿って停滞しやすい傾向を反映することが示された.これらの収束の形成は,寒気移流時に水温前線に沿って暖流からの局所的で膨大な熱放出が大気境界層を特に強く加熱することを反映した局所的な海面気圧低下によることが示唆された.そして,その海上風収束に伴う上昇流が比較的浅い対流性降水を引き起こし,それに伴う潜熱加熱が上昇流強化や海面気圧のさらなる低下をもたらす可能性も示唆された.

このように,高解像度海面水温データを用いた全球大気再解析データを作成することで,これまであまり調査されてこなかった南半球も含め,中緯度の主要な西岸境界流域特有の大気の三次元構造の海域ごとの特徴が明らかにされた.南北半球間でその季節性が明瞭に異なることも見出された.さらに,特に冬季について,そのような特徴的な気候平均場の形成に寄与する典型的な日スケールの現象が具体的に特定された.その現象に対して,海面水温の微細構造が大気境界層内の構造を変質させることに加えて,浅い対流がもたらす潜熱加熱が重要な役割を果たしていることも示唆された.さらに,大気再解析データでそれらの特徴的な大気の三次元構造を適切に表現するためには高解像度海面水温データが必須であることが示された.本研究の成果を受けて,気象庁時期大気再解析JRA-3Qでは高解像度海面水温データを1985年から用いることが決まっている.

この論文で使われている画像

参考文献

Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. Journal of Climate, 15, 2205–2231.

Arya, S. P., 2001: Introduction to Micrometeorology. 2nd ed., Academic Press, 420 pp.

Banzon, V., T. M. Smith, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea surface temperature for climate monitoring, modeling and environmental studies. Earth System Science Data Discussions, 8, 165–176.

Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. Journal of Climate, 30, 8207–8221.

Bolton, D., 1980: The computation of equivalent potential temperature. Monthly Weather Review, 108, 1046–1053.

Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds. Science, 303, 978–983.

Chelton, D. B., and S. P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 52–69.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysical Research: Oceans, 105, 19477–19 498.

Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16, 571–591.

Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. Journal of the Atmospheric Sciences, 61, 961–981.

Feltz, M. L., R. O. Knuteson, H. E. Revercomb, and D. C. Tobin, 2014: A methodology for the validation of temperature profiles from hyperspectral infrared sounders using GPS radio occultation: Experience with AIRS and COSMIC. Journal of Geophysical Research Atmospheres, 119, 1680–1691.

Fiorino, M., 2004: A multi-decadal daily sea surface temperature and sea ice concentration data set for the ERA-40 reanalysis. ERA-40 Project Report Series. No. 12, ECMWF. [Available online at https://www.ecmwf.int/sites/default/files/elibrary/2004/9396-multi-decadal-daily-seasurface-temperature-and-sea-ice-concentration-data-set-era-40.pdf.]

Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Reviews of Geophysics, 23, 357–390.

Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. Journal of Climate, 24, 762–777.

Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6, 608–612.

Hanawa, K., R. San-nomiya, and Y. Tanimoto, 1995: Static relationship between anomalies of SSTs and air-sea heat fluxes in the North Pacific. Journal of the Meteorological Society of Japan. Ser. II, 73, 757–763.

Hand, R., N. S. Keenlyside, N.-E. Omrani, and M. Latif, 2014: Simulated response to inter-annual SST variations in the Gulf Stream region. Climate Dynamics, 42, 715–731.

Harada, Y., and Coauthors, 2016: The JRA-55 Reanalysis: Representation of Atmospheric Circulation and Climate Variability. Journal of the Meteorological Society of Japan. Ser. II, 94, 269–302.

Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Weekly to Monthly Variability. Journal of Climate, 2, 1500–1506.

Hewson, T. D., 1998: Objective fronts. Meteorological Applications, 5, 37–63.

Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2016: Response of rapidly developing extratropical cyclones to sea surface temperature variations over the western KuroshioOyashio confluence region: Extratropical Cyclone and SST Variations. Journal of Geophysical Research: Atmospheres, 121, 3843–3858.

Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed., Academic Press, 535pp.

Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14, 131–151.

Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. Journal of the Atmospheric Sciences, 47, 1854–1864.

Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. Journal of Climate, 24, 3377–3401.

Hubanks, P., M. King, S. Platnick, and R. Pincus, 2008: MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document. ATBD-MOD-30, 96pp. [Available online at https://modis-atmos.gsfc.nasa.gov/_docs/L3_ATBD_2008_12_04.pdf.]

Iizuka, S., 2010: Simulations of wintertime precipitation in the vicinity of Japan: Sensitivity to fine-scale distributions of sea surface temperature. Journal of Geophysical Research Atmospheres, 115, D10107.

Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of seasurface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. International Journal of Climatology, 25, 865–879.

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83, 1631–1643.

Kawamura, T., 1966: Surface wind systems over central Japan in the winter season. — with special reference to winter monsoons—. Geographical Review of Japan, 39, 538– 554. (in Japanese)

Kawase, H., Y. Takeuchi, T. Sato, and F. Kimura, 2006: Precipitable water vapor around orographically induced convergence line. SOLA, 2, 25–28.

Kawai, Y., S. Iizuka, A. Manda, M. K. Yoshioka, S. Katagiri, Y. Tachibana, and H. Nakamura, 2015: Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. Journal of Oceanography, 71, 511–526.

Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air-sea interaction: Gulf stream and Kuroshio Extension. Journal of Climate, 23, 5644–5667.

Kida, S., and Coauthors, 2016: Oceanic fronts and jets around Japan: Journal of Oceanography, 71, 469–497.

Kilpatrick, T., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. Journal of Climate, 27, 1698–1718.

Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric Response to a Midlatitude SST Front: Alongfront Winds. Journal of the Atmospheric Sciences, 73, 3489–3509.

Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori, 2014: Preliminary Results of the JRA-55C, an Atmospheric Reanalysis Assimilating Conventional Observations Only. SOLA, 10, 78–82.

Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93, 5–48.

Kurihara, Y., T. Sakurai, and T. Kuragano, 2006: Daily sea-surface temperature over the global ocean constructed from satellite microwave, infrared and in-situ observations. JMA Sokkoujihou special issue, 73, S1–S18. (in Japanese)

Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. Journal of Climate, 15, 2233–2256.

Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie, 2010: Precipitation response to the Gulf Stream in an atmospheric GCM. Journal of Climate, 23, 3676–3698,

Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: A review. Journal of Climate, 23, 3249–3281.

Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. Journal of the Atmospheric Sciences, 44, 2418–2436.

Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015a: Atmospheric responses to oceanic eddies in the Kuroshio extension region. Journal of Geophysical Research: Atmospheres, 6313–6330.

Ma, X., P. Chang, R. Saravanan, R. Montuoro, J.-S. Hsieh, D. Wu, X. Lin, L, Wu, and Z. Jing 2015b: Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?. Scientific reports, 5, 17785.

Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533–537.

Masunaga, R., H. Nakamura, H. Kamahori, K. Onogi, and S. Okajima, 2018: JRA55CHS: An atmospheric reanalysis produced with high-resolution SST. SOLA, 14, 6–13.

Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and B. Qiu, 2016: Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. Journal of Climate, 29, 3273–3296.

Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and Y. Tanimoto, 2015: Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. Journal of Climate, 28, 1764–1787.

Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209.

Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S. P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. Journal of Climate, 23, 3699–3719.

Miyasaka, T., H. Nakamura, B. Taguchi, and M. Nonaka, 2014: Multidecadal modulations of the low-frequency climate variability in the wintertime North Pacific since 1950. Geophysical Research Letters, 41, 2948–2955.

Moore, J. T., A. C. Czarnetzki, and P. S. Market, 1998: Heavy precipitation associated with elevated thunderstorms formed in a convectively unstable layer aloft. Meteorological Applications, 5, 373–384.

Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. Journal of Geophysical Research, 108, 3078.

Nakamura, H., A. Isobe, S. Minobe, H. Mitsudera, M. Nonaka, and T. Suga, 2015: ”Hot Spots” in the climate system—new developments in the extratropical ocean– atmosphere interaction research: a short review and an introduction. Journal of Oceanography, 71, 463–467.

Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S. P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophysical Research Letters, 35, L15709.

Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. AGU Geophysical Monograph Series, 147, 329–345.

Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. Journal of Climate, 17, 1828–1844.

Nishikawa, H., Y. Tachibana, Y. Kawai, M. K. Yoshioka, and H. Nakamura, 2016: Evidence for SST-forced anomalous winds revealed from simultaneous radiosonde launches from three ships across the Kuroshio Extension front. Monthly Weather Review, 144, 3553–3567.

Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Air-sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. Journal of Climate, 22, 6515–6535.

Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio-Oyashio extension simulated in an eddy-resolving OGCM. Journal of Climate, 19, 1970–1989.

Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. Journal of Climate, 16, 1404–1413.

Nonaka, M., Y. Sasai, H. Sasaki, B. Taguchi, and H. Nakamura, 2016: How potentially predictable are midlatitude ocean currents? Scientific Reports, 6, 20153.

Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophysical Research Letters, 39, L05804.

Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, A. Kuwano-Yoshida, B. Taguchi, M. Mori, and Y. Kosaka, 2018: Mechanisms for the maintenance of the wintertime basinscale atmospheric response to decadal SST variability in the North Pacific subarctic frontal zone. Journal of Climate, 31, 297–315.

O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. Journal of Climate, 16, 2340–2354.

O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. Journal of Climate, 23, 255–281.

O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. Journal of Climate, 25, 5916–5942.

O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. Journal of Climate, 18, 2706–2723.

O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream Convergence Zone in the Time-Mean Winds. Journal of the Atmospheric Sciences, 74, 2383–2412.

O’Reilly, C. H., S. Minobe, and A. Kuwano-Yoshida, 2016: The influence of the Gulf Stream on wintertime European blocking. Climate Dynamics, 47, 1545–1567.

Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quarterly Journal of the Royal Meteorological Society, 142, 1554–1561.

Parfitt, R., A. Czaja, and Y. O. Kwon, 2017a: The impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea interaction. Geophysical Research Letters, 44, 3246–3254.

Parfitt, R., A. Czaja, S. Minobe, and A. Kuwano-Yoshida, 2016: The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophysical Research Letters, 43, 2299–2306.

Parfitt, R., A. Czaja, and H. Seo, 2017b: A simple diagnostic for the detection of atmospheric fronts. Geophysical Research Letters, 44, 4351–4358.

Perry, K. L., 2001: Sea Winds on QuikSCAT level 3 daily, gridded ocean wind vectors (JPL Sea Winds project) version 1.1. JPL Doc. D-20335, Jet Propulsion Laboratory, Pasadena, CA, 39 pp. [Available online at http://podaac.jpl.nasa.gov.]

Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled oceanatmosphere interactions in the Kuroshio Extension region. Dynamics of Atmospheres and Oceans, 63, 60–78.

Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. Journal of Physical Oceanography, 33, 2465–2482.

Qiu, B., and S. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Research Part II: Topical Studies in Oceanography, 57, 1098–1110.

Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. Journal of Climate, 27, 1751– 1764.

Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the global sea ice and sea surface temperature data set, 1903–1994. Climate Research Tech. Note CRTN 74, Hadley Centre, Met Office, 21 pp. plus figures.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 1063–1082.

Renard, R. J., and L. C. Clarke, 1965: Experiments in numerical objective frontal analysis. Monthly Weather Review, 93, 547–556.

Révelard, A., C. Frankignoul, N. Sennéchael, Y. O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. Journal of Climate, 29, 2123–2144.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20, 5473–5496.

Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38, 2379–2413.

Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.

Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. Journal of Climate, 23, 1793–1814.

Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton, and W. Ohfuchi, Eds., Springer, 157–185.

Sasaki, Y. N., and S. Minobe, 2016: Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. Journal of Oceanography, 71, 499–509.

Sasaki, Y. N., S. Minobe, and N. Schneider, 2013: Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-Jet Theory. Journal of Physical Oceanography, 43, 442–456.

Schemm, S., I. Rudeva, and I. Simmonds, 2015: Extratropical fronts in the lower troposphere—global perspectives obtained from two automated methods. Quarterly Journal of the Royal Meteorological Society, 141, 1686–1698.

Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. Journal of Climate, 15, 586–605.

Schneider, N., and B. Qiu, 2015: The Atmospheric Response to Weak Sea Surface Temperature Fronts. Journal of the Atmospheric Sciences, 72, 3356–3377.

Seo, H., M. Jochum, R. Murtugudde, A. J. Miller, and J. O. Roads, 2007: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. Journal of Climate, 20, 5842–5855.

Sheldon, L., A. Czaja, B. Vannière, C. Morcrette, B. Sohet, M. Casado, and D. Smith, 2017: A ’warm path’ for Gulf Stream-troposphere interactions. Tellus, Series A: Dynamic Meteorology and Oceanography, 69, 1299397.

Shimada, T., and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophysical Research Letters, 38, L06704.

Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Technical Notes NCAR/TN-475+STR, 113pp.

Small, R. J., S.-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to pacific tropical instability waves. Journal of Climate, 16, 3723–3741.

Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45, 274–319.

Small, R. J., and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the community earth system model. Journal of Advances in Modeling Earth Systems, 6, 1065–1094.

Small, R. J., 2018: A review of covariability of mesoscale SST, surface heat fluxes, and surface convergence. Ocean Mesoscale Eddy Interactions with the Atmosphere Workshop, Portland (Oregon), US CLIVAR. [Available online at https://usclivar.org/sites/default/files/meetings/2018/presentations/Small_Surfaceconvergence-OS2018-EddyWorkshop-4.pdf.]

Smirnov, D., M. Newman, M. A. Alexander, Y. O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. Journal of Climate, 28, 1126–1147.

Song, Q., D. B. Chelton, S. K. Esbensen, N. Thum, and L. W. O’Neill, 2009: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. 22, 146–164.

Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. Journal of Geophysical Research: Oceans, 111, C12006.

Spall, M. A., 2007: Midlatitude wind stress-surface temperature coupling in the vicinity of oceanic fronts. Journal of Climate, 20, 3785–3801.

Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

Sugimoto, S., K. Aono, and S. Fukui, 2017: Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio–Oyashio Confluence region. Scientific Reports, 7, 11871.

Sugimoto, S., and K. Hanawa, 2011: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-oyashio confluence region: Influences of warm eddies detached from the Kuroshio extension. Journal of Climate, 24, 6551–6561.

Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone, observations and a coupled model simulation. Journal of Climate, 25, 111–139.

Taguchi, B., H. Nakamura, M. Nonaka, and S. P. Xie, 2009: Influences of the Kuroshio/Oyashio extensions on air-sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. Journal of Climate, 22, 6536–6560.

Taguchi, B., S. P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. Journal of Climate, 20, 2357–2377.

Takatama, K., S. Minobe, M. Inatsu, and R. J. Small, 2012: Contributions of different mechanism for atmospheric response to the Gulf Stream in a regional atmospheric model. Geophys. Res. Lett, 21, 16–21.

Takatama, K., S. Minobe, M. Inatsu, and R. J. Small, 2015: Diagnostics for near-surface wind response to the Gulf Stream in a regional atmospheric model. Journal of Climate, 28, 238–255.

Takatama, K., and N. Schneider, 2017: The role of back pressure in the atmospheric response to surface stress induced by the Kuroshio. Journal of the Atmospheric Science, 74, 597–615.

Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. Journal of Geophysical Research, 108, 3304.

Tanimoto, Y., T. Kanenari, H. Tokinaga, and S. P. Xie, 2011: Sea level pressure minimum along the Kuroshio and its extension. Journal of Climate, 24, 4419–4434.

Tanimoto, Y., S.-P. Xie, K. Kai, H. Okajima, H. Tokinaga, T. Murayama, M. Nonaka, and H. Nakamura, 2009: Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. Journal of Climate, 22, 1360–1374.

Tokinaga, H., Y. Tanimoto, and S. P. Xie, 2005: SST-induced surface wind variations over the Brazil-Malvinas confluence: Satellite and in situ observations. Journal of Climate, 18, 3470–3482.

Tokinaga, H., Y. Tanimoto, S. P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. Journal of Climate, 22, 4241–4260.

Tomita, H., T. Hihara, and M. Kubota, 2018: Improved satellite estimation of near-surface humidity using vertical water vapor profile information. Geophysical Research Letters,45, 899–906.

Tomita, H., S.-P. Xie, H. Tokinaga, and Y. Kawai, 2013: Cloud response to the meandering Kuroshio Extension front. journal of Climate, 26, 9393–9398.

Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012.

Vannière, B., A. Czaja, and Dacre, H. F., 2017: Contribution of the cold sector of extratropical cyclones to mean state features over the Gulf Stream in winter. Quarterly Journal of the Royal Meteorological Society, 143, 1990–2000.

Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. Journal of Climate, 2, 1492–1499.

Wang, Y. H., and T. W. Liu, 2015: Observational evidence of frontal-scale atmospheric responses to Kuroshio extension variability. Journal of Climate, 28, 9459–9472.

Weaver, C. P., and V. Ramanathan, 1997: Relationships between large-scale vertical velocity, static stability, and cloud radiative forcing over northern hemisphere extratropical oceans. Journal of Climate, 10, 2871–2887.

Wu, L., W. Cai, L. Zhang, H. Nakamura, A. Timmermann, T. Joyce, M. J. McPhaden, M. Alexander, B. Qiu, M Visbeck, P. Chang, and B. Giese, 2012: Enhanced warming over the global subtropical western boundary currents, Nature Climate Change, 2, 161–166.

Xie, S.-P., 2004: Satellite observations of cool ocean-atmosphere interaction. Bulletin of the American Meteorological Society, 85, 195–208.

Yasuda, I., 2003: Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59, 389–402.

Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

Zhang, L., A. Kumar, and W. Wang, 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). Journal of Geophysical Research Atmospheres, 117, D08105.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る