リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Defluidization of silica sand or clay particle beds by palm empty fruit bunch(EFB) ashes addition in bubbling fluidized bed(BFB)process.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Defluidization of silica sand or clay particle beds by palm empty fruit bunch(EFB) ashes addition in bubbling fluidized bed(BFB)process.

Prima, Zuldian プリマ, ズルディアン 群馬大学

2021.09.30

概要

Generation of Empty Fruit Bunch (EFB) in Indonesia is so large as promising biomass which can be utilized for a renewable energy resource by gasification process. However, alkaline concentration in EFB is high and will need a proper treatment to avoid slagging formation during reaction. A function of bentonite as particular of clay is not only as support catalyst but also as a potential natural inhibitor to avoid agglomeration. Currently, no investigation data regarding agglomeration between bentonite and EFB ash makes this study important to elucidate the applicability for a fluidized bed biomass gasification process. Higher allowance of ash concentration in a bed and longer maintenance intervals of fluidized beds in typical operation condition are expected for a bentonite fluidized bed gasification.
In Chapter I overview of slagging formation, fluidization system, and current study regarding agglomeration and defluidization are described. Furthermore, a brief information related to a newly developed fluidized bed pilot plant for EFB by applying bentonite particles relevant to this study are also informed in the chapter.
Agglomeration and defluidization behaviors in a bentonite particle fluidized bed by adding EFB ash at different temperatures with a typical superficial velocity is studied in Chapter II in comparison with those in a silica sand bed. The result in this chapter showed that bentonite particles can provide stable fluidization in wider region in comparison with silica sand. From the viewpoint of an application to the new pilot plant, bentonite application could maintain stable fluidization with around 3.5 wt.% of EFB ash concentration in the bed up to 800oC. Meanwhile, a silica sand bed reached defluidization state after several EFB ashes addition in operation at 800oC.
In Chapter III, in order to reduce gas consumption in a fluidized bed system, a comparison of agglomeration and defluidization behaviors of both bentonite and silica sand fluidized beds are studied in lower superficial velocity than Chapter II. The purpose of this chapter is to identify the impact of velocity affect to characteristics of agglomerates and capability to maintain fluidization. This study showed that the bentonite reached defluidization in lower ash addition than that in silica sand at treatment 800oC. The reverse phenomena might be caused by lower mixing intensity of fluidized bed resulted from lower superficial velocity less than Chapter II. Channelling phenomena as an indicator of adhere ability of bed materials were also investigated. The results showed that bentonite particles had a high adhere ability at lower velocity, but the agglomerates were relatively weak to be easily broken.
Chapter IV discusses detailed mechanisms of agglomeration and defluidization formation based on the characteristics of bed residue after the operation. Specific surface area, pore size distribution, X-ray diffraction analysis (XRD), scanning electron microscopic observation (SEM) and energy dispersive X-ray analysis (EDX) were carried out to understand the microstructure of agglomerates. Specific surface of bentonite agglomerates was slightly increased by temperature increment in comparison with silica sand. However, the difference of both surface area of agglomerates was not significant. Decrement of peak intensity of silica (SiO2) were observed in XRD analysis at 800oC significantly in silica sand but slightly in bentonite. It might be caused by the difference of formation of silicates. Microstructure measurement showed that some incomplete coating and melting layers had been formed on that surface enabling to reach easier degradation than silica sand during fluidization was taking place.
Chapter V concludes that a fluidized bed of bentonite particles has higher stability to provide enough performance for EFB gasification based on the discussion in the previous chapters.

 インドネシアにおいて、パームヤシ空果房(EFB)の発生量は非常に大きく、ガス化プロセスに よって再生可能エネルギー資源として有望である。しかし、EFB 中のアルカリ含有量は高く、反応中のスラグ形成を防ぐために適切な処理が必要とある。典型的な粘土であるベントナイトの機能は、触媒担体としてだけではなく、凝集を回避する天然の抑制剤としての可能性もある。現在、ベントナイトと EFB 灰の間の凝集に関する実験データは存在せず、流動層バイオマスガス化プロセスへの適用性を明らかにするために、本研究は重要である。ベントナイト粒子による流動層ガス化では、層内の高い配分許容量と、典型的な運転条件の流動層において、より長いメンテナンス間隔が期待できる。
 第 1 章では、スラッギング形成の概要、流動化システム、および凝集と流動化停止に関する現在の研究について説明する。さらに、本研究に関連して、ベントナイト粒子を適用することにより、 EFB 用に新しく開発された流動層パイロットプラントに関連する簡単な情報も説明する。
 第2章では、典型的な空塔速度で異なる温度のベントナイト粒子流動層に EFB 灰を添加したときの凝集および脱流動挙動が、けい砂流動層との比較から研究された。この章の結果は、ベントナイト粒子がけい砂と比較してより広い領域で安定した流動化を提供できることを示した。新しいパイロットプラントへの適用の観点から、ベントナイトの適用は、800℃までで、層中 EFB 灰濃度の約 3.5 wt%まで安定した流動化を維持することができることを明らかにした。一方でけい砂流動層は、800℃での運転中に EFB 灰を数回添加した後、流動化停止した。
 第3章では、流動層システムでのガス消費量を削減するために、第2章よりも低い空塔速度におけるベントナイトとけい砂流動層の凝集および流動化停止挙動が比較された。本章では、凝集物の特性と流動化を維持する能力に対する速度の影響も検討された。実験の結果は、ベントナイトが処理 800℃でけい砂よりもより少ない配分添加で流動化停止した。この逆転現象は、第 2 章よりも弱い流動化による混合の不足に起因しているものと考えられた。ベッド材料の付着力の指標としてのチャネリング現象も調査された。その結果、ベントナイト粒子は低速で高い付着力を示したが、凝集体は比較的弱く、容易に破壊された。
 第4章では、運転の層内残留物の特性に基づいて、凝集および脱流動化形成の詳細なメカニズムが検討された。比表面積、細孔径分布、X 線回折分析(XRD)、走査型電子顕微鏡観察(SEM)、およびエネルギー分散型 X 線分析(EDX)により、凝集体の微細構造が調べられた。ベントナイト凝集体の比表面積は、ケイ砂と比較して温度上昇により徐々に増加した。ただし、凝集物の比表面積に違いは大きくなかった。CRD 分析において、800℃においてシリカ(SiO2)のピーク強度の低下が、けい砂では顕著に、ベントナイトでは少なく観察された。これは、ケイ酸塩の生成の違いによるものと考えられた。微細構造観測は、ベントナイトにおいて不完全なコーティングおよび溶融層がその表面に形成されたことを示したており、流動化が起こっている間にケイ砂よりも容易に破壊される下人となっていることが示された。
 第 V 章では、上記の議論に基づいて、ベントナイト粒子の流動層が EFB ガス化に十分な性能を提供するために、より高い安定性を備えていると結論付けた。

この論文で使われている画像

参考文献

CHAPTER I.

Aruga, Kazuhiro & Murakami, Ayami & Nakahata, Chikara & Yamaguchi, Reiko & Yoshioka, Takuyuki. (2011). Discussion on Economic and Energy Balances of Forest Biomass Utilization for Small-Scale Power Generation in Kanuma, Tochigi Prefecture, Japan. Croatian Journal of Forest Engineering. 32.

Cao, W., Li, J., Luo, L., & Zhang, X. (2016). Release of alkali metals during biomass thermal conversion. Archives of Industrial Biotechnology, 1(1), 1-3. http://www.alliedacademies.org/articles/release-of-alkali-metalsduring-biomassthermal-conversion.html

Center of data and agricultural-information system. Palm Tree Outlook. Indonesian Ministry of agriculture. 2016

Cocco, Ray & Karri, Sb & Knowlton, Ted. (2014). Introduction to Fluidization. Chemical Engineering Progress. 110. 21-29.

Daizo Kunii, Octave Levenspiel, CHAPTER 4 - The Dense Bed: Distributors, Gas Jets, and Pumping Power, Editor(s): Daizo Kunii, Octave Levenspiel, Fluidization Engineering (Second Edition), Butterworth-Heinemann, 1991, Pages 75

Gaba, Aurel & Iordache, Stefania. (2011). Reduction of Air Pollution by Combustion Processes. 10.5772/16959.

Garba MU, Ingham DB, Ma L, Porter RTJ, Pourkashnian M, Tan HZ, et al. Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers. Energy Fuel 2012;26:6502.

Li, Shiyuan & Qinggang, Lu & Haipeng, Teng. (2011). AGGLOMERATION DURING FLUIDIZED-BED COMBUSTION OF BIOMASS.

Lindström, Erica & Öhman, Marcus & Backman, Rainer & Boström, Dan. (2008). Influence of Sand Contamination on Slag Formation during Combustion of Wood Derived Fuels. Energy & Fuels - ENERG FUEL. 22. 10.1021/ef700772q.

Miles, T R, Miles, Jr, T R, Baxter, L L, Jenkins, B M, and Oden, L L. Alkali slagging problems with biomass fuels. United States: N. p., 1993. Web.

Mlonka-Mędrala, Agata & Magdziarz, Aneta & Gajek, Marcin & Nowińska, Katarzyna & Nowak, Wojciech. (2019). Alkali metals association in biomass and their impact on ash melting behaviour. Fuel. 261. 10.1016/j.fuel.2019.116421.

Nagendrappa, Gopalpur. (2002). Organic synthesis using clay catalysts. Resonance. 7. 66. 10.1007/BF02836172.

Niu, Yanqing & Tan, Houzhang & Hui, Shi. (2016). Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progressin Energy and Combustion Science. 52. 1-61. 10.1016/j.pecs.2015.09.003.

Novianti, Srikandi & Nurdiawati, Anissa & Zaini, Ilman & Prawisudha, Pandji & Sumida, Hiroaki & Yoshikawa, Kunio. (2015). Low-potassium Fuel Production from Empty Fruit Bunches by Hydrothermal Treatment Processing and Water Leaching. Energy Procedia. 75. 588. 10.1016/j.egypro.2015.07.460.

Önal, M. (2009). Physicochemical properties of bentonites: an overview. Reiji Noda, Tomoyuki Ito, Nao Tanaka, Masayuki Horio, Steam Gasification of Cellulose and Wood in a Fluidized Bed of Porous Clay Particles, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2009, Volume 42, Issue 7.

Rosenani A.B., Hoe S.F. (1996) Decomposition of oil palm empty fruit bunches in the field and mineralization of nitrogen. In: Van Cleemput O., Hofman G., Vermoesen A. (eds) Progress in Nitrogen Cycling Studies. Developments in Plant and Soil Sciences, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5450-5_20

Serrano García, Daniel & Sánchez-Delgado, S. & Sobrino, C. & Marugan-Cruz, Carolina. (2015). Defluidization and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Processing Technology. 131. 10.1016/j.fuproc.2014.11.036.

Wang, Ping & Massoudi, Mehrdad. (2013). Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions. Energies. 6. 784-806. 10.3390/en6020784.

Visser, H. & Hofmans, H. & Huijnen, H. & Kastelein, R. & Kiel, J.. (2008). Biomass Ash ‒ Bed Material Interactions Leading to Agglomeration in Fluidised Bed Combustion and Gasification. 10.1002/9780470694954.ch20.

CHAPTER II

Cuadros, J., Huertas, F., Delgado, A., and Linares, J. (1994). Determination of Hydration (H2O−) and Structural (H2O) Water for Chemical Analysis of Smectites. Application to Los Trancos Smectites, Spain. Clay Minerals, 29(2), 297

Liu, Huanpeng & Feng, Yujie & Wu, Shaohua & Liu, Dunyu. (2009). The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw. Bioresource technology. 100. 6511. 10.1016/j.biortech.2009.06.098.

Li, Qinghai & Zhang, Y.G. & Meng, Aihong & Li, L. & Li, G.X.. (2013). Study on ash fusion temperature using original and simulated biomass ashes. Fuel Processing Technology. 107. 110. 10.1016/j.fuproc.2012.08.012.

Mu, L., Zhao, L., Liu, L., and Yin, H. (2012). Elemental Distribution and Mineralogical Composition of Ash Deposits in a Large-Scale Wastewater Incineration Plant: A Case Study. Industrial and Engineering Chemistry Research. 51. 8684–8694. 10.1021/ie301074m.

Niu, Yanqing & Zhu, Yiming & Tan, Houzhang & Wang, Xuebin & Hui, Shi’en & Du, Wenzhi. (2014). Experimental study on the coexistent dual slagging in biomassfired furnaces: Alkali- and silicate melt-induced slagging. Proceedings of the Combustion Institute. 35. 10.1016/j.proci.2014.06.120. Pages 2406

Visser, H.. (2004). The influence of fuel composition on agglomeration behaviour in fluidised bed combustion.

Visser, H. & Hofmans, H. & Huijnen, H. & Kastelein, R. & Kiel, J.. (2008). Biomass Ash ‒ Bed Material Interactions Leading to Agglomeration in Fluidised Bed Combustion and Gasification. 10.1002/9780470694954.ch20.

CHAPTER IV

Sabiha, A.B., and Kheloufi, A., and Boutarek, N., and Aissa, K., and Fouad, K. (2016). Characterization of silica quartz as raw material in photovoltaic applications.1758. 030043. 10.1063/1.4959439.

Valchev, A., and Marinov, M., and Grigorova, I., and Nishkov, I. (2011). LOW IRON SILICA SAND FOR GLASSMAKING.

Mahdaoui, T., and Bouaouadja, N., and Madjoubi, A., and Bousbaa, C. (2007). Study of the Effects of Sand Blasting on Soda Lime Glass Erosion. International Review of Mechanical Engineering. 1. 11.

McLaws, I.J. (1971): Uses and specifications of silica sand; Research Council of Alberta, RCA/AGS Earth Sciences Report 1971-04, 67 p.

Bowdish, F.W. (1967): Opportunities in the beneficiation of feldspathic sands; Proc.3rd Forum on Geology of Industrial Minerals, Geol. Surv. Kansas. Spec. Distrib. Pub.34, p.126-37

Weems, J.B. (1903). Chemistry of Clays. Iowa Geological Survey Annual Report, 14, 319-346. https://doi.org/10.17077/2160-5270.1076

Al Ani, T., and Sarapää, O. (2008). Clay and clay mineralogy. Geological Survey of Finland, Report M19/3232/2008/41, Espoo.

Bailey, SW, 1980a, Structures of layer silicates. In: Brindley GW & Brown G ed. Crystal structures of clay minerals and their X-ray identification. London, Mineralogical Society, pp 1–123. Available at: http://www.minsocam.org/msa/collectors_corner/arc/nomenclaturecl1.htm. Bailey SW. and Chairman, 1980b, Summary of recommendations of AIPEA [Association International Pour lettuce des Argyles nomenclature committee on clay. Am Mineral, 65: 1– 7.

Bailey, S.W., 1988. Odinite, a new dioctahedral-trioctohedral Fe3+-rich 1:1 clay mineral: Clay Minerals, v. 23, p. 237–247.

Moore, D. and R.C. Reynolds, Jr., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.: Oxford University Press, New York.

Murray H., 2002. Industrial clays case study. Report of the Mining, Minerals and Sustainable Development Project vol. 64, International Institute for Environment and Development and World Business Council for Sustainable Development, UK.

Haydn H. Murray. Developments in Clay Science, volume 2, Elsevier Science, Amsterdam, 2007, 180 + viii pp. ISBN-13: 978-0-444-51701-2, ISBN-10: 0-444-51701-4.

Öhman, M., and Nordin, A. (2000). Bed Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels. Energy & Fuels - ENERG FUEL. 14. 10.1021/ef990107b.

Boström, D., and Grimm, A., and Boman, C., & Björnbom, E., and Öhman, M. (2009). Influence of Kaolin and Calcite Additives on Ash Transformations in Small-Scale Combustion of Oat. Energy & Fuels - ENERG FUEL. 23. 10.1021/ef900429f.

Steenari, B., and Lundberg, A., and Pettersson, H., and Wilewska-Bien, M., and Andersson, D. (2009). Investigation of Ash Sintering during Combustion of Agricultural Residues and the Effect of Additives. Energy & Fuels - ENERG FUEL. 23. 10.1021/ef900471u.

Li, X., and Gao, Z., and Fang, S., and Ren, C., and Yang, K., Wang, F. (2019).Fractal Characterization of Nanopore Structure in Shale, Tight Sandstone and Mudstone from the Ordos Basin of China Using Nitrogen Adsorption. Energies. 12. 583. 10.3390/en12040583.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る