リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The structural and functional properties of the human visual pathway」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The structural and functional properties of the human visual pathway

大石, 浩輝 大阪大学

2021.03.24

概要

Our visual perception is based on the process in the visual pathway. For the last decades, many neuroimaging studies using functional magnetic resonance imaging (fMRI) have elucidated the functional organization of the human visual pathway and its relationship to visual perception. Because the anatomical structure of the human visual pathway has been mostly studied in the postmortem human brain, little is known about how the anatomical structure relates to functional organization and visual perception. The reason is it is only recently that the non-invasive quantitative structure imaging of living human brains has become available.

This dissertation includes two studies, which quantified the structure of the human visual pathway, primarily using a macromolecular tissue volume (MTV) mapping. MTV is a recently proposed quantitative structural MRI method, which is sensitive to a fraction of non-water macromolecules.

In the first study, I attempted to non-invasively identify subdivisions of the lateral geniculate nucleus (LGN), a key thalamic nucleus that receives projections from retinal neurons and in turn projects to the cortex. The LGN is composed of two main subdivisions, magnocellular and parvocellular subdivisions. The non-invasive identification of these subdivisions has been difficult because the in vivo structural neuroimaging method for quantifying the properties of LGN subdivisions has not yet been established. Here, I measured MTV in the living human brain and found the gradual MTV changes within LGN, which enabled us to identify the LGN subdivisions. An fMRI experiment further revealed that the subdivisions showed different sensitivities to visual stimuli. This study provides a novel method for non-invasively investigating the structural properties of LGN subdivisions in living human brains, which can be combined with functional or behavioral experiments.

In the second study, I investigated the neuroanatomical basis of individual differences in stereopsis, one of the fundamental visual functions. There are huge inter-individual differences in the ability to discriminate depth from binocular disparity (stereoacuity). Here, I investigated the neuroanatomical basis of the inter-individual differences in stereoacuity. Based on the previous studies showing that several areas in both dorsal and ventral visual pathways are involved in stereopsis, I hypothesized that the white matter tract connecting those areas is the crucial anatomical substrate for stereopsis. I investigated how the human stereoacuity relates to white matter properties by combining psychophysics, diffusion MRI and MTV. As a result, I found that the MTV along the right vertical occipital fasciculus (VOF), a major tract connecting dorsal and ventral visual areas, was highly correlated with stereoacuity. By fMRI experiment, I further found that binocular disparity stimuli activated the dorsal and ventral visual regions near VOF endpoints. These results suggest that stereo perception is associated with dorso-ventral communication through the VOF.

These two studies have provided an important foundation for future studies that investigate the relationship between perception, function and structure in the human visual pathway.

参考文献

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion.J Opt Soc Am A 2:284–299.

Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102:2704–2718.

Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau M-É, Bludau S, Bazin P-L, Lewis LB, Oros-Peusquens A-M, Shah NJ, Lippert T, Zilles K, Evans AC (2013) BigBrain: an ultrahigh-resolution 3D human brain model. Science 340:1472–1475.

Amunts K, Zilles K (2015) Architectonic Mapping of the Human Brain beyond Brodmann.Neuron 88:1086–1107.

Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20:870–888.

Andrews TJ, Halpern SD, Purves D (1997) Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract. The Journal of Neuroscience 17:2859–2868 Available at: http://dx.doi.org/10.1523/jneurosci.17-08-02859.1997.

Arshad M, Stanley JA, Raz N (2017) Test-retest reliability and concurrent validity of in vivo myelin content indices: Myelin water fraction and calibrated T1 w/T2 w image ratio.Human Brain Mapping 38:1780–1790 Available at: http://dx.doi.org/10.1002/hbm.23481.

Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. Neuroimage 11:805–821.

Assaf Y, Johansen-Berg H, Thiebaut de Schotten M (2019) The role of diffusion MRI in neuroscience. NMR Biomed 32:e3762.

Azzopardi P, Jones KE, Cowey A (1999) Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey. Vision Res 39:2179–2189.

Ban H, Yamamoto H (2013) A non–device-specific approach to display characterization based on linear, nonlinear, and hybrid search algorithms. J Vis 13:20–20.

Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol 193:327–342.

Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG (2010) A robust methodology for in vivo T1 mapping. Magn Reson Med 64:1057–1067.

Basser PJ, Mattiello J, LeBihan D (1994a) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254.

Basser PJ, Mattiello J, LeBihan D (1994b) MR diffusion tensor spectroscopy and imaging.Biophys J 66:259–267.

Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219.

Benton AL, Hécaen H (1970) Stereoscopic vision in patients with unilateral cerebral disease.Neurology 20:1084–1084.

Berman S, West KL, Does MD, Yeatman JD, Mezer AA (2018) Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex. Neuroimage 182:304–313.

Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221.

Bridge H (2016) Effects of cortical damage on binocular depth perception. Philos Trans R Soc Lond B Biol Sci 371 Available at: http://dx.doi.org/10.1098/rstb.2015.0254.

Bridge H, Parker AJ (2007) Topographical representation of binocular depth in the human visual cortex using fMRI. J Vis 7:15–15.

Bridge H, Thomas OM, Minini L, Cavina-Pratesi C, David Milner A, Parker AJ (2013) Structural and Functional Changes across the Visual Cortex of a Patient with Visual Form Agnosia. J Neurosci 33:12779–12791.

Caan MWA, Bazin P-L, Marques JP, de Hollander G, Dumoulin SO, van der Zwaag W (2019) MP2RAGEME: T , T , and QSM mapping in one sequence at 7 tesla. Hum Brain Mapp 40:1786–1798.

Caiafa CF, Pestilli F (2017) Multidimensional encoding of brain connectomes. Sci Rep 7:11491.

Callaway EM (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566:13–19.

Carmon A, Bechtoldt HP (1969) Dominance of the right cerebral hemisphere for stereopsis.Neuropsychologia 7:29–39.

Catani M, Ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239.

Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94.

Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press.

Cello KE, Nelson-Quigg JM, Johnson CA (2000) Frequency doubling technology perimetry for detection of glaucomatous visual field loss. American Journal of Ophthalmology 129:314–322 Available at: http://dx.doi.org/10.1016/s0002-9394(99)00414-6.

Cercignani M, Dowell NG, Tofts PS (2018) Quantitative MRI of the Brain: Principles of Physical Measurement, Second edition. CRC Press.

Chamberland M, Scherrer B, Prabhu SP, Madsen J, Fortin D, Whittingstall K, Descoteaux M, Warfield SK (2017) Active delineation of Meyer’s loop using oriented priors through MAGNEtic tractography (MAGNET). Hum Brain Mapp 38:509–527.

Chang DHF, Mevorach C, Kourtzi Z, Welchman AE (2014) Training transfers the limits on perception from parietal to ventral cortex. Curr Biol 24:2445–2450.

Chase C, Jenner AR (1993) Magnocellular visual deficits affect temporal processing of dyslexics. Ann N Y Acad Sci 682:326–329.

Chopin A, Levi D, Knill D, Bavelier D (2016) The absolute disparity anomaly and the mechanism of relative disparities. J Vis 16:2.

Conway BR (2003) Colour vision: a clue to hue in v2. Curr Biol 13:R308–R310.

Conway BR, Hubel DH, Livingstone MS (2002) Color contrast in macaque V1. Cereb Cortex 12:915–925.

Cottereau BR, McKee SP, Ales JM, Norcia AM (2011) Disparity-tuned population responses from human visual cortex. J Neurosci 31:954–965.

Cowey A, Porter J (1979) Brain damage and global stereopsis. Proc R Soc Lond B Biol Sci 204:399–407.

Csernansky JG, Schindler MK, Splinter NR, Wang L, Gado M, Selemon LD, Rastogi-Cruz D, Posener JA, Thompson PA, Miller MI (2004) Abnormalities of thalamic volume and shape in schizophrenia. Am J Psychiatry 161:896–902.

Cumming BG, Parker AJ (1997) Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389:280–283.

Cumming BG, Parker AJ (1999) Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J Neurosci 19:5602–5618.

Dejerine J, Dejerine-Klumpke A (1895) Anutomir des cenfres newem. Paris: Rueff et Cie 1:787–788.

Dekker TM, Ban H, van der Velde B, Sereno MI, Welchman AE, Nardini M (2015) Late development of cue integration is linked to sensory fusion in cortex. Curr Biol 25:2856–2861.

Demb JB, Boynton GM, Best M, Heeger DJ (1998) Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Res 38:1555–1559.

De Moraes CG (2013) Anatomy of the visual pathways. J Glaucoma 22 Suppl 5:S2–S7.

Denison RN, Vu AT, Yacoub E, Feinberg DA, Silver MA (2014) Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. Neuroimage 102 Pt 2:358–369.

Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240.

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980.

Doi T, Tanabe S, Fujita I (2011) Matching and correlation computations in stereoscopic depth perception. J Vis 11:1.

Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR, Wandell BA (2007)Temporal-callosal pathway diffusivity predicts phonological skills in children. Proc Natl Acad Sci U S A 104:8556–8561.

Duan Y, Norcia AM, Yeatman JD, Mezer A (2015) The Structural Properties of Major White Matter Tracts in Strabismic AmblyopiaMajor White Matter Tracts in Strabismic Amblyopia. Invest Ophthalmol Vis Sci 56:5152–5160.

Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39:647–660.

Durand J-B, Peeters R, Norman JF, Todd JT, Orban GA (2009) Parietal regions processing visual 3D shape extracted from disparity. Neuroimage 46:1114–1126.

Duval T, Le Vy S, Stikov N, Campbell J, Mezer A, Witzel T, Keil B, Smith V, Wald LL, Klawiter E, Cohen-Adad J (2017) g-Ratio weighted imaging of the human spinal cord in vivo. Neuroimage 145:11–23.

Eggert GH (1977) Wernicke’s works on aphasia: A sourcebook and review. Mouton de Gruyter.

Farivar R (2009) Dorsal-ventral integration in object recognition. Brain Res Rev 61:144–153.

Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191.

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47.

Felmingham KL, Jakobson LS (1995) Visual and visuomotor performance in dyslexic children. Exp Brain Res 106:467–474.

Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767.

Filo S, Shtangel O, Salamon N, Kol A, Weisinger B, Shifman S, Mezer AA (2019) Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI. Nature Communications 10 Available at: http://dx.doi.org/10.1038/s41467-019-11319-1.

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781.

Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055.

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative Group (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327.

Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102 Available at: http://dx.doi.org/10.1016/s1053-8119(09)70884-5.

Forstmann BU, de Hollander G, van Maanen L, Alkemade A, Keuken MC (2016) Towards a mechanistic understanding of the human subcortex. Nat Rev Neurosci 18:57.

Fraley C, Raftery AE (1998) How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. Comput J 41:578–588.

Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40.

Fujita I, Doi T (2016) Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth. Philos Trans R Soc Lond B Biol Sci 371 Available at: http://dx.doi.org/10.1098/rstb.2015.0257.

Fukunaga M, Li T-Q, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH (2010)Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834–3839.

Genç E, Bergmann J, Singer W, Kohler A (2011) Interhemispheric connections shape subjective experience of bistable motion. Curr Biol 21:1494–1499.

Georgieva S, Peeters R, Kolster H, Todd JT, Orban GA (2009) The processing of three-dimensional shape from disparity in the human brain. J Neurosci 29:727–742.

Gillebert CR, Schaeverbeke J, Bastin C, Neyens V, Bruffaerts R, De Weer A-S, Seghers A, Sunaert S, Van Laere K, Versijpt J, Vandenbulcke M, Salmon E, Todd JT, Orban GA, Vandenberghe R (2015) 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective. J Neurosci 35:12673–12692.

Giraldo-Chica M, Hegarty JP 2nd, Schneider KA (2015) Morphological differences in the lateral geniculate nucleus associated with dyslexia. Neuroimage Clin 7:830–836.

Giraldo-Chica M, Schneider KA (2018) Hemispheric asymmetries in the orientation and location of the lateral geniculate nucleus in dyslexia. Dyslexia 24:197–203.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M, Consortium, W. U-Minn HCP (2013) The minimal preprocessing pipelines for the Human Connectome Project.Neuroimage 80:105–124.

Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616.

Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N, Weiner KS, Amunts K, Zilles K, Grill-Spector K (2017) Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355:68–71.

Gomez J, Pestilli F, Witthoft N, Golarai G, Liberman A, Poltoratski S, Yoon J, Grill-Spector K (2015) Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing. Neuron 85:216–227.

Gonzalez F, Perez R (1998) Neural mechanisms underlying stereoscopic vision. Prog Neurobiol 55:191–224.

Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25.

Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156.

Guillery RW, Colonnier M (1970) Synaptic patterns in the dorsal lateral geniculate nucleus of the monkey. Z Zellforsch Mikrosk Anat 103:90–108.

Hagiwara A, Hori M, Kamagata K, Warntjes M, Matsuyoshi D, Nakazawa M, Ueda R, Andica C, Koshino S, Maekawa T, Irie R, Takamura T, Kumamaru KK, Abe O, Aoki S (2018) Myelin Measurement: Comparison Between Simultaneous Tissue Relaxometry, Magnetization Transfer Saturation Index, and Tw/Tw Ratio Methods. Sci Rep 8:10554.

Hamsher KD (1978) Stereopsis and unilateral brain disease. Invest Ophthalmol Vis Sci 17:336–343.

Hassler R (1966) Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates. Evolution of the Forebrain:419–434 Available at: http://dx.doi.org/10.1007/978-1-4899-6527-1_40.

Haynes J-D, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438:496–499.

Heeger DJ (1999) Linking visual perception with human brain activity. Curr Opin Neurobiol 9:474–479.

Hendry SHC, Clay Reid R (2000) The Koniocellular Pathway in Primate Vision. Annual Review of Neuroscience 23:127–153 Available at: http://dx.doi.org/10.1146/annurev.neuro.23.1.127.

Hess RF, To L, Zhou J, Wang G, Cooperstock JR (2015) Stereo Vision: The Haves and Have-Nots. Iperception 6:2041669515593028.

Heywood CA, Cowey A (1987) On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J Neurosci 7:2601–2617.

Hibbard PB, Scott-Brown KC, Haigh EC, Adrain M (2014) Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms. PLoS ONE 9:e84087 Available at: http://dx.doi.org/10.1371/journal.pone.0084087.

Hickey TL, Guillery RW (1979) Variability of laminar patterns in the human lateral geniculate nucleus. J Comp Neurol 183:221–246.

Howard IP, Rogers BJ (1995) Binocular Vision and Stereopsis. Oxford University Press. Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, van Zijl PCM, Hillis AE, Wytik R, Mori S (2005) DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum. Neuroimage 26:195–205.

Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415.

Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148:574–591.

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154.

Huber E, Donnelly PM, Rokem A, Yeatman JD (2018a) Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications 9 Available at: http://dx.doi.org/10.1038/s41467-018-04627-5.

Huber L, Ivanov D, Handwerker DA, Marrett S, Guidi M, Uludağ K, Bandettini PA, Poser BA (2018b) Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications. Neuroimage 164:131–143.

Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, Möller HE, Turner R (2014) Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn Reson Med 72:137–148.

Hughes SW, Lörincz M, Cope DW, Blethyn KL, Kékesi KA, Parri HR, Juhász G, Crunelli V (2004) Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42:253–268.

Ip IB, Minini L, Dow J, Parker AJ, Bridge H (2014) Responses to interocular disparity correlation in the human cerebral cortex. Ophthalmic Physiol Opt 34:186–198.

Ives HE (1912) XII. Studies in the photometry of lights of different colours. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24:149–188 Available at: http://dx.doi.org/10.1080/14786440708637317.

Janssen P, Vogels R, Liu Y, Orban GA (2003) At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37:693–701.

Janssen P, Vogels R, Orban GA (1999) Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proc Natl Acad Sci U S A 96:8217–8222.

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841.

Joffe KM, Raymond JE, Chrichton A (1997) Motion coherence perimetry in glaucoma and suspected glaucoma. Vision Res 37:955–964.

Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don'ts of diffusion MRI. Neuroimage 73:239–254.

Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst tech j 39:1125–1162.

Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press.

Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12:231–242.

Kaneko T, Takemura H, Pestilli F, Silva AC, Ye FQ, Leopold DA (2020) Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct Funct225:1313–1326.

Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K (2019) A critical assessment of data quality and venous effects in sub-millimeter fMRI. Neuroimage 189:847–869.

Kay K, Jamison KW, Zhang R-Y, Uğurbil K (2020) A temporal decomposition method for identifying venous effects in task-based fMRI. Nat Methods 17:1033–1039.

Keuken MC, Bazin P-L, Backhouse K, Beekhuizen S, Himmer L, Kandola A, Lafeber JJ,Prochazkova L, Trutti A, Schäfer A, Turner R, Forstmann BU (2017) Effects of aging on $T_1 T 1 , T_2^*$ T 2 ∗ , and QSM MRI values in the subcortex. Brain Structure and Function 222:2487–2505 Available at: http://dx.doi.org/10.1007/s00429-016-1352-4.

Kornblith S, Cheng X, Ohayon S, Tsao DY (2013) A network for scene processing in the macaque temporal lobe. Neuron 79:766–781.

Levin N, Dumoulin SO, Winawer J, Dougherty RF, Wandell BA (2010) Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65:21–31.

Ling S, Pratte MS, Tong F (2015) Attention alters orientation processing in the human lateral geniculate nucleus. Nature Neuroscience 18:496–498 Available at: http://dx.doi.org/10.1038/nn.3967.

Liu Z, de Zwart JA, Yao B, van Gelderen P, Kuo L-W, Duyn JH (2012) Finding thalamic BOLD correlates to posterior alpha EEG. Neuroimage 63:1060–1069.

Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749.

Li X, Zhu Q, Janssens T, Arsenault JT, Vanduffel W (2019) In vivo identification of thick, thin, and pale stripes of macaque area V2 using submillimeter resolution (f) MRI at 3 T. Cereb Cortex 29:544–560.

Lutti A, Dick F, Sereno MI, Weiskopf N (2014) Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 93 Pt 2:176–188.

Maddess TL, Henry GH, Others (1992) Performance of nonlinear visual units in ocular hypertension and glaucoma. Available at:https://openresearch-repository.anu.edu.au/handle/1885/11562.

Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA (2013) Magnetic resonance fingerprinting. Nature 495:187–192.

Main KL, Pestilli F, Mezer A, Yeatman J, Martin R, Phipps S, Wandell B (2014) Speed discrimination predicts word but not pseudo-word reading rate in adults and children. Brain Lang 138:27–37.

Makin TR, de Xivry J-JO (2019) Science Forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. Elife 8:e48175.

Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M (2005) Independence of luminance and contrast in natural scenes and in the early visual system. Nat Neurosci8:1690–1697.

Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281.

Martino J, García-Porrero JA (2013) Wernicke perpendicular fasciculus and vertical portion of the superior longitudinal fasciculus: in reply. Neurosurgery 73:E382–E383.

Masson GS, Busettini C, Miles FA (1997) Vergence eye movements in response to binocular disparity without depth perception. Nature 389:283–286.

Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 16:1–14.

Mcketton L, Kelly KR, Schneider KA (2014) Abnormal lateral geniculate nucleus and optic chiasm in human albinism. Journal of Comparative Neurology 522:2680–2687 Available at: http://dx.doi.org/10.1002/cne.23565.

Mezer A, Rokem A, Berman S, Hastie T, Wandell BA (2016) Evaluating quantitative proton-density-mapping methods. Hum Brain Mapp 37:3623–3635.

Mezer A, Yeatman JD, Stikov N, Kay KN, Cho NJ, Dougherty RF, Perry ML, Parvizi J, Hua le H, Butts-Pauly K, Wandell BA (2013) Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med19:1667–1672.

Minami S, Amano K (2017) Illusory Jitter Perceived at the Frequency of Alpha Oscillations.Curr Biol 27:2344–2351.e4.

Minami S, Oishi H, Takemura H, Amano K (2020) Inter-individual Differences in Occipital Alpha Oscillations Correlate with White Matter Tissue Properties of the Optic Radiation. eNeuro 7 Available at: http://dx.doi.org/10.1523/ENEURO.0224-19.2020.

Minini L, Parker AJ, Bridge H (2010) Neural modulation by binocular disparity greatest in human dorsal visual stream. J Neurophysiol 104:169–178.

Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med63:1144–1153.

Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269.

Movshon JA, Chambers BE, Blakemore C (1972) Interocular transfer in normal humans, and those who lack stereopsis. Perception 1:483–490.

Müller-Axt C, Eichner C, Rusch H, Kauffmann L, Bazin P-L, Anwander A, Morawski M, von Kriegstein K (n.d.) Mapping the Human Visual Thalamus and its Cytoarchitectonic Subdivisions Using Quantitative MRI. Available at: http://dx.doi.org/10.1101/2020.08.14.250779.

Murphy AP, Leopold DA, Humphreys GW, Welchman AE (2016) Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues. Philos Trans R Soc Lond B Biol Sci 371 Available at: http://dx.doi.org/10.1098/rstb.2015.0263.

Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system.

Nat Rev Neurosci 10:360–372.

Neri P, Bridge H, Heeger DJ (2004) Stereoscopic processing of absolute and relative disparity in human visual cortex. J Neurophysiol 92:1880–1891.

Nishida Y, Hayashi O, Iwami T, Kimura M, Kani K, Ito R, Shiino A, Suzuki M (2001) Stereopsis-processing regions in the human parieto-occipital cortex. Neuroreport 12:2259.

O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5:1203–1209.

Ogawa S, Takemura H, Horiguchi H, Terao M, Haji T, Pestilli F, Yeatman JD, Tsuneoka H, Wandell BA, Masuda Y (2014) White matter consequences of retinal receptor and ganglion cell damage. Invest Ophthalmol Vis Sci 55:6976–6986.

Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:1037–1041.

Ohzawa I, DeAngelis GC, Freeman RD (1997) Encoding of binocular disparity by complex cells in the cat’s visual cortex. J Neurophysiol 77:2879–2909.

Oishi H, Takemura H, Aoki SC, Fujita I, Amano K (2018) Microstructural properties of the vertical occipital fasciculus explain the variability in human stereoacuity. Proc Natl Acad Sci U S A 115:12289–12294.

Okazawa G, Tajima S, Komatsu H (2015) Image statistics underlying natural texture selectivity of neurons in macaque V4. Proc Natl Acad Sci U S A 112:E351–E360.

Orban GA, Janssen P, Vogels R (2006) Extracting 3D structure from disparity. Trends Neurosci 29:466–473.

Parker AJ (2007) Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 8:379–391.

Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11:1058–1063.

Pistorio AL, Hendry SH, Wang X (2006) A modified technique for high-resolution staining of myelin. J Neurosci Methods 153:135–146.

Preston TJ, Li S, Kourtzi Z, Welchman AE (2008) Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. J Neurosci 28:11315–11327.

Ptito A, Zatorre RJ, Larson WL, Tosoni C (1991) Stereopsis after unilateral anterior temporal lobectomy. Dissociation between local and global measures. Brain 114 ( Pt3):1323–1333.

Qian N, Zhu Y (1997) Physiological computation of binocular disparity. Vision Res 37:1811–1827.

Read JCA, Phillipson GP, Serrano-Pedraza I, Milner AD, Parker AJ (2010) Stereoscopic vision in the absence of the lateral occipital cortex. PLoS One 5:e12608.

Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, Leopold DA, Ye FQ (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci U S A 112:E2820–E2828.

Richards W (1970) Stereopsis and stereoblindness. Experimental Brain Research 10:380–388 Available at: http://dx.doi.org/10.1007/bf02324765.

Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51:103–114.

Rokem A, Takemura H, Bock AS, Scherf KS, Behrmann M, Wandell BA, Fine I, Bridge H, Pestilli F (2017) The visual white matter: The application of diffusion MRI and fiber tractography to vision science. J Vis 17:4.

Ross JE (1983) Disturbance of stereoscopic vision in patients with unilateral stroke. Behav Brain Res 7:99–112.

Sachs H (1892) Das Hemisphärenmark des menschlichen Grosshirns: Der Hinterhauptlappen/von Heinrich Sachs.

Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357.

Sampaio-Baptista C, Johansen-Berg H (2017) White Matter Plasticity in the Adult Brain.Neuron 96:1239–1251.

Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, DeLuca GC, Miller KL, Taylor A, Thomas N, Kleim J, Sibson NR, Bannerman D, Johansen-Berg H (2013) Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci 33:19499–19503.

Scherf KS, Thomas C, Doyle J, Behrmann M (2014) Emerging structure-function relations in the developing face processing system. Cereb Cortex 24:2964–2980.

Schiller PH, Logothetis NK, Charles ER (1990) Functions of the colour-opponent and broad-band channels of the visual system. Nature 343:68–70.

Schneider KA, Kastner S (2009) Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. J Neurosci 29:1784–1795.

Schneider KA, Richter MC, Kastner S (2004) Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J Neurosci 24:8975–8985.

Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371.

Selemon LD, Begovic A (2007) Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 151:1–10.

Sereno MI, Lutti A, Weiskopf N, Dick F (2013) Mapping the human cortical surface by combining quantitative T(1) with retinotopy. Cereb Cortex 23:2261–2268.

Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging.Neuroimage 63:569–580.

Shams Z, Norris DG, Marques JP (2019) A comparison of in vivo MRI based cortical myelin mapping using T1w/T2w and R1 mapping at 3T. PLoS One 14:e0218089.

Shapley R, Hawken MJ (2011) Color in the cortex: single- and double-opponent cells. Vision Res 51:701–717.

Sherbondy AJ, Dougherty RF, Ben-Shachar M, Napel S, Wandell BA (2008a) ConTrack: finding the most likely pathways between brain regions using diffusion tractography. J Vis 8:15 1–16.

Sherbondy AJ, Dougherty RF, Napel S, Wandell BA (2008b) Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis 8.

Shiozaki HM, Tanabe S, Doi T, Fujita I (2012a) Neural activity in cortical area V4 underlies fine disparity discrimination. J Neurosci 32:3830–3841.

Shiozaki HM, Tanabe S, Doi T, Fujita I (2012b) Neural Activity in Cortical Area V4 Underlies Fine Disparity Discrimination. J Neurosci 32:3830–3841.

Shtangel O, Mezer AA (2020) A phantom system for assessing the effects of membrane lipids on water proton relaxation. NMR Biomed 33:e4209.

Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38:743–761.

Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938.

Stein J (2001) The magnocellular theory of developmental dyslexia. Dyslexia 7:12–36 Available at: http://dx.doi.org/10.1002/dys.186.

Stuber C, Morawski M, Schafer A, Labadie C, Wahnert M, Leuze C, Streicher M, Barapatre N, Reimann K, Geyer S, Spemann D, Turner R (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 93 Pt 1:95–106.

Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, Leutritz T, Lutti A, Phillips C, Reimer E, Ruthotto L, Seif M, Weiskopf N, Ziegler G, Mohammadi S (2019) hMRI - A toolbox for quantitative MRI in neuroscience and clinical research.Neuroimage 194:191–210.

Takemura H, Caiafa CF, Wandell BA, Pestilli F (2016a) Ensemble Tractography. PLoS Comput Biol 12:e1004692.

Takemura H, Ogawa S, Mezer AA, Horiguchi H, Miyazaki A, Matsumoto K, Shikishima K, Nakano T, Masuda Y (2019) Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. Neuroimage Clin 23:101826.

Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi SM, Sliwa J, Ye FQ, Barnett MA, Leopold DA, Freiwald WA, Logothetis NK, Wandell BA (2017) Occipital White Matter Tracts in Human and Macaque. Cereb Cortex 27:3346–3359.

Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2016b) A major human white-matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26:2205–2214.

Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2016c) A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. Cereb Cortex 26:2205–2214.

Takemura H, Yuasa K, Amano K (2020) Predicting Neural Response Latency of the Human Early Visual Cortex from MRI-Based Tissue Measurements of the Optic Radiation. eNeuro 7 Available at: http://dx.doi.org/10.1523/ENEURO.0545-19.2020.

Tanabe S, Umeda K, Fujita I (2004) Rejection of false matches for binocular correspondence in macaque visual cortical area V4. J Neurosci 24:8170–8180.

Tanabe S, Yasuoka S, Fujita I (2008) Disparity-energy signals in perceived stereoscopic depth. J Vis 8:22.1–10.

Tanaka H, Uka T, Yoshiyama K, Kato M, Fujita I (2001) Processing of shape defined by disparity in monkey inferior temporal cortex. J Neurophysiol 85:735–744.

Tavor I, Yablonski M, Mezer A, Rom S, Assaf Y, Yovel G (2014) Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage 86:123–130.

Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246.

Thomason ME, Thompson PM (2011) Diffusion imaging, white matter, and psychopathology.Annu Rev Clin Psychol 7:63–85.

Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472.

Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66.

Tournier J-D, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185.

Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, Wald LL, Dale AM, Rosen BR, Van Essen DC, Livingstone MS, Orban GA, Tootell RB (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39:555–568.

Uddin MN, Figley TD, Marrie RA, Figley CR, CCOMS Study Group (2018) Can T w/T w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T w/T w ratios, GRASE-based T w/T w ratios and multi-echo GRASE-based myelin water fractions. NMR Biomed 31 Available at: http://dx.doi.org/10.1002/nbm.3868.

Uesaki M, Takemura H, Ashida H (2017) Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Struct Funct Available at: http://dx.doi.org/10.1007/s00429-017-1492-1.

Uka T, DeAngelis GC (2006a) Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J Neurosci 26:6791–6802.

Uka T, DeAngelis GC (2006b) Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J Neurosci 26:6791–6802.

Uka T, Tanabe S, Watanabe M, Fujita I (2005) Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J Neurosci 25:10796–10802.

Uka T, Tanaka H, Yoshiyama K, Kato M, Fujita I (2000) Disparity selectivity of neurons in monkey inferior temporal cortex. J Neurophysiol 84:120–132.

Uludağ K, Blinder P (2018) Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage 168:279–295.

Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499.

Usrey WM, Reid RC (2000) Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis. J Physiol 523 Pt 3:755–769.

Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423.

Viviano JD, Schneider KA (2015) Interhemispheric interactions of the human thalamic reticular nucleus. J Neurosci 35:2026–2032.

Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87.

Wandell BA (2016) Clarifying Human White Matter. Annu Rev Neurosci 39:103–128. Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron56:366–383.

Wandell BA, Le RK (2017) Diagnosing the Neural Circuitry of Reading. Neuron 96:298–311. Wandell BA, Yeatman JD (2013) Biological development of reading circuits. Curr OpinNeurobiol 23:261–268.

Wang L, Mruczek REB, Arcaro MJ, Kastner S (2015) Probabilistic Maps of Visual Topography in Human Cortex. Cereb Cortex 25:3911–3931.

Warntjes JBM, Leinhard OD, West J, Lundberg P (2008) Rapid magnetic resonance quantification on the brain: Optimization for clinical usage. Magn Reson Med 60:320–329.

Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr Opin Neurol 28:313–322.

Welchman AE (2016) The human brain in depth: How we see in 3D. Annu Rev Vis Sci 2:345–376.

Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Aerzte und Studirende. Fischer. Westheimer G (1979) Cooperative neural processes involved in stereoscopic acuity. ExpBrain Res 36:585–597.

Wheatstone C (1843) Contributions to the physiology of vision.—Part the first. On some remarkable and hitherto unobserved phenomena of binocular vision. Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London 4:76–77.

Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313.

Williams RW, Rakic P (1988) Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development. J Comp Neurol 272:424–436.

Xiao Y, Wang Y, Felleman DJ (2003) A spatially organized representation of colour in macaque cortical area V2. Nature 421:535–539.

Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA (2012a) Development of white matter and reading skills. Proc Natl Acad Sci U S A 109:E3045–E3053.

Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012b) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7:e49790.

Yeatman JD, Dougherty RF, Rykhlevskaia E, Sherbondy AJ, Deutsch GK, Wandell BA, Ben-Shachar M (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. J Cogn Neurosci 23:3304–3317.

Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155.

Yeatman JD, Wandell BA, Mezer AA (2014a) Lifespan maturation and degeneration of human brain white matter. Nat Commun 5:4932.

Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA (2014b) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci U S A 111:E5214–E5223.

Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA (2014c) The Vertical Occipital Fasciculus: A Lost Highway. Proc Natl Acad Sci U S A.

Yeshurun Y, Levy L (2003) Transient spatial attention degrades temporal resolution. Psychol Sci 14:225–231.

Yoonessi A, Yoonessi A (2011) Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications. J Ophthalmic Vis Res6:119–126.

Yücel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384.

Yücel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481.

Yu Q, Zhang P, Qiu J, Fang F (2016) Perceptual Learning of Contrast Detection in the Human Lateral Geniculate Nucleus. Curr Biol 26:3176–3182.

Zalta EN, Nodelman U, Allen C, Perry J (1995) Stanford encyclopedia of philosophy.Available at:http://ruccs.rutgers.edu/images/personal-zenon-pylyshyn/class-info/Consciousness_201 4/StanfordEncyclopedia/consciousness-temporal_sc.pdf.

Zaroff CM, Knutelska M, Frumkes TE (2003) Variation in Stereoacuity: Normative Description, Fixation Disparity, and the Roles of Aging and Gender. Invest Ophthalmol Vis Sci 44:891–900.

Zhang P, Wen W, Sun X, He S (2016) Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients. Hum Brain Mapp 37:558–569.

Zhang P, Zhou H, Wen W, He S (2015) Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus. Neuroimage 111:159–166.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る