リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Linear-stability analysis of plane beds under flows with suspended loads」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Linear-stability analysis of plane beds under flows with suspended loads

Ohata, Koji Naruse, Hajime Izumi, Norihiro 京都大学 DOI:10.5194/esurf-11-961-2023

2023.10.06

概要

Abstract. Plane beds develop under flows in fluvial and marine environments; they are recorded as parallel lamination in sandstone beds, such as those found in turbidites. However, whereas turbidites typically exhibit parallel lamination, they rarely feature dune-scale cross-lamination. Although the reason for the scarcity of dune-scale cross-lamination in turbidites is still debated, the formation of dunes may be dampened by suspended loads. Here, we perform, for the first time, linear-stability analysis to show that flows with suspended loads facilitate the formation of plane beds. For a fine-grained bed, a suspended load can promote the formation of plane beds and dampen the formation of dunes. These results of theoretical analysis were verified with observational data of plane beds under open-channel flows. Our theoretical analysis found that suspended loads promote the formation of plane beds, which suggests that the development of dunes under turbidity currents is suppressed by the presence of suspended loads.

この論文で使われている画像

参考文献

The coefficient bn is derived as

b = K−1 NR1 .

(A28)

Therefore, the following equation is obtained:

c1 (η) = c1∗ (η)R1 .

(A29)

By substituting Eqs. (A17), (A18), and (A29) into Exner’s

equation (Eq. 61), the complex angular frequency ω is obtained in the following form:

ω = ω(k, F r, Cz , Rep ) = ωr + iωi ,

(A30)

where ωi corresponds to the growth rate of the perturbation.

˜ h˜ 0 ) (Eq. 27) and

Here, using Rep = Rep (D) = Rep (D,

˜ h˜ 0 ) (Eq. 52), we can rewrite Eq. (A30)

Cz = Cz (R0 ) = Cz (D,

as

˜ h˜ 0 .

ω = ω k, F r, D,

(A31)

Thus, we can obtain the growth rate ωi as a function of k

˜ and h˜ 0 .

for a given combination of Fr, D,

Code and data availability. The datasets and codes used for

this study can be found at https://doi.org/10.5281/zenodo.8332448

(Ohata et al., 2023). Unpublished data used for the analysis were cited from the dataset of Brownlie (2018)

(https://doi.org/10.22002/d1.943).

Author contributions. KO and NI performed the linear-stability

analysis. HN and NI contributed to the interpretation of the results.

KO wrote the manuscript and prepared the figures, and then HN and

NI provided feedback on the manuscript and figures.

Competing interests. The contact author has declared that none

of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains

neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Acknowledgements. We would like to express our gratitude to

Robert Dorrell for his comments. We are thankful to the anonymous referees for their insightful comments on earlier versions of

the manuscript.

https://doi.org/10.5194/esurf-11-961-2023

Arnott, R. W. C.: Turbidites, and the Case of the

Missing Dunes, J. Sediment. Res., 82, 379–384,

https://doi.org/10.2110/jsr.2012.29, 2012.

Bohorquez, P., Cañada-Pereira, P., Jimenez-Ruiz, P. J.,

and del Moral-Erencia, J. D.: The fascination of a

shallow-water theory for the formation of megafloodscale dunes and antidunes, Earth-Sci. Rev., 193, 91–108,

https://doi.org/10.1016/j.earscirev.2019.03.021, 2019.

Bose, S. K. and Dey, S.: Reynolds averaged theory of

turbulent shear flows over undulating beds and formation of sand waves, Phys. Rev. E, 80, 036304,

https://doi.org/10.1103/PhysRevE.80.036304, 2009.

Bouma, A. H.: Sedimentology of some flysch deposits: A graphic

approach to facies interpretation, Elsevier Scientific Publishing

Company, Amsterdam, 1962.

Bourke, M. C., Lancaster, N., Fenton, L. K., Parteli, E.

J. R., Zimbelman, J. R., and Radebaugh, J.: Extraterrestrial dunes: An introduction to the special issue on

planetary dune systems, Geomorphology, 121, 1–14,

https://doi.org/10.1016/j.geomorph.2010.04.007, 2010.

Bradley, R., Venditti, J. G., Kostaschuk, R. A., Church,

M., Hendershot, M., and Allison, M. A.: Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada, J. Geophys. Res.-Earth, 118, 1693–1709,

https://doi.org/10.1002/jgrf.20118, 2013.

Bradley, R. W. and Venditti, J. G.: Transport scaling of dune dimensions in shallow flows, J. Geophys. Res.-Earth, 124, 526–547,

https://doi.org/10.1029/2018JF004832, 2019.

Bridge, J. S. and Best, J. L.: Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage

plane beds: implications for the formation of planar laminae,

Sedimentology, 35, 753–763, https://doi.org/10.1111/j.13653091.1988.tb01249.x, 1988.

Brownlie, W. R.: Prediction of flow depth and sediment discharge in

open channels, Tech. Rep. KH-R43A, W. M. Keck Laboratory of

Hydraulics and Water Resources, California Institute of Technology, Pasadena, California, https://doi.org/10.7907/Z9KP803R,

1981.

Brownlie, W. R.: Digitized dataset from “Compilation of alluvial

channel data: laboratory and field” (Version 1.0), caltechDATA

[data set], https://doi.org/10.22002/d1.943, 2018.

Cisneros, J., Best, J., van Dijk, T., de Almeida, R. P., Amsler,

M., Boldt, J., Freitas, B., Galeazzi, C., Huizinga, R., Ianniruberto, M., Ma, H., Nittrouer, J. A., Oberg, K., Orfeo, O.,

Parsons, D., Szupiany, R., Wang, P., and Zhang, Y.: Dunes

in the world’s big rivers are characterized by low-angle leeside slopes and a complex shape, Nat. Geosci., 13, 156–162,

https://doi.org/10.1038/s41561-019-0511-7, 2020.

Earth Surf. Dynam., 11, 961–977, 2023

976

Colombini,

M.:

Revisiting

the

linear

theory

of

sand dune formation, J. Fluid Mech., 502, 1–16,

https://doi.org/10.1017/S0022112003007201, 2004.

Colombini,

M.

and

Stocchino,

A.:

Finite-amplitude

river

dunes,

J.

Fluid

Mech.,

611,

283–306,

https://doi.org/10.1017/S0022112008002814, 2008.

Culbertson, J. K., Scott, C. H., and Bennett, J. P.: Summary of

alluvial-channel data from Rio Grande conveyance channel, New

Mexico, 1965–69, Tech. Rep. 562-J, Professional Paper, Washington, DC, https://doi.org/10.3133/pp562J, 1972.

de Almeida, R. P., Galeazzi, C. P., Freitas, B. T., Janikian, L., Ianniruberto, M., and Marconato, A.: Large barchanoid dunes in

the Amazon River and the rock record: Implications for interpreting large river systems, Earth Planet. Sc. Lett., 454, 92–102,

https://doi.org/10.1016/j.epsl.2016.08.029, 2016.

de Leeuw, J., Lamb, M. P., Parker, G., Moodie, A. J., Haught,

D., Venditti, J. G., and Nittrouer, J. A.: Entrainment and suspension of sand and gravel, Earth Surf. Dynam., 8, 485–504,

https://doi.org/10.5194/esurf-8-485-2020, 2020.

Di Cristo, C., Iervolino, M., and Vacca, A.: Linear stability analysis of a 1-D model with dynamical description of bed-load transport, J. Hydraul. Res., 44, 480–487,

https://doi.org/10.1080/00221686.2006.9521699, 2006.

Dietrich, W. E. and Whiting, P.: Boundary shear stress and sediment transport in river meanders of sand and gravel, Chap. 1,

American Geophysical Union (AGU), 1–50, https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1029/WM012p0001 (last access: 29 September 2023), 1989.

Endo, N. and Masuda, F.: Small ripples in dunes regime and interpretation about dunes-missing in turbidite, J. Geol. Soc. Jpn.,

103, 741–746, https://doi.org/10.5575/geosoc.103.741, 1997.

Engelund, F.: Instability of erodible beds, J. Fluid Mech., 42, 225–

244, https://doi.org/10.1017/S0022112070001210, 1970.

Ferguson, R. and Church, M.: A simple universal equation

for grain settling velocity, J. Sediment. Res., 74, 933–937,

https://doi.org/10.1306/051204740933, 2004.

Foley, M. G.: Scour and fill in ephemeral streams, Tech. Rep. KHR:KH-R-33, W. M. Keck Laboratory of Hydraulics and Water

Resources, California Institute of Technology, Pasadena, California, https://doi.org/10.7907/gbn5-jb14, 1975.

Fourrière, A., Claudin, P., and Andreotti, B.: Bedforms in a turbulent stream: formation of ripples by primary linear instability and

of dunes by nonlinear pattern coarsening, J. Fluid Mech., 649,

287–328, https://doi.org/10.1017/S0022112009993466, 2010.

Fredsøe,

J.:

On

the

development

of

dunes

in

erodible

channels,

J.

Fluid

Mech.,

64,

1–16,

https://doi.org/10.1017/S0022112074001960, 1974.

Fredsøe, J.: Unsteady flow in straight alluvial streams. Part 2. Transition from dunes to plane bed, J. Fluid Mech., 102, 431–453,

https://doi.org/10.1017/S0022112081002723, 1981.

Fukuoka, S., Okutsu, K., and Yamasaka, M.: Dynamic and kinematic features of sand waves in upper regime, P. Jpn. Soc. Civil Eng., 323, 77–89,

https://doi.org/10.2208/jscej1969.1982.323_77,

1982

(in

Japanese).

Gao, X., Narteau, C., and Rozier, O.: Development and steady states

of transverse dunes: A numerical analysis of dune pattern coarsening and giant dunes, J. Geophys. Res.-Earth, 120, 2200–2219,

https://doi.org/10.1002/2015JF003549, 2015.

Earth Surf. Dynam., 11, 961–977, 2023

K. Ohata et al.: Linear-stability analysis of plane beds

Guy, H. P., Simons, D. B., and Richardson, E. V.: Summary of alluvial channel data from flume experiments, 1956–

61, Tech. Rep. 462-I, Professional Paper, Washington, DC,

https://doi.org/10.3133/pp462I, 1966.

Hage, S., Cartigny, M. J. B., Clare, M. A., Sumner, E. J., Vendettuoli, D., Hughes Clarke, J. E., Hubbard, S. M., Talling, P. J.,

Lintern, D. G., Stacey, C. D., Englert, R. G., Vardy, M. E., Hunt,

J. E., Yokokawa, M., Parsons, D. R., Hizzett, J. L., AzpirozZabala, M., and Vellinga, A. J.: How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic

record: Insights from active submarine channels, Geology, 46,

563–566, https://doi.org/10.1130/G40095.1, 2018.

Harms,

J.

C.:

Primary

Sedimentary

Structures, Annu. Rev. Earth Pl. Sc., 7, 227–248,

https://doi.org/10.1146/annurev.ea.07.050179.001303, 1979.

Hendershot, M. L., Venditti, J. G., Bradley, R. W., Kostaschuk,

R. A., Church, M., and Allison, M. A.: Response of lowangle dunes to variable flow, Sedimentology, 63, 743–760,

https://doi.org/10.1111/sed.12236, 2016.

Kennedy, J. F.: Stationary waves and antidunes in alluvial channels,

Tech. Rep. KH-R-2, W. M. Keck Laboratory of Hydraulics and

Water Resources, California Institute of Technology, Pasadena,

CA, https://doi.org/10.7907/Z9QR4V22, 1961.

Kennedy, J. F.: The mechanics of dunes and antidunes

in erodible-bed channels, J. Fluid Mech., 16, 521–544,

https://doi.org/10.1017/S0022112063000975, 1963.

Kostaschuk, R. and Villard, P.: Flow and sediment transport over large subaqueous dunes: Fraser River, Canada,

Sedimentology, 43, 849–863, https://doi.org/10.1111/j.13653091.1996.tb01506.x, 1996.

Lowe, D. R.: Suspended-load fallout rate as an independent variable

in the analysis of current structures, Sedimentology, 35, 765–

776, https://doi.org/10.1111/j.1365-3091.1988.tb01250.x, 1988.

Ma, H., Nittrouer, J. A., Naito, K., Fu, X., Zhang, Y., Moodie, A. J.,

Wang, Y., Wu, B., and Parker, G.: The exceptional sediment load

of fine-grained dispersal systems: Example of the Yellow River,

China, Sci. Adv., 3, https://doi.org/10.1126/sciadv.1603114,

2017.

McLean, S. R.: The stability of ripples and dunes, Earth-Sci.

Rev., 29, 131–144, https://doi.org/10.1016/0012-8252(0)90032Q, 1990.

Miall, A.: Alluvial deposits, in: Facies models 4, edited by: James,

N. P. and Dalrymple, R. W., Geological Association of Canada,

Canada, 105–137, ISBN 9781897095508, 2010.

Nakasato, Y. and Izumi, N.: Linear stability analysis of small-scale

fluvial bed waves with active suspended sediment load, J. Appl.

Mech., 11, 727–734, https://doi.org/10.2208/journalam.11.727,

2008 (in Japanese).

Naqshband, S., Ribberink, J. S., Hurther, D., and Hulscher, S. J.

M. H.: Bed load and suspended load contributions to migrating

sand dunes in equilibrium, J. Geophys. Res.-Earth, 119, 1043–

1063, https://doi.org/10.1002/2013JF003043, 2014.

Naqshband, S., Hoitink, A. J. F., McElroy, B., Hurther, D., and

Hulscher, S. J. M. H.: A sharp view on river dune transition to

upper stage plane bed, Geophys. Res. Lett., 44, 11437–11444,

https://doi.org/10.1002/2017GL075906, 2017.

Ohata, K., Naruse, H., and Izumi, N.: Linear-stability analysis of

plane beds under flows with suspended loads, Zenodo [data set

and code], https://doi.org/10.5281/zenodo.8332448, 2023.

https://doi.org/10.5194/esurf-11-961-2023

K. Ohata et al.: Linear-stability analysis of plane beds

Sambrook Smith, G. H., Best, J. L., Leroy, J. Z., and Orfeo, O.:

The alluvial architecture of a suspended sediment dominated meandering river: the Río Bermejo, Argentina, Sedimentology, 63,

1187–1208, https://doi.org/10.1111/sed.12256, 2016.

Schindler, R. J., Parsons, D. R., Ye, L., Hope, J. A., Baas, J. H.,

Peakall, J., Manning, A. J., Aspden, R. J., Malarkey, J., Simmons,

S., Paterson, D. M., Lichtman, I. D., Davies, A. G., Thorne,

P. D., and Bass, S. J.: Sticky stuff: Redefining bedform prediction in modern and ancient environments, Geology, 43, 399–402,

https://doi.org/10.1130/G36262.1, 2015.

Smith, J. D. and McLean, S. R.: Spatially averaged flow

over a wavy surface, J. Geophys. Res., 82, 1735–1746,

https://doi.org/10.1029/JC082i012p01735, 1977.

Talling, P. J., Masson, D. G., Sumner, E. J., and Malgesini,

G.: Subaqueous sediment density flows: Depositional processes and deposit types, Sedimentology, 59, 1937–2003,

https://doi.org/10.1111/j.1365-3091.2012.01353.x, 2012.

Tanaka, Y.: An experimental study on anti-dunes, Disaster Prev.

Res. Inst. Annu., 13, 271–284, 1970.

Taylor, B. D.: Temperature effects in alluvial streams, Tech. Rep.

KH-R-27, W. M. Keck Laboratory of Hydraulics and Water

Resources, California Institute of Technology, Pasadena, CA,

https://doi.org/10.7907/Z93776PN, 1971.

Tilston, M., Arnott, R., Rennie, C., and Long, B.: The influence of

grain size on the velocity and sediment concentration profiles and

depositional record of turbidity currents, Geology, 43, 839–842,

https://doi.org/10.1130/G37069.1, 2015.

https://doi.org/10.5194/esurf-11-961-2023

977

van den Berg, J. H. and van Gelder, A.: A new bedform stability diagram, with emphasis on the transition of ripples to

plane bed in flows over fine sand and silt, in: Alluvial sedimentation, edited by: Marzo, M. and Puigdefabregas, C.,

Vol. 17, Blackwell Scientific Publications, Special Publications, International Association of Sedimentologists, 11–21,

https://doi.org/10.1002/9781444303995.ch2, 1993.

van Duin, O. J. M., Hulscher, S. J. M. H., Ribberink,

J. S., and Dohmen-Janssen, C. M.: Modeling of spatial lag in bed-load transport processes and its effect

on dune morphology, J. Hydraul. Eng., 143, 04016084,

https://doi.org/10.1061/(ASCE)HY.1943-7900.0001254, 2017.

Vesipa, R., Camporeale, C., and Ridolfi, L.: A shallow-water theory

of river bedforms in supercritical conditions, Phys. Fluids, 24,

94104, https://doi.org/10.1063/1.4753943, 2012.

Walker, R. G.: The origin and significance of the internal sedimentay structures of turbidites, P. Yorks. Geol. Soc., 35, 1–32,

https://doi.org/10.1144/pygs.35.1.1, 1965.

Wong, M. and Parker, G.: Reanalysis and Correction of

Bed-Load Relation of Meyer-Peter and Müller Using

Their Own Database, J. Hydraul. Eng., 132, 1159–1168,

https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159),

2006.

Yokokawa, M., Izumi, N., Naito, K., Parker, G., Yamada, T., and

Greve, R.: Cyclic steps on ice, J. Geophys. Res.-Earth, 121,

1023–1048, https://doi.org/10.1002/2015JF003736, 2016.

Earth Surf. Dynam., 11, 961–977, 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る