リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spin and charge transport properties in magnetic materials with lowered symmetry」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spin and charge transport properties in magnetic materials with lowered symmetry

Chen Yao 東北大学

2021.03.25

概要

The aim of this dissertation is to investigate the transport phenomena of spin and charge excitation in low-symmetry magnetic structures. The first and second parts of this disser- tation investigate the transport of two types of excitations, triplon and superconducting vortex, in one-dimensional magnetic structures.

In the first part (Chapter 3), we report the discovery of triplon spin current, carried by soliton excitations in the spin-Peierls material CuGeO3 with a one-dimensional spin chain. Low-dimensional magnets are known to have exotic magnetic orders different from three- dimensional ones due to their dimensionality. Spin current transport of spin excitations (spinon) in spin liquids without long-range correlations is reported in 2016[1], but there are still few studies done in terms of spin current in Low-dimensional magnets. In this study, we investigate the spin current transport properties of solitons in spin-Peierls-ordered CuGeO3. It is found that the spin current is significantly different from the magnon spin current in three-dimensional magnets. This result is expected to extend spintronics to a broader category of dimer-ordered magnets.

The second part (Chapter 4) is a search for the transport phenomena of superconducting vortices in a one-dimensional magnetic domain. Superconducting vortices are topological excitations in second type superconductors and are topologically protected and therefore not dissipated in the sample. The application of spintronics using vortices, which also carry angular momentum, has recently been reported. For example, long-range spin current trans- port is investigated using vortex flow[2]. To regulate the flow of the vortices, the transport of the vortices in one-dimensional magnetic domains is investigated in this dissertation.

In this introductory chapter, I will first review recent developments in spintronics from a fundamental perspective. After that, I will introduce one-dimensional magnets and explain solitons, which are topological excitations in them.

この論文で使われている画像

参考文献

[1] Daichi Hirobe et al. “One-dimensional spinon spin currents”. In: Nature Physics (Sept. 2016) (cit. on pp. 1, 8–10, 49, 50, 65, 66, 68, 70, 95).

[2] Se Kwon Kim, Roberto Myers, and Yaroslav Tserkovnyak. “Nonlocal Spin Transport Mediated by a Vortex Liquid in Superconductors”. In: Physical Review Letters 121.18 (Oct. 2018), p. 187203 (cit. on p. 1).

[3] Sadamichi Maekawa et al. Spin current. Vol. 22. Oxford University Press, 2017 (cit. on pp. 2, 3, 5).

[4] Hiroto Adachi et al. “Theory of the spin Seebeck effect”. In: Reports on Progress in Physics 76.3 (Mar. 2013), p. 036501 (cit. on pp. 2, 3, 8, 9, 95).

[5] Y Kajiwara et al. “Transmission of electrical signals by spin-wave interconversion in a magnetic insulator”. In: Nature 464.7286 (Mar. 2010), pp. 262–266 (cit. on p. 3).

[6] Robert Karplus and J M Luttinger. “Hall Effect in Ferromagnetics”. In: Phys. Rev. 95.5 (Sept. 1954), pp. 1154–1160 (cit. on p. 3).

[7] M I Dyakonov and V I Perel. “Spin orientation of electrons associated with the interband absorption of light in semiconductors”. In: Sov. Phys. JETP 33.5 (1971), pp. 1053–1059 (cit. on p. 4).

[8] M I Dyakonov and V I Perel. “Current-induced spin orientation of electrons in semi- conductors”. In: Physics Letters A 35.6 (1971), pp. 459–460 (cit. on p. 4).

[9] M I Dyakonov and V I Perel. “Possibility of orienting electron spins with current”. In: Soviet Journal of Experimental and Theoretical Physics Letters 13 (1971), p. 467 (cit. on p. 4).

[10] Y K Kato et al. “Observation of the Spin Hall Effect in Semiconductors”. In: Science 306.5703 (Dec. 2004), pp. 1910–1913 (cit. on p. 4).

[11] J Wunderlich et al. “Experimental Observation of the Spin-Hall Effect in a Two- Dimensional Spin-Orbit Coupled Semiconductor System”. In: Physical Review Letters 94.4 (Feb. 2005), p. 047204 (cit. on p. 4).

[12] S O Valenzuela and M Tinkham. “Direct electronic measurement of the spin Hall effect”. In: Nature 442.7099 (July 2006), pp. 176–179 (cit. on pp. 5, 6).

[13] E Saitoh et al. “Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect”. In: Applied Physics Letters 88.18 (2006), p. 182509 (cit. on pp. 5, 6).

[14] K Uchida et al. “Observation of the spin Seebeck effect”. In: Nature 455.7214 (Oct. 2008), pp. 778–781 (cit. on p. 5).

[15] Daniel Meier et al. “Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO”. In: Nature Communications 6.1 (Sept. 2015), p. 8211 (cit. on p. 5).

[16] Ken-ichi Uchida et al. “Observation of longitudinal spin-Seebeck effect in magnetic insulators”. In: Applied Physics Letters 97.17 (Oct. 2010), p. 172505 (cit. on pp. 5, 7).

[17] K Uchida et al. “Longitudinal spin Seebeck effect: from fundamentals to applica- tions”. In: Journal of Physics 26.34 (Aug. 2014), p. 343202 (cit. on pp. 5, 7).

[18] Ken-ichi Uchida et al. “Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures”. In: Physical Review X 4.4 (Nov. 2014), p. 041023 (cit. on p. 5).

[19] K Uchida et al. “Longitudinal spin Seebeck effect in various garnet ferrites”. In: Physical Review B 87.10 (Mar. 2013), p. 104412 (cit. on p. 5).

[20] Andreas Kehlberger et al. “Length Scale of the Spin Seebeck Effect”. In: Physical Review Letters 115.9 (Aug. 2015), p. 096602 (cit. on pp. 5, 10).

[21] Takashi Kikkawa et al. “Critical suppression of spin Seebeck effect by magnetic fields”. In: Physical Review B 92.6 (Aug. 2015), p. 064413 (cit. on pp. 5, 10, 49, 65).

[22] Hyungyu Jin et al. “Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets”. In: Physical Review B 92.5 (Aug. 2015), p. 054436 (cit. on p. 5).

[23] Er-Jia Guo et al. “Influence of Thickness and Interface on the Low-Temperature Enhancement of the Spin Seebeck Effect in YIG Films”. In: Physical Review X 6.3 (July 2016), p. 031012 (cit. on pp. 5, 10).

[24] L J Cornelissen et al. “Long-distance transport of magnon spin information in a mag- netic insulator at room temperature”. In: Nature Physics 11.1 (Dec. 2015), pp. 1022– 1026 (cit. on pp. 5, 52).

[25] D Qu et al. “Intrinsic Spin Seebeck Effect in Au/YIG”. In: Physical Review Letters 110.6 (Feb. 2013), p. 067206 (cit. on p. 5).

[26] T Kikkawa et al. “Longitudinal Spin Seebeck Effect Free from the Proximity Nernst Effect”. In: Physical Review Letters 110.6 (Feb. 2013), p. 067207 (cit. on p. 5).

[27] Naohiro Ito et al. “Spin Seebeck effect in the layered ferromagnetic insulators CrSiTe3 and CrGeTe3”. In: Physical Review B 100.6 (Aug. 2019), p. 060402 (cit. on p. 5).

[28] S Seki et al. “Thermal Generation of Spin Current in an Antiferromagnet”. In: Phys. Rev. Lett. 115.26 (Dec. 2015), p. 266601 (cit. on p. 5).

[29] Stephen M Wu et al. “Antiferromagnetic Spin Seebeck Effect”. In: Phys. Rev. Lett. 116.9 (Mar. 2016), p. 097204 (cit. on p. 5).

[30] Junxue Li et al. “Spin current from sub-terahertz-generated antiferromagnetic magnons”. In: Nature 578.7793 (Feb. 2020), pp. 70–74 (cit. on p. 5).

[31] S M Rezende et al. “Magnon spin-current theory for the longitudinal spin-Seebeck effect”. In: Physical Review B 89.1 (Jan. 2014), p. 014416 (cit. on pp. 8, 10, 65, 95).

[32] Daichi Hirobe et al. “Magnon Pairs and Spin-Nematic Correlation in the Spin Seebeck Effect”. In: Physical Review Letters 123.11 (Sept. 2019), p. 117202 (cit. on pp. 8, 10, 65, 95).

[33] Changjiang Liu et al. “Probing short-range magnetic order in a geometrically frus- trated magnet by means of the spin Seebeck effect”. In: Physical Review B 98.6 (Aug. 2018), p. 060415 (cit. on pp. 8, 70).

[34] Stephen M Wu, John E Pearson, and Anand Bhattacharya. “Paramagnetic Spin Seebeck Effect”. In: Phys. Rev. Lett. 114.18 (May 2015), p. 186602 (cit. on pp. 8, 53, 70, 95).

[35] Koichi Oyanagi et al. “Spin transport in insulators without exchange stiffness”. In: Nature Communications 10.1 (Oct. 2019), pp. 1–6 (cit. on pp. 8, 70, 95).

[36] Jiang Xiao et al. “Theory of magnon-driven spin Seebeck effect”. In: Physical Review B 81.21 (June 2010), p. 214418 (cit. on pp. 8, 10).

[37] Hiroto Adachi et al. “Linear-response theory of spin Seebeck effect in ferromagnetic insulators”. In: Physical Review B 83.9 (Mar. 2011), p. 533 (cit. on pp. 9, 10, 65).

[38] 大沼 悠一. “磁性絶縁体/金属二層構造におけるスピン流生成の微視的理論 (in Japanese)”. PhD thesis. 東北大学, 2016 (cit. on p. 9).

[39] Yuichi Ohnuma et al. “Spin Seebeck effect in antiferromagnets and compensated ferrimagnets”. In: Physical Review B 87.1 (Jan. 2013), p. 014423 (cit. on p. 10).

[40] S M Rezende et al. “Bulk magnon spin current theory for the longitudinal spin Seebeck effect”. In: Journal of Magnetism and Magnetic Materials 400 (Feb. 2016), pp. 171–177 (cit. on p. 10).

[41] Sergio M Rezende, Antonio Azevedo, and Roberto L Rodriguez-Suarez. “Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators”. In: Journal of Physics D: Applied Physics 51.17 (May 2018), p. 174004 (cit. on pp. 10, 11).

[42] L J Cornelissen et al. “Magnon spin transport driven by the magnon chemical po- tential in a magnetic insulator”. In: Physical Review B 94.1 (July 2016), p. 014412 (cit. on pp. 11, 65).

[43] S M Rezende, R L Rodriguez-Suarez, and A Azevedo. “Theory of the spin Seebeck effect in antiferromagnets”. In: Physical Review B 93.1 (Jan. 2016), p. 014425 (cit. on p. 11).

[44] Y Shiomi et al. “ Spin Seebeck effect in the polar antiferromagnet α-Cu2V2O7 ”. In: Physical Review B 96.18 (Nov. 2017), p. 180414 (cit. on p. 11).

[45] 李正中. 固体理論 (in Chinese). 高等教育出版社, 2002. isbn: 9787040115765 (cit. on pp. 11, 72).

[46] H. Bruus and K. Flensberg. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford Graduate Texts. OUP Oxford, 2004. isbn: 9780191057472 (cit. on pp. 12, 13).

[47] T. Giamarchi. Quantum Physics in One Dimension. International Series of Mono- graphs on Physics. Clarendon Press, 2003. isbn: 9780191523458 (cit. on pp. 12, 16, 17, 20, 60).

[48] 廣部 大地. “スピン液体におけるスピン流および熱流輸送の研究 (in Japanese)”. PhD thesis. 東北大学 2018 (cit. on p. 14).

[49] Shintaro Takayoshi and Masahiro Sato. “Coefficients of bosonized dimer operators in spin-1/2 XXZ chains and their applications”. In: Physical Review B 82.21 (Dec. 2010), p. 214420 (cit. on pp. 14, 16, 22, 23, 98).

[50] D C Cabra, A Honecker, and P Pujol. “Magnetization plateaux N-leg spin ladders”. In: Physical Review B 58.10 (Sept. 1998), p. 6241 (cit. on p. 16).

[51] Shintaro Takayoshi. “Correspondence between one dimensional quantum many-body systems and the bosonized effective field theory (No. 127761)”. PhD thesis. The University of Tokyo, 2012 (cit. on p. 16).

[52] Sergei Lukyanov. “Low energy effective Hamiltonian for the XXZ spin chain”. In: Nuclear Physics B 522.3 (July 1998), pp. 533–549 (cit. on p. 16).

[53] Shintaro Takayoshi and Masaki Oshikawa. “Mass ratio of elementary excitations in frustrated antiferromagnetic chains with dimerization”. In: Physical Review B 86.14 (Oct. 2012), p. 144408 (cit. on pp. 17, 60).

[54] Lamek Hulthén. “Über das austauschproblem eines kristalles”. PhD thesis. Almqvist & Wiksell, 1938 (cit. on p. 18).

[55] M. Takahashi. Thermodynamics of One-Dimensional Solvable Models. Cambridge University Press, 2005. isbn: 9780521019798 (cit. on pp. 18, 39).

[56] Martin Mourigal et al. “Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain”. In: Nature Physics 9.7 (July 2013), pp. 435–441 (cit. on pp. 18, 19, 39).

[57] M Takahashi. “Half-filled Hubbard model at low temperature”. In: Journal of Physics C: Solid State Physics 10.8 (Apr. 1977), pp. 1289–7301 (cit. on p. 18).

[58] L D Faddeev and L A Takhtajan. “What is the spin of a spin wave?” In: Physics Letters A 85.6-7 (Oct. 1981), pp. 375–377 (cit. on p. 18).

[59] Kiyomi Okamoto and Kiyohide Nomura. “Fluid-dimer critical point in S= 1/2 anti- ferromagnetic Heisenberg chain with next nearest neighbor interactions”. In: Physics Letters A 169.6 (1992), pp. 433–437 (cit. on pp. 22, 60).

[60] R Chitra et al. “Density-matrix renormalization-group studies of the spin-1/2 Heisen- berg system with dimerization and frustration”. In: Physical Review B 52.9 (Sept. 1995), pp. 6581–6587 (cit. on pp. 22, 60).

[61] Swapan Pati et al. “A comparative study of the phase diagrams of spin- and spin-1 antiferromagnetic chains with dimerization and frustration”. In: Journal of Physics: Condensed Matter 9.1 (Jan. 1997), pp. 219–230 (cit. on pp. 22, 60).

[62] Takashi Nakano and Hidetoshi Fukuyama. “Dimerization and Solitons in One-Dimensional XY- ZAntiferromagnets”. In: Journal of the Physical Society of Japan 50.8 (Aug. 1981), pp. 2489–2499 (cit. on p. 23).

[63] Jill C Bonner and Hendrik W J Blöte. “Excitation spectra of the linear alternating antiferromagnet”. In: Physical Review B 25.11 (June 1982), pp. 6959–6980 (cit. on pp. 23, 25, 26, 49, 50).

[64] L P Regnault et al. “Inelastic-neutron-scattering investigation of the spin-Peierls system CuGeO3”. In: Physical Review B 53.9 (Mar. 1996), pp. 5579–5597 (cit. on pp. 25, 26, 63).

[65] LN Bulaevskii Sov Phys JETP and 1963. “Theory of non-uniform antiferromagnetic spin chains”. In: jetp.ac.ru () (cit. on p. 25).

[66] M C Cross and Daniel S Fisher. “A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDT”. In: Physical Review B 19.1 (Jan. 1979), pp. 402–419 (cit. on pp. 25, 41).

[67] M Nishi, O Fujita, and J Akimitsu. “Neutron-scattering study on the spin-Peierls transition in a quasi-one-dimensional magnet CuGeO3 ”. In: Physical Review B 50.9 (Sept. 1994), pp. 6508–6510 (cit. on pp. 25, 26, 41, 44, 60, 62).

[68] G Kamieniarz, M Bieliński, and J P Renard. “Susceptibility behavior of CuGeO3: Comparison between experiment and the quantum transfer-matrix approach”. In: Physical Review B 60.21 (Dec. 1999), pp. 14521–14524 (cit. on pp. 25, 41, 44, 60).

[69] Erik Sørensen et al. “Soliton approach to spin-Peierls antiferromagnets: Large-scale numerical results”. In: Physical Review B 58.22 (Dec. 1998), R14701–R14704 (cit. on p. 26).

[70] J P Boucher, L P Regnault, and LE Lorenzo REVIEW. “Electron spin resonance (ESR) and neutron inelastic scattering (NIS) on CuGeO3”. In: RIKEN Review 24 (1999), p. 5 (cit. on p. 26).

[71] Nojiri Hiroyuki et al. “Submillimeter Wave ESR Study of Spin Gap Excitations in CuGeO 3”. In: Journal of the Physical Society of Japan 68.10 (Nov. 1999), pp. 3417– 3423 (cit. on pp. 26, 57, 60).

[72] T M Brill et al. “High-Field Electron Spin Resonance and Magnetization in the Dimerized Phase of CuGeO3”. In: Physical Review Letters 73.11 (Sept. 1994), p. 1545 (cit. on p. 26).

[73] O Fujita et al. “Evidence for a Singlet-Triplet Transition in Spin-Peierls System CuGeO3”. In: Physical Review Letters 74.9 (Feb. 1995), p. 1677 (cit. on p. 26).

[74] Tatsuhiro Nozue et al. “Fabrication of yttrium–iron–garnet/Pt multilayers for the longitudinal spin Seebeck effect”. In: Applied Physics Letters 113.26 (Dec. 2018), p. 262402 (cit. on pp. 32, 55).

[75] Quantum Design Inc. “Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with LabVIEW and Other .NET Languages”. In: Application Note 1070-210 Rev A5 (2018) (cit. on p. 34).

[76] Quantum Design Inc. “Physical Property Measurement System Hardware Manual”. In: Part Number 1070-150, B5 (2018) (cit. on p. 35).

[77] W Kohn. “Image of the Fermi Surface in the Vibration Spectrum of a Metal”. In: Physical Review Letters 2.9 (May 1959), pp. 393–394 (cit. on p. 39).

[78] 閻守勝. 固体物理概論 (in Chinese). 五南圖書, 2006. isbn: 9789571142005 (cit. on p. 39).

[79] 磁性 (in Japanese). 朝倉物性物理シリーズ第1巻. 朝倉書店, 2008. isbn: 9784254137279 (cit. on pp. 39, 97, 98).

[80] P Pincus. “Instability of the uniform antiferromagnetic chain”. In: Solid State Com- munications 9.22 (1971) (cit. on p. 40).

[81] E Pytte. “Peierls instability in Heisenberg chains”. In: Physical Review B 10.11 (Dec. 1974), pp. 4637–4642 (cit. on p. 40).

[82] J W Bray et al. “Observation of a Spin-Peierls Transition in a Heisenberg Antifer- romagnetic Linear-Chain System”. In: Physical Review Letters 35.11 (Sept. 1975), pp. 744–747 (cit. on p. 40).

[83] Jill C Bonner and Michael E Fisher. “Linear Magnetic Chains with Anisotropic Cou- pling”. In: Phys. Rev. 135.3A (Aug. 1964), A640–A658 (cit. on pp. 40–42).

[84] Masashi Hase, Ichiro Terasaki, and Kunimitsu Uchinokura. “Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3”. In: Physical Review Letters 70.23 (June 1993), pp. 3651–3654 (cit. on pp. 40–43, 47, 57).

[85] J P Boucher and L P Regnault. “The Inorganic Spin-Peierls Compound CuGeO3”. In: Journal de Physique I 6.12 (Dec. 1996), pp. 1939–1966 (cit. on p. 40).

[86] K Uchinokura. “TOPICAL REVIEW: Spin-Peierls transition in CuGeO3 and impurity- induced ordered phases in low-dimensional spin-gap systems”. In: Journal of Physics: Condensed Matter 14.1 (Mar. 2002), R195–R237 (cit. on p. 40).

[87] Osamu Kamimura et al. “Electron Diffraction Study of an Inorganic Spin-Peierls System CuGeO3”. In: Journal of the Physical Society of Japan 63.7 (July 1994), pp. 2467–2471 (cit. on pp. 41, 43, 70).

[88] D Khomskii, W Geertsma, and M Mostovoy. “Elementary excitations, exchange in- teraction and spin-Peierls transition in CuGeO3”. In: Czechoslovak Journal of Physics 46.6 (June 1996), pp. 3239–3246 (cit. on pp. 41, 57).

[89] G Castilla, S Chakravarty, and V J Emery. “Quantum Magnetism of CuGeO3”. In: Physical Review Letters 75.9 (Aug. 1995), pp. 1823–1826 (cit. on pp. 41, 44).

[90] G Reményi et al. “Specific heat at the spin-peierls transition in CuGeO3 under mag- netic fields up to 22 tesla”. In: Journal of Low Temperature Physics 107.3 (May 1997), pp. 243–262 (cit. on p. 41).

[91] J Takeya et al. “Thermal conductivity of pure and Mg-doped CuGeO3 in the in- commensurate phase”. In: Physical Review B 63.21 (May 2001), p. 214407 (cit. on p. 43).

[92] Masashi Hase et al. “Magnetic phase diagram of the spin-Peierls cuprate CuGeO3”. In: Physical Review B (Condensed Matter) 48.1 (Oct. 1993), pp. 9616–9619 (cit. on p. 43).

[93] H M Rønnow et al. “Neutron Scattering Study of the Field-Induced Soliton Lattice in CuGeO3”. In: Physical Review Letters 84.19 (May 2000), p. 4469 (cit. on p. 43).

[94] Terufumi Hamamoto et al. “Phase Diagram of Spin-Peierls Cuprate CuGeO3 Based on AC Susceptibility in High Magnetic Fields”. In: Journal of the Physical Society of Japan 63.3 (Mar. 1994), pp. 1218–1219 (cit. on p. 43).

[95] J P Pouget et al. “Structural Evidence for a Spin Peierls Ground state in the Quasi- One-Dimensional Compound CuGeO3”. In: Physical Review Letters 72.25 (June 1994), pp. 4037–4040 (cit. on p. 43).

[96] K Hirota et al. “Dimerization of CuGeO3 in the Spin-Peierls State”. In: Physical Review Letters 73.5 (Aug. 1994), pp. 736–739 (cit. on pp. 43, 44, 59).

[97] K Hirota et al. “Characterization of the structural and magnetic fluctuations near the spin-Peierls transition in CuGeO3”. In: Physical Review B 52.21 (Dec. 1995), pp. 15412–15419 (cit. on p. 43).

[98] K Takehana et al. “Far-infrared spectroscopy in the spin-Peierls compound CuGeO3 under high magnetic fields”. In: Physical Review B 62.8 (Aug. 2000), pp. 5191–5198 (cit. on p. 43).

[99] José Riera and Ariel Dobry. “Magnetic susceptibility in the spin-Peierls system CuGeO3”. In: Physical Review B 51.22 (June 1995), pp. 16098–16102 (cit. on p. 44).

[100] José Riera and Sergio Koval. “Magnetic excitations and effects of magnetic fields on the spin-Peierls transition in CuGeO3”. In: Physical Review B 53.2 (Jan. 1996), p. 770 (cit. on p. 44).

[101] Kunimitsu Uchinokura, Masashi Hase, and Yoshitaka Sasago. “Magnetic phase tran- sitions in CuGeO3 in high magnetic fields”. In: Physica B: Condensed Matter 211.1-4 (May 1995), pp. 175–179 (cit. on pp. 47, 48).

[102] S. Maekawa et al. Spin Current. Series on Semiconductor Science and Technology. OUP Oxford, 2012. isbn: 9780191635113 (cit. on pp. 49, 52).

[103] Ken-ichi Uchida et al. “Observation of longitudinal spin-Seebeck effect in magnetic insulators”. In: Applied Physics Letters 97.1 (Oct. 2010), p. 172505 (cit. on p. 49).

[104] L J Cornelissen et al. “Spin-Current-Controlled Modulation of the Magnon Spin Conductance in a Three-Terminal Magnon Transistor”. In: Physical Review Letters 120.9 (Mar. 2018), p. 097702 (cit. on p. 52).

[105] Koichi Oyanagi, Takashi Kikkawa, and Eiji Saitoh. “Magnetic field dependence of the nonlocal spin Seebeck effect in Pt/YIG/Pt systems at low temperatures”. In: AIP Advances 10.1 (Jan. 2020), p. 015031 (cit. on p. 52).

[106] B Salce et al. “Thermal conductivity of pure and Si-doped CuGeO3”. In: Physics Letters A 245.1-2 (1998), pp. 127–132 (cit. on p. 53).

[107] M Hase et al. “Antiferromagnetic long-range order caused by nonmagnetic impurities; magnetization of single-crystal Cu1−xZnxGeO3”. In: Elsevier () (cit. on p. 56).

[108] Y Sasago et al. “New phase diagram of Zn-doped CuGeO3”. In: Physical Review B 54.10 (Sept. 1996), R6835–R6837 (cit. on p. 56).

[109] M Mostovoy and D Khomskii. “Solitons and (spin-)Peierls transition in disordered quasi-one-dimensional systems”. In: Zeitschrift für Physik B Condensed Matter 103.2 (June 1996), pp. 209–215 (cit. on p. 57).

[110] Hidetoshi Fukuyama, Tetsuhiro Tanimoto, and Masako Saito. “Antiferromagnetic Long Range Order in Disordered Spin-Peierls Systems”. In: Journal of the Physical Society of Japan 65.5 (May 1996), pp. 1182–1185 (cit. on p. 57).

[111] B Grenier et al. “Magnetic susceptibility and phase diagram of CuGe1−xSixO3 single crystals”. In: Physical Review B 57.6 (Feb. 1998), pp. 3444–3453 (cit. on p. 57).

[112] J Takeya et al. “Thermal conductivity of Mg-doped CuGeO3”. In: Physical Review B 61.21 (June 2000), pp. 14700–14705 (cit. on p. 59).

[113] Thierry Giamarchi, Christian Rüegg, and Oleg Tchernyshyov. “Bose-Einstein con- densation in magnetic insulators”. In: Nature Physics 4.3 (Mar. 2008), pp. 198–204 (cit. on p. 61).

[114] 佐宗哲郎. 強相関電子系の物理. 日本評論社 2014. isbn: 9784535787681 (cit. on p. 61).

[115] J G Lussier et al. “The temperature dependence of the spin - Peierls energy gap in”. In: Journal of Physics: 8.4 (Jan. 1996), pp. L59–L64 (cit. on p. 63).

[116] Kikuchi Jun et al. “Cu Nuclear Quadrupole Resonance Study of CuGeO3”. In: Jour- nal of the Physical Society of Japan 63.3 (Nov. 2013), pp. 872–875 (cit. on p. 63).

[117] Hiroto Adachi et al. “Gigantic enhancement of spin Seebeck effect by phonon drag”. In: Applied Physics Letters 97.25 (Dec. 2010), p. 252506 (cit. on p. 65).

[118] C M Jaworski et al. “Spin-Seebeck Effect: A Phonon Driven Spin Distribution”. In: Physical Review Letters 106.18 (May 2011), p. 186601 (cit. on p. 65).

[119] Ryo Iguchi et al. “Concomitant enhancement of the longitudinal spin Seebeck effect and the thermal conductivity in a Pt/YIG/Pt system at low temperatures”. In: Physical Review B 95.1 (May 2017), p. 174401 (cit. on p. 65).

[120] Antti-Pekka Jauho, Ned S Wingreen, and Yigal Meir. “Time-dependent transport in interacting and noninteracting resonant-tunneling systems”. In: Physical Review B 50.8 (Aug. 1994), p. 5528 (cit. on p. 65).

[121] Toru Moriya. “The Effect of Electron-Electron Interaction on the Nuclear Spin Re- laxation in Metals”. In: Journal of the Physical Society of Japan 18.4 (Apr. 1963), pp. 516–520 (cit. on p. 66).

[122] B Sriram Shastry and Elihu Abrahams. “What does the Korringa ratio measure?” In: Physical Review Letters 72.12 (Mar. 1994), pp. 1933–1936 (cit. on p. 66).

[123] Igor Kuzmenko and FABIAN H L ESSLER. “Dynamical correlations of the spin-1/2 Heisenberg XXZ chain in a staggered field”. In: Physical Review B 79.2 (Jan. 2009), p. 024402 (cit. on p. 67).

[124] M Ain et al. “Double Gap and Solitonic Excitations in the Spin-Peierls Chain CuGeO3”. In: Physical Review Letters 78.8 (Feb. 1997), pp. 1560–1563 (cit. on p. 69).

[125] Y Shiomi and E Saitoh. “Paramagnetic Spin Pumping”. In: Physical Review Letters 113.26 (Dec. 2014), p. 266602 (cit. on p. 70).

[126] M Azuma et al. “Observation of a Spin Gap in SrCu2O3 Comprising Spin-1/2 Quasi- 1D Two-Leg Ladders”. In: Physical Review Letters 73.25 (Dec. 1994), pp. 3463–3466 (cit. on p. 70).

[127] H Kageyama et al. “Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System SrCu2(BO3)2”. In: Physical Review Letters 82.15 (Apr. 1999), pp. 3168–3171 (cit. on p. 70).

[128] Yao Chen et al. “Electric readout of magnetic stripes in insulators”. In: Scientific Reports 9.1 (Dec. 2019), pp. 1–8 (cit. on p. 71).

[129] Leon N Cooper. “Bound Electron Pairs in a Degenerate Fermi Gas”. In: Phys. Rev. 104.4 (Nov. 1956), pp. 1189–1190 (cit. on p. 71).

[130] J Bardeen, L N Cooper, and J R Schrieffer. “Microscopic Theory of Superconductiv- ity”. In: Phys. Rev. 106.1 (Mar. 1957), pp. 162–164 (cit. on p. 71).

[131] John Bardeen, L N Cooper, and J R Schrieffer. “Theory of superconductivity”. In: Phys. Rev. 108.5 (1957), pp. 1175–1204 (cit. on p. 71).

[132] V L Ginzburg and L D Landau. “On the Theory of Superconductivity”. In: On Superconductivity and Superfluidity. Springer, Berlin, Heidelberg, 2009, pp. 113–137 (cit. on p. 72).

[133] Feng Duan and Jin Guojun. Introduction To Condensed Matter Physics: Volume 1. Vol. 1. World Scientific Publishing Company, 2005 (cit. on pp. 72, 76).

[134] 章立源. 超導理論 (in Chinese). 科学出版社 2003. isbn: 9787030105738 (cit. on pp. 72, 74, 76).

[135] A A ABRIKOSOV. “On the magnetic properties of superconductors of the second group”. In: Sov. Phys. JETP 5.9 (1957), pp. 1174–1182 (cit. on p. 75).

[136] 張裕恒. 超導理論 (in Chinese). 中国科学技術大学出版社 1997. isbn: 9787312009419 (cit. on pp. 75–77).

[137] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004 (cit. on p. 77).

[138] J Giapintzakis et al. “Production and identification of flux-pinning defects by elec- tron irradiation in YBCO single crystals”. In: Physical Review B 45.18 (May 1992), p. 10677 (cit. on p. 78).

[139] E M Chudnovsky. “Pinning by oxygen vacancies in high-Tc superconductors”. In: Physical Review Letters 65.24 (Dec. 1990), pp. 3060–3062 (cit. on p. 78).

[140] David R Nelson and V M Vinokur. “Boson localization and pinning by correlated disorder in high-temperature superconductors”. In: Physical Review Letters 68.15 (Apr. 1992), pp. 2398–2401 (cit. on p. 78).

[141] L Civale et al. “Vortex confinement by columnar defects in YBCO crystals: Enhanced pinning at high fields and temperatures”. In: Physical Review Letters 67.5 (July 1991), pp. 648–651 (cit. on p. 78).

[142] B M Lairson, S K Streiffer, and J C Bravman. “Vortex pinning and twin boundaries in YBCO thin films”. In: Physical Review B 42.16 (Dec. 1990), pp. 10067–10074 (cit. on p. 78).

[143] J I Martin et al. “Flux Pinning in a Superconductor by an Array of Submicrometer Magnetic Dots”. In: Physical Review Letters 79.1 (Sept. 1997), pp. 1929–1932 (cit. on pp. 78, 90).

[144] K Harada et al. “Direct Observation of Vortex Dynamics in Superconducting Films with Regular Arrays of Defects”. In: Science 274.5290 (Nov. 1996), pp. 1167–1170 (cit. on pp. 78, 90).

[145] Ajay D Thakur et al. “Vortex matching effect in engineered thin films of NbN”. In: Applied Physics Letters 94.26 (June 2009), p. 262501 (cit. on pp. 78, 90).

[146] A Castellanos et al. “Preparation of regular arrays of antidots in YBa2Cu3O7 thin films and observation of vortex lattice matching effects”. In: Applied Physics Letters 71.7 (Aug. 1997), pp. 962–964 (cit. on p. 78).

[147] O V Dobrovolskiy et al. “Electrical transport and pinning properties of Nb thin films patterned with focused ion beam-milled washboard nanostructures”. In: New Journal of Physics 14.1 (Nov. 2012), p. 113027 (cit. on p. 78).

[148] J Lustikova et al. “Vortex rectenna powered by environmental fluctuations”. In: Na- ture Communications 9.1 (Nov. 2018), p. 4922 (cit. on p. 78).

[149] Z Qiu et al. “Spin mixing conductance at a well-controlled platinum/yttrium iron garnet interface”. In: Applied Physics Letters 103.9 (Aug. 2013), p. 092404 (cit. on p. 79).

[150] Maki Umeda et al. “Spin-current coherence peak in superconductor/magnet junc- tions”. In: Applied Physics Letters 112.23 (June 2018), p. 232601 (cit. on p. 79).

[151] Alex Hubert and Rudolf Schäfer. Magnetic domains: the analysis of magnetic mi- crostructures. Springer Science & Business Media, 2008 (cit. on p. 80).

[152] J Ben Youssef et al. “Thickness-dependent magnetic excitations in Permalloy films with nonuniform magnetization”. In: Physical Review B 69.17 (May 2004), p. 2474 (cit. on p. 80).

[153] C Di Giorgio et al. “Observation of superconducting vortex clusters in S/F hybrids”. In: Scientific Reports 6.1 (Dec. 2016), p. 622 (cit. on pp. 80, 90).

[154] G Karapetrov et al. “Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers”. In: Physical Review B 80.1 (Nov. 2009), p. 180506 (cit. on p. 80).

[155] F Bobba et al. “Vortex-antivortex coexistence in Nb-based superconductor/ferromagnet heterostructures”. In: Physical Review B 89.2 (June 2014), p. 214502 (cit. on pp. 80, 94).

[156] M Iavarone et al. “Imaging the spontaneous formation of vortex-antivortex pairs in planar superconductor/ferromagnet hybrid structures”. In: Physical Review B 84.2 (July 2011), p. 024506 (cit. on pp. 80, 94).

[157] A Yu Aladyshkin et al. “Nucleation of superconductivity and vortex matter in su- perconductor–ferromagnet hybrids”. In: Superconductor Science and Technology 22.5 (May 2009), p. 053001 (cit. on p. 80).

[158] N R Werthamer, E Helfand, and Hohenberg, P. C. “Temperature and Purity Depen- dence of the Superconducting Critical Field, Hc2. III. Electron Spin and Spin-Orbit Effects”. In: Physical Review 147.1 (July 1966), pp. 295–302 (cit. on p. 82).

[159] A Belkin et al. “Tunable transport in magnetically coupled MoGe/Permalloy hy- brids”. In: Applied Physics Letters 93.7 (Aug. 2008), p. 072510 (cit. on p. 82).

[160] A Shoji, S Kiryu, and S Kohjiro. “Superconducting properties and normal-state re- sistivity of single-crystal NbN films prepared by a reactive RF-magnetron sputtering method”. In: Applied Physics Letters 60.13 (Mar. 1992), pp. 1624–1626 (cit. on pp. 82, 83).

[161] O V Dobrovolskiy et al. “Electrical transport and pinning properties of Nb thin films patterned with focused ion beam-milled washboard nanostructures”. In: New Journal of Physics 14.1 (Nov. 2012), p. 113027 (cit. on p. 82).

[162] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 1996 (cit. on pp. 82, 83).

[163] T P Orlando et al. “Critical fields, Pauli paramagnetic limiting, and material pa- rameters of Nb3Sn and V3Si”. In: Physical Review B (Condensed Matter) 19.9 (May 1979), pp. 4545–4561 (cit. on p. 83).

[164] S P Chockalingam et al. “Superconducting properties and Hall effect of epitaxial NbN thin films”. In: Physical Review B 77.21 (June 2008), p. 214503 (cit. on p. 83).

[165] M. J. Donahue and D. G. Porter. OOMMF User’s Guide, Version 1.0. Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999 (cit. on p. 86).

[166] A Belkin et al. “Superconductor/ferromagnet bilayers: Influence of magnetic domain structure on vortex dynamics”. In: Physical Review B 77.18 (May 2008), p. 180506 (cit. on p. 90).

[167] Oleksiy K Soroka, Valerij A Shklovskij, and Michael Huth. “Guiding of vortices under competing isotropic and anisotropic pinning conditions: Theory and experiment”. In: Physical Review B 76.1 (July 2007), p. 014504 (cit. on pp. 91, 93).

[168] O V Dobrovolskiy, M Huth, and V A Shklovskij. “Anisotropic magnetoresistive re- sponse in thin Nb films decorated by an array of Co stripes”. In: Superconductor Science and Technology 23.12 (Dec. 2010), p. 125014 (cit. on pp. 91, 93).

[169] D R Strachan et al. “Do Superconductors Have Zero Resistance in a Magnetic Field?” In: Physical Review Letters 87.6 (July 2001), p. 067007 (cit. on p. 93).

[170] A Yu Aladyshkin, J Fritzsche, and V V Moshchalkov. “Planar superconductor/ferromagnet hybrids: Anisotropy of resistivity induced by magnetic templates”. In: Applied Physics Letters 94.22 (June 2009), p. 222503 (cit. on p. 93).

[171] A Belkin et al. “Tunable transport in magnetically coupled MoGe/Permalloy hy- brids”. In: Applied Physics Letters 93.7 (Aug. 2008), p. 072510 (cit. on pp. 93, 94).

[172] A Yu Aladyshkin et al. “Crossover between different regimes of inhomogeneous su- perconductivity in planar superconductor-ferromagnet hybrids”. In: Physical Review B 84.9 (Sept. 2011), p. 094523 (cit. on p. 93).

[173] A Yu Aladyshkin et al. “Domain-wall superconductivity in hybrid superconductor- ferromagnet structures”. In: Physical Review B 68.18 (Nov. 2003), p. 184508 (cit. on p. 94).

[174] Zhaorong Yang et al. “Domain-wall superconductivity in superconductor-ferromagnet hybrids”. In: Nature materials 3.1 (Nov. 2004), pp. 793–798 (cit. on p. 94).

[175] Alexandre Buzdin. “Mixing superconductivity and magnetism”. In: Nature materials 3.11 (Nov. 2004), pp. 751–752 (cit. on p. 94).

[176] M Iavarone et al. “Visualizing domain wall and reverse domain superconductivity”. In: Nature Communications 5 (Aug. 2014), p. 4766 (cit. on p. 94).

[177] V K Vlasko-Vlasov et al. “Soft magnetic lithography and giant magnetoresistance in superconducting/ferromagnetic hybrids”. In: Physical Review B 78.21 (Dec. 2008), p. 214511 (cit. on p. 94).

[178] J Fritzsche, R B G Kramer, and V V Moshchalkov. “Visualization of the vortex- mediated pinning of ferromagnetic domains in superconductor-ferromagnet hybrids”. In: Physical Review B 79.13 (Apr. 2009), p. 132501 (cit. on p. 94).

[179] V Vlasko-Vlasov et al. “Guiding superconducting vortices with magnetic domain walls”. In: Physical Review B 77.13 (Apr. 2008), p. 134518 (cit. on p. 94).

[180] Olexei I. Motrunich. Lecture note of Physics 127c: Statistical Mechanics. Califor- nia Institute of Technology, 2010. url: http://www.its.caltech.edu/~motrunch/ Teaching/Phy127c_Spring10/Sine_Gordon.pdf (cit. on pp. 97, 98).

[181] Elliott Lieb, Theodore Schultz, and Daniel Mattis. “Two soluble models of an anti- ferromagnetic chain”. In: Annals of Physics 16.3 (Dec. 1961), pp. 407–466 (cit. on p. 98).

[182] 姚端正. 数学物理方法 (in Chinese). 科学出版社, 2010. isbn: 9787030264923 (cit. on p. 99).

[183] Vladmir G Ivancevic and Tijana T Ivancevic. “Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures”. In: Journal of Geometry and Symmetry in Physics 31 (2013), pp. 1–56 (cit. on p. 101).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る