リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of MC3T3-E1 Cell Osteogenesis in Different Cell Culture Media」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of MC3T3-E1 Cell Osteogenesis in Different Cell Culture Media

Izumiya, Makoto Haniu, Miyu Ueda, Katsuya Ishida, Haruka Ma, Chuang Ideta, Hirokazu Sobajima, Atsushi Ueshiba, Koki Uemura, Takeshi Saito, Naoto Haniu, Hisao 信州大学 DOI:34299372

2021.07.28

概要

Many biomaterials have been evaluated using cultured cells. In particular, osteoblast-like cells are often used to evaluate the osteocompatibility, hard-tissue-regeneration, osteoconductive, and osteoinductive characteristics of biomaterials. However, the evaluation of biomaterial osteogenesis-inducing capacity using osteoblast-like cells is not standardized; instead, it is performed under laboratory-specific culture conditions with different culture media. However, the effect of different media conditions on bone formation has not been investigated. Here, we aimed to evaluate the osteogenesis of MC3T3-E1 cells, one of the most commonly used osteoblast-like cell lines for osteogenesis evaluation, and assayed cell proliferation, alkaline phosphatase activity, expression of osteoblast markers, and calcification under varying culture media conditions. Furthermore, the various media conditions were tested in uncoated plates and plates coated with collagen type I and poly-L-lysine, highly biocompatible molecules commonly used as pseudobiomaterials. We found that the type of base medium, the presence or absence of vitamin C, and the freshness of the medium may affect biomaterial regeneration. We posit that an in vitro model that recapitulates in vivo bone formation should be established before evaluating biomaterials.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Im, G.I. Biomaterials in orthopaedics: The past and future with immune modulation. Biomater. Res. 2020, 24, 7. [CrossRef]

[PubMed]

Wang, G.; Zreiqat, H. Functional Coatings or Films for Hard-Tissue Applications. Materials 2010, 3, 3994–4050. [CrossRef]

Qin, L.; Yao, S.; Zhao, J.; Zhou, C.; Oates, T.W.; Weir, M.D.; Wu, J.; Xu, H.H.K. Review on Development and Dental Applications

of Polyetheretherketone-Based Biomaterials and Restorations. Materials 2021, 14, 408. [CrossRef]

Kohli, N.; Ho, S.; Brown, S.J.; Sawadkar, P.; Sharma, V.; Snow, M.; García-Gareta, E. Bone remodelling in vitro: Where are we

headed?: -A review on the current understanding of physiological bone remodelling and inflammation and the strategies for

testing biomaterials in vitro. Bone 2018, 110, 38–46. [CrossRef]

Czekanska, E.M.; Stoddart, M.J.; Ralphs, J.R.; Richards, R.G.; Hayes, J.S. A phenotypic comparison of osteoblast cell lines versus

human primary osteoblasts for biomaterials testing. J. Biomed. Mater. Res. A 2014, 102, 2636–2643. [CrossRef]

Czekanska, E.M.; Stoddart, M.J.; Richards, R.G.; Hayes, J.S. In search of an osteoblast cell model for in vitro research. Eur. Cell Mater.

2012, 24, 1–17. [CrossRef]

Hinoi, E.; Fujimori, S.; Takemori, A.; Yoneda, Y. Cell death by pyruvate deficiency in proliferative cultured calvarial osteoblasts.

Biochem. Biophys. Res. Commun. 2002, 294, 1177–1183. [CrossRef]

Coelho, M.J.; Cabral, A.T.; Fernande, M.H. Human bone cell cultures in biocompatibility testing. Part I: Osteoblastic differentiation

of serially passaged human bone marrow cells cultured in alpha-MEM and in DMEM. Biomaterials 2000, 21, 1087–1094. [CrossRef]

Brzezinska,

O.; Łukasik, Z.; Makowska, J.; Walczak, K. Role of Vitamin C in Osteoporosis Development and Treatment-A

Literature Review. Nutrients 2020, 12, 2394. [CrossRef] [PubMed]

Int. J. Mol. Sci. 2021, 22, 7752

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

12 of 12

Chin, K.Y.; Ima-Nirwana, S. Vitamin C and Bone Health: Evidence from Cell, Animal and Human Studies. Curr. Drug Targets

2018, 19, 439–450. [CrossRef]

Jonason, J.H.; O’Keefe, R.J. Isolation and culture of neonatal mouse calvarial osteoblasts. Methods Mol. Biol. 2014, 1130, 295–305.

[CrossRef]

Bakker, A.D.; Klein-Nulend, J. Osteoblast isolation from murine calvaria and long bones. Methods Mol. Biol. 2012, 816, 19–29.

[CrossRef]

Orriss, I.R.; Taylor, S.E.; Arnett, T.R. Rat osteoblast cultures. Methods Mol. Biol. 2012, 816, 31–41. [CrossRef]

Doolittle, M.L.; Ackert-Bicknell, C.L.; Jonason, J.H. Isolation and Culture of Neonatal Mouse Calvarial Osteoblasts. Methods Mol. Biol.

2021, 2230, 425–436. [CrossRef] [PubMed]

Kodama, H.; Amagai, Y.; Sudo, H.; Kasai, S.; Yamamoto, S. Establishment of a clonal osteogenic cell line from newborn mouse

calvaria. Jpn. J. Oral Biol. 1981, 23, 899–901. [CrossRef]

Hiura, K.; Sumitani, K.; Kawata, T.; Higashino, K.; Okawa, M.; Sato, T.; Hakeda, Y.; Kumegawa, M. Mouse osteoblastic cells

(MC3T3-E1) at different stages of differentiation have opposite effects on osteoclastic cell formation. Endocrinology 1991, 128,

1630–1637. [CrossRef]

Zhou, H.Y.; Takita, H.; Fujisawa, R.; Mizuno, M.; Kuboki, Y. Stimulation by bone sialoprotein of calcification in osteoblast-like

MC3T3-E1 cells. Calcif. Tissue Int. 1995, 56, 403–407. [CrossRef]

Wang, D.; Christensen, K.; Chawla, K.; Xiao, G.; Krebsbach, P.H.; Franceschi, R.T. Isolation and characterization of MC3T3-E1

preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 1999, 14,

893–903. [CrossRef] [PubMed]

Dillon, J.P.; Waring-Green, V.J.; Taylor, A.M.; Wilson, P.J.; Birch, M.; Gartland, A.; Gallagher, J.A. Primary human osteoblast

cultures. Methods Mol. Biol. 2012, 816, 3–18. [CrossRef]

Bilousova, G.; Jun, d.H.; King, K.B.; De Langhe, S.; Chick, W.S.; Torchia, E.C.; Chow, K.S.; Klemm, D.J.; Roop, D.R.; Majka, S.M.

Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem. Cells

2011, 29, 206–216. [CrossRef]

Testing Method for Biocompatibility of Implantable Metals Using Cultured Cells 2000. Available online: https://www.jisc.go.jp/

app/jis/general/GnrJISSearch.html (accessed on 25 April 2021).

Takamizawa, S.; Maehata, Y.; Imai, K.; Senoo, H.; Sato, S.; Hata, R. Effects of ascorbic acid and ascorbic acid 2-phosphate,

a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol. Int. 2004, 28,

255–265. [CrossRef] [PubMed]

Roach, H.I.; Hillier, K.; Shearer, J.R. Stability of ascorbic acid and uptake of the vitamin by embryonic chick femurs during

long-term culture. Biochim. Biophys. Acta 1985, 842, 133–138. [CrossRef]

Feng, J.; Melcher, A.H.; Brunette, D.M.; Moe, H.K. Determination of L-ascorbic acid levels in culture medium: Concentrations in

commercial media and maintenance of levels under conditions of organ culture. In Vitro 1977, 13, 91–99. [CrossRef] [PubMed]

Harada, S.; Matsumoto, T.; Ogata, E. Role of ascorbic acid in the regulation of proliferation in osteoblast-like MC3T3-E1 cells.

J. Bone Miner. Res. 1991, 6, 903–908. [CrossRef] [PubMed]

Sudo, H.; Kodama, H.A.; Amagai, Y.; Yamamoto, S.; Kasai, S. In vitro differentiation and calcification in a new clonal osteogenic

cell line derived from newborn mouse calvaria. J. Cell Biol. 1983, 96, 191–198. [CrossRef] [PubMed]

Orriss, I.R.; Hajjawi, M.O.; Huesa, C.; MacRae, V.E.; Arnett, T.R. Optimisation of the differing conditions required for bone

formation in vitro by primary osteoblasts from mice and rats. Int. J. Mol. Med. 2014, 34, 1201–1208. [CrossRef] [PubMed]

Beck, G.R.; Sullivan, E.C.; Moran, E.; Zerler, B. Relationship between alkaline phosphatase levels, osteopontin expression,

and mineralization in differentiating MC3T3-E1 osteoblasts. J. Cell Biochem. 1998, 68, 269–280. [CrossRef]

Franceschi, R.T.; Iyer, B.S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells.

J. Bone Miner. Res. 1992, 7, 235–246. [CrossRef]

Khan, M.R.; Mordan, N.; Parkar, M.; Salih, V.; Donos, N.; Brett, P.M. Atypical Mesenchymal Stromal Cell Responses to Topographic

Modifications of Titanium Biomaterials Indicate Cytoskeletal- and Genetic Plasticity-Based Heterogeneity of Cells. Stem Cells Int.

2019, 2019, 5214501. [CrossRef]

Qutob, S.; Dixon, S.J.; Wilson, J.X. Insulin stimulates vitamin C recycling and ascorbate accumulation in osteoblastic cells.

Endocrinology 1998, 139, 51–56. [CrossRef]

Wells, W.W.; Xu, D.P. Dehydroascorbate reduction. J. Bioenerg. Biomembr. 1994, 26, 369–377. [CrossRef] [PubMed]

Noctor, G.; Foyer, C.H. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu. Rev. Plant Physiol.

Plant Mol. Biol. 1998, 49, 249–279. [CrossRef] [PubMed]

Hata, R.; Senoo, H. L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a threedimensional tissuelike substance by skin fibroblasts. J. Cell Physiol. 1989, 138, 8–16. [CrossRef]

Huang, B.; Wang, Y.; Wang, W.; Chen, J.; Lai, P.; Liu, Z.; Yan, B.; Xu, S.; Zhang, Z.; Zeng, C.; et al. mTORC1 Prevents Preosteoblast

Differentiation through the Notch Signaling Pathway. PLoS Genet. 2015, 11, e1005426. [CrossRef] [PubMed]

Miyazaki, T.; Miyauchi, S.; Tawada, A.; Anada, T.; Matsuzaka, S.; Suzuki, O. Oversulfated chondroitin sulfate-E binds to BMP-4

and enhances osteoblast differentiation. J. Cell Physiol. 2008, 217, 769–777. [CrossRef]

Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta

C(T)) Method. Methods 2001, 25, 402–408. [CrossRef]

...

参考文献をもっと見る