リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Modulation of Sost Gene Expression Under Hypoxia in Three-Dimensional Scaffold-Free Osteocytic Tissue」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Modulation of Sost Gene Expression Under Hypoxia in Three-Dimensional Scaffold-Free Osteocytic Tissue

Kim, Jeonghyun Adachi, Taiji 京都大学 DOI:10.1089/ten.tea.2020.0228

2021.08

概要

Bone-related studies have been widely carried out by culturing cells on two-dimensional (2D) culture system because of its easiness of handling, but these 2D in vitro achievements may imply a distinct outcome compared with the in vivo situation. On the contrary, three-dimensional (3D) culture system has been suggested as a better biomimetic in vitro model by providing an appropriate cell–cell or cell–matrix interaction. In this study, we successfully reconstructed a 3D disk type of scaffold-free tissue (SFT) using mouse osteoblast-like cells, which evoked an osteocyte differentiation within 2 days. Particularly, the SFT was also utilized as an in vitro osteocytic model to elucidate the effect of hypoxia on cellular differentiation capability. As a result, the hypoxia upregulated a matured osteocyte marker, Sost, in the SFT, whereas both osteoblast and osteocyte markers were significantly downregulated by hypoxia in the 2D conventional monolayer model. The results imply that the hypoxia may enhance the initiation of osteocyte differentiation and retain the osteocyte differentiation in the 3D culture system. Of note, we reported the significance of 3D culture system that might represent the in vivo situation regarding cellular response to stimuli. Hence, our study suggests wide applications of SFT using osteoblast cells as a novel in vitro osteocyte model for the osteocyte-related studies.

この論文で使われている画像

関連論文

参考文献

1.Adachi, T., Aonuma, Y., Ito, S., Tanaka, M., Hojo, M., Takano-Yamamoto, T., et al. Osteocyte calcium signaling response to bone matrix deformation. J Biomech. 42, 2507, 2009.

2.Robling, A.G., and Bonewald, L.F. The Osteocyte : New Insights. Annu Rev Physiol. 82, 485, 2020.

3.Kawanishi, M., Oura, A., Furukawa, K., Fukubayashi, T., Nakamura, K., Tateishi, T., et al. Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system. Tissue Eng. 13, 957, 2007

4.Kim, J., Montagne, K., Nemoto, H., Ushida, T., and Furukawa, K.S. Hypergravity down-regulates c-fos gene expression via ROCK/Rho-GTP and the PI3K signaling pathway in murine ATDC5 chondroprogenitor cells. PLoS One. 12, e0185394, 2017.

5.Fahy, N., Alini, M., and Stoddart, M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J Orthop Res. 36, 52, 2018.

6.Kim, J., Ushida, T., Montagne, K., Hirota, Y., Yoshino, O., Hiraoka, T., et al. Acquired contractile ability in human endometrial stromal cells by passive loading of cyclic tensile stretch. Sci Rep. 10, 9014, 2020.

7.Shah, K.M., Stern, M.M., Stern, A.R., Pathak, J.L., Bravenboer, N., and Bakker, A.D. Osteocyte isolation and culture methods. Bonekey Rep. 5, 838, 2016.

8.Boukhechba, F., Balaguer, T., Michiels, J.F., Ackermann, K., Quincey, D., Bouler, J.M., et al. Human primary osteocyte differentiation in a 3D culture system. J Bone Miner Res. 24, 1927, 2009.

9.Dodd, J.S., Raleigh, J.A., and Gross, T.S. Osteocyte hypoxia: A novel mechanotransduction pathway. Am J Physiol. 277, 598, 1999.

10.Schipani, E., Ryan, H.E., Didrickson, S., Kobayashi, T., Knight, M., and Johnson, R.S. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865, 2001.

11.Hirao, M., Hashimoto, J., Yamasaki, N., Ando, W., Tsuboi, H., Myoui, A., et al. Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes. J Bone Miner Metab. 25, 266, 2007.

12.Montesi, M., Jähn, K., Bonewald, L., Stea, S., Bordini, B., and Beraudi, A. Hypoxia mediates osteocyte ORP150 expression and cell death in vitro. Mol Med Rep. 14, 4258, 2016.

13.Nam, K.H., Smith, A.S.T., Lone, S., Kwon, S., and Kim, D.H. Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening. J. Lab. Autom. 20, 201, 2015.

14.Bonewald, L.F. The amazing osteocyte. J Bone Miner Res. 26, 229, 2011.

15.Capulli, M., Paone, R., and Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys. 561, 3, 2014.

16.Kim, J., and Adachi, T. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Front Bioeng Biotechnol. 7, 2019.

17.Kim, J., Kigami, H., and Adachi, T. Characterization of self-organized osteocytic spheroids using mouse osteoblast-like cells. J Biomech Sci Eng. 15, 20-00227, 2020.

18.Janaszak-Jasiecka, A., Bartoszewska, S., Kochan, K., Piotrowski, A., Kalinowski, L., Kamysz, W., et al. MiR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells. Sci Rep. 6, 22775, 2016.

19.Stockmann, C., and Fandrey, J. Hypoxia-induced erythropoietin production: A paradigm for oxygen-regulated gene expression. Clin. Exp. Pharmacol. Physiol. 33, 968, 2006.

20.Furukawa, K.S., Imura, K., Tateishi, T., and Ushida, T. Scaffold-free cartilage by rotational culture for tissue engineering. J Biotechnol. 133, 134, 2008.

21.Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 12, 459,2006.

22.Sumide, T., Nishida, K., Yamato, M., Ide, T., Hayashida, Y., Watanabe, K., et al. Functional human corneal endothelial cell sheets harvested from temperature- responsive culture surfaces. FASEB J. 20, 392, 2006.

23.Yang, J., Yamato, M., Kohno, C., Nishimoto, A., Sekine, H., Fukai, F., et al. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials. 26, 6415, 2005.

24.Matsuda, N., Shimizu, T., Yamato, M., and Okano, T. Tissue engineering based on cell sheet technology. Adv Mater. 19, 3089, 2007.

25.Du, Y., Guo, J.L., Wang, J., Mikos, A.G., and Zhang, S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials. 218, 119334, 2019.

参考文献をもっと見る