リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dark matter search with high-energy gamma-ray observations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dark matter search with high-energy gamma-ray observations

廣島, 渚 東京大学 DOI:10.15083/0002001870

2021.10.04

概要

We can access dark matter of mass mDM ≳ O(1) TeV by measuring high-energy emissions from the Universe. Weakly Interacting Massive Particle (WIMP) is one of the strongest candidates for dark matter which achieves the relic density by the freeze-out mechanism. The canonical cross-section of the annihilation into the standard model particles is ⟨σv⟩ ∼ 3 × 10−26 cm3/s. For WIMP of mDM ∼ O(1 − 100) GeV, γ-ray observations of dwarf spheroidal galaxies (dSphs) have constrained the annihilation cross-section to be smaller than the canonical value. WIMP of mass mDM ≳ O(1) TeV are less explored. In this thesis, we discuss the feasibility of detecting heavier WIMP of mDM ≳ O(1) TeV in dSphs with Cherenkov Telescope Array (CTA). Compared to the current facilities, CTA can detect ∼ 10 times fainter γ-ray signals for Eγ ≳ O(1) TeV. The designed angular resolution reaches ∆θ ≲ 0.04 degrees and dSphs are well-resolved as extended sources.

First, we evaluate how the detectability depends on the dark matter distribution in dSphs. The density profiles of dark matter in dSphs are actively debated topics and determined by observing stellar motions. The J-factor, which is a squared dark matter density integrated over the line-of-sight, can differ by orders-of-magnitude between profile models for example. The importance of the density profile increases for dark matter searches in dSph using CTA. We investigate how the spatial extension of dSphs affect the sensitivity to dark matter annihilation signals. For this purpose, we simulate a 500-hour observation of Draco dSph with CTA and perform likelihood analyses assuming 16 different profiles derived for Draco. We show that the accessible region of the annihilation cross-section differs by a factor of ∼ 10 depending on the profiles. Both the J-factor and the spatial extension are responsible for the difference. We perform further analyses removing the dependence on the J-factor and prove that the spatial extension itself affects sensitivity. We introduce a new quantity θ90 to be a 90% confinement radius of the J-factor which parametrizes the compactness of the halo profile. When θ90 is larger than ∼ 1 degree, we obtain a several times milder constraint on the annihilation cross-section compared to the case analyzing a point source of the same J-factor. In the most conservative case, CTA can detect the annihilation signals corresponding to the cross-section ⟨σv⟩ ≲ 10−22 cm3/s for dark matter of mDM ≳ O(1) TeV, which cannot be probed with other facilities. Some of the well-motivated models expecting resonant annihilations can be tested by observing dSphs with CTA. A wider parameter space can be explored if we observe dSphs of smaller spatial extensions and higher J-factors.

Second, we examine the uncertainty in the subhalo boost for dSphs. WIMP scenarios expect the existence of small scale halos beyond the resolution of the N-body simulations or observations. When such small halos in larger ones lie on our lines-of-sight, dark matter annihilation signals are boosted. Boost factors in the previous works differ by more than one order-of-magnitude because one has had to extrapolate N-body results in limited mass and redshift ranges to much wider. We reduce the uncertainties in the boost factor by developing a new analytical formalism to calculate the evolution of the subhalo. We characterize the mass-loss rate of the subhalos with the tidal-stripping at the first orbit after their accretion onto the hosts assuming the NFW profile for both the host and subhalos. In this way, we can cover more than 20 orders-of-magnitudes in the halo mass range and the redshift up to ∼ 10. Our analytical results for the tidal mass-loss rate show good agreements with those obtained in N-body simulations. We derive the dependence of the mass-loss rate on the host mass and redshift. Combining the derived relation with the mass accretion history of subhalos in extended Press-Schechter formalisms, we obtain the mass function, the mass fraction, and the boost factor. The mass function and the mass fraction of subhalos are consistent with the results of N-body calculations in resolved regimes. The boost factor is less than ∼ 1 for dSph scale halos while it can be as large as ∼ O(10) for halos of the galaxy cluster scale. The uncertainty from the subhalo boost is negligible for dark matter search in dSphs.

CTA enhances our accessibility to the heavier WIMP of mDM ≳ O(1) TeV. When we search dark matter annihilation signals in dSphs using CTA, precise understandings about their density profiles are the most important ingredients to derive the dark matter properties. In addition to the known dependence on the J-factor, the spatial extension of dSphs affects the sensitivity. Contributions from the subhalos are negligible for the search in dSphs. We can access the unexplored parameter spaces even with the most conservative assumption about the dSph’s density profiles. This does not depend on the boost factor. We conclude from these works that dSphs are well-motivated targets for CTA to search dark matter annihilation signals of which uncertainty coming from the subhalo boost is smaller than the other proposed targets for CTA.

参考文献

[1] L. Bergstro´m, “Nonbaryonic dark matter: Observational evidence and detection methods,” Rept. Prog. Phys. 63 (2000) 793, arXiv:hep-ph/0002126 [hep-ph].

[2] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175 [hep-ph].

[3] J. M. Gaskins, “A review of indirect searches for particle dark matter,” Contemp. Phys. 57 no. 4, (2016) 496–525, arXiv:1604.00014 [astro-ph.HE].

[4] H. Hoekstra, H. Yee, and M. Gladders, “Current status of weak gravitational lensing,” New Astron. Rev. 46 (2002) 767–781, arXiv:astro-ph/0205205 [astro-ph].

[5] T. S. van Albada, J. N. Bahcall, K. Begeman, and R. Sancisi, “The Distribution of Dark Matter in the Spiral Galaxy NGC-3198,” Astrophys. J. 295 (1985) 305–313.

[6] P. Salucci and A. Borriello, “The intriguing distribution of dark matter in galaxies,” Lect. Notes Phys. 616 (2003) 66–77, arXiv:astro-ph/0203457 [astro-ph].

[7] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helv. Phys. Acta 6 (1933) 110–127. [Gen. Rel. Grav.41,207(2009)].

[8] F. Zwicky, “Republication of: The redshift of extragalactic nebulae,” General Relativity and Gravitation 41 no. 1, (Jan, 2009) 207–224. https://doi.org/10.1007/s10714-008-0707-4.

[9] R. Barrena, A. Biviano, M. Ramella, E. E. Falco, and S. Seitz, “The dynamical status of the cluster of galaxies 1e0657-56,” Astron. Astrophys. 386 (2002) 816, arXiv:astro-ph/0202323 [astro-ph].

[10] D. Clowe, A. Gonzalez, and M. Markevitch, “Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter,” Astrophys. J. 604 (2004) 596–603, arXiv:astro-ph/0312273 [astro-ph].

[11] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees, “Formation of Galaxies and Large Scale Structure with Cold Dark Matter,” Nature 311 (1984) 517–525. [,96(1984)].

[12] P. J. E. Peebles, “Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations,” Astrophys. J. 263 (1982) L1–L5.

[13] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[14] J. Silk, “Cosmic black body radiation and galaxy formation,” Astrophys. J. 151 (1968) 459–471.

[15] WMAP Collaboration, E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538 [astro-ph.CO].

[16] Planck Collaboration, Y. Akrami et al., “Planck 2018 results. I. Overview and the cosmological legacy of Planck,” arXiv:1807.06205 [astro-ph.CO].

[17] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].

[18] T. Bringmann and S. Hofmann, “Thermal decoupling of WIMPs from first principles,” JCAP 0704 (2007) 016, arXiv:hep-ph/0612238 [hep-ph]. [Erratum: JCAP1603,no.03,E02(2016)].

[19] C. Rott, “Review of Indirect WIMP Search Experiments,” arXiv:1210.4161 [astro-ph.HE]. [Nucl. Phys. Proc. Suppl.235-236,413(2013)].

[20] H. Pagels and J. R. Primack, “Supersymmetry, Cosmology and New TeV Physics,” Phys. Rev. Lett. 48 (1982) 223.

[21] F. D. Steffen, “Gravitino dark matter and cosmological constraints,” JCAP 0609 (2006) 001, arXiv:hep-ph/0605306 [hep-ph].

[22] R. N. Mohapatra, F. I. Olness, R. Stroynowski, and V. L. Teplitz, “Searching for strongly interacting massive particles (SIMPs),” Phys. Rev. D60 (1999) 115013, arXiv:hep-ph/9906421 [hep-ph].

[23] Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, “Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles,” Phys. Rev. Lett. 113 (2014) 171301, arXiv:1402.5143 [hep-ph].

[24] J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. 120B (1983) 127–132.

[25] L. J. Rosenberg and K. A. van Bibber, “Searches for invisible axions,” Phys. Rept. 325 (2000) 1–39.

[26] L. Visinelli and P. Gondolo, “Dark Matter Axions Revisited,” Phys. Rev. D80 (2009) 035024, arXiv:0903.4377 [astro-ph.CO].

[27] S. Dodelson and L. M. Widrow, “Sterile-neutrinos as dark matter,” Phys. Rev. Lett. 72 (1994) 17–20, arXiv:hep-ph/9303287 [hep-ph].

[28] X.-D. Shi and G. M. Fuller, “A New dark matter candidate: Nonthermal sterile neutrinos,” Phys. Rev. Lett. 82 (1999) 2832–2835, arXiv:astro-ph/9810076 [astro-ph].

[29] K. Abazajian, G. M. Fuller, and M. Patel, “Sterile neutrino hot, warm, and cold dark matter,” Phys. Rev. D64 (2001) 023501, arXiv:astro-ph/0101524 [astro-ph].

[30] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, “The Role of sterile neutrinos in cosmology and astrophysics,” Ann. Rev. Nucl. Part. Sci. 59 (2009) 191–214, arXiv:0901.0011 [hep-ph].

[31] N. Afshordi, P. McDonald, and D. N. Spergel, “Primordial black holes as dark matter: The Power spectrum and evaporation of early structures,” Astrophys. J. 594 (2003) L71–L74, arXiv:astro-ph/0302035 [astro-ph].

[32] B. Carr, F. Kuhnel, and M. Sandstad, “Primordial Black Holes as Dark Matter,” Phys. Rev. D94 no. 8, (2016) 083504, arXiv:1607.06077 [astro-ph.CO].

[33] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black holes from the Galactic gamma-ray background,” Phys. Rev. D94 no. 4, (2016) 044029, arXiv:1604.05349 [astro-ph.CO].

[34] B. Carr and J. Silk, “Primordial Black Holes as Seeds for Cosmic Structures,” arXiv:1801.00672 [astro-ph.CO].

[35] K. Kohri and T. Terada, “Primordial Black Hole Dark Matter and LIGO/Virgo Merger Rate from Inflation with Running Spectral Indices,” arXiv:1802.06785 [astro-ph.CO].

[36] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267 (1996) 195–373, arXiv:hep-ph/9506380 [hep-ph].

[37] J. L. Feng, K. T. Matchev, and F. Wilczek, “Neutralino dark matter in focus point supersymmetry,” Phys. Lett. B482 (2000) 388–399, arXiv:hep-ph/0004043 [hep-ph].

[38] G. Steigman, B. Dasgupta, and J. F. Beacom, “Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation,” Phys. Rev. D86 (2012) 023506, arXiv:1204.3622 [hep-ph].

[39] H. Goldberg, “Constraint on the Photino Mass from Cosmology,” Phys. Rev. Lett. 50 (1983) 1419. [,219(1983)].

[40] ATLAS Collaboration, M. Aaboud et al., “Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb−1 of √s = 13 TeV pp collision data with the ATLAS detector,” arXiv:1711.11520 [hep-ex].

[41] CMS Collaboration, A. M. Sirunyan et al., “Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at √s = 13 TeV,” Eur. Phys. J. C77 no. 12, (2017) 845, arXiv:1706.02581 [hep-ex].

[42] LUX Collaboration, D. S. Akerib et al., “Results from a search for dark matter in the complete LUX exposure,” Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648 [astro-ph.CO].

[43] PICO Collaboration, C. Amole et al., “Dark Matter Search Results from the PICO-60 C3F8 Bubble Chamber,” Phys. Rev. Lett. 118 no. 25, (2017) 251301, arXiv:1702.07666 [astro-ph.CO].

[44] XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Tonne Year Exposure of XENON1T,” arXiv:1805.12562 [astro-ph.CO].

[45] DES, Fermi-LAT Collaboration, A. Albert et al., “Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT,” Astrophys. J. 834 no. 2, (2017) 110, arXiv:1611.03184 [astro-ph.HE].

[46] S. Tremaine and J. E. Gunn, “Dynamical Role of Light Neutral Leptons in Cosmology,” Phys. Rev. Lett. 42 (1979) 407–410. [,66(1979)].

[47] K. Abazajian, “Linear cosmological structure limits on warm dark matter,” Phys. Rev. D73 (2006) 063513, arXiv:astro-ph/0512631 [astro-ph].

[48] S. Horiuchi, P. J. Humphrey, J. Onorbe, K. N. Abazajian, M. Kaplinghat, and S. Garrison-Kimmel, “Sterile neutrino dark matter bounds from galaxies of the Local Group,” Phys. Rev. D89 no. 2, (2014) 025017, arXiv:1311.0282 [astro-ph.CO].

[49] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, “Lyman-alpha constraints on warm and on warm-plus-cold dark matter models,” JCAP 0905 (2009) 012, arXiv:0812.0010 [astro-ph].

[50] AMS Collaboration, M. Aguilar et al., “Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 114 (2015) 171103.

[51] AMS Collaboration, M. Aguilar et al., “Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 117 no. 23, (2016) 231102.

[52] DAMPE Collaboration, J. Chang et al., “The DArk Matter Particle Explorer mission,” Astropart. Phys. 95 (2017) 6–24, arXiv:1706.08453 [astro-ph.IM].

[53] H. Motz, Y. Asaoka, S. Torii, and S. Bhattacharyya, “CALET’s Sensitivity to Dark Matter Annihilation in the Galactic Halo,” JCAP 1512 no. 12, (2015) 047, arXiv:1510.03168 [astro-ph.HE].

[54] IceCube Collaboration, M. G. Aartsen et al., “Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore,” Eur. Phys. J. C77 no. 9, (2017) 627, arXiv:1705.08103 [hep-ex].

[55] ANTARES Collaboration, A. Albert et al., “Search for Dark Matter Annihilation in the Earth using the ANTARES Neutrino Telescope,” Phys. Dark Univ. 16 (2017) 41–48, arXiv:1612.06792 [hep-ex].

[56] S. Hofmann, D. J. Schwarz, and H. Stoecker, “Damping scales of neutralino cold dark matter,” Phys. Rev. D64 (2001) 083507, arXiv:astro-ph/0104173 [astro-ph].

[57] A. M. Green, S. Hofmann, and D. J. Schwarz, “The power spectrum of SUSY - CDM on sub-galactic scales,” Mon. Not. Roy. Astron. Soc. 353 (2004) L23, arXiv:astro-ph/0309621 [astro-ph].

[58] S. Profumo, K. Sigurdson, and M. Kamionkowski, “What mass are the smallest protohalos?,” Phys. Rev. Lett. 97 (2006) 031301, arXiv:astro-ph/0603373 [astro-ph].

[59] R. Diamanti, M. E. C. Catalan, and S. Ando, “Dark matter protohalos in a nine parameter MSSM and implications for direct and indirect detection,” Phys. Rev. D92 no. 6, (2015) 065029, arXiv:1506.01529 [hep-ph].

[60] X.-l. Chen, M. Kamionkowski, and X.-m. Zhang, “Kinetic decoupling of neutralino dark matter,” Phys. Rev. D64 (2001) 021302, arXiv:astro-ph/0103452 [astro-ph].

[61] A. Pinzke, C. Pfrommer, and L. Bergstrom, “Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations,” Phys. Rev. D84 (2011) 123509, arXiv:1105.3240 [astro-ph.HE].

[62] M. A. Sanchez-Conde, M. Cannoni, F. Zandanel, M. E. Gomez, and F. Prada, “Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?,” JCAP 1112 (2011) 011, arXiv:1104.3530 [astro-ph.HE].

[63] W. Hu and J. Silk, “Thermalization constraints and spectral distortions for massive unstable relic particles,” Phys. Rev. Lett. 70 (1993) 2661–2664.

[64] P. Blasi, A. V. Olinto, and C. Tyler, “Detecting WIMPs in the microwave sky,” Astropart. Phys. 18 (2003) 649–662, arXiv:astro-ph/0202049 [astro-ph].

[65] WMAP Collaboration, C. L. Bennett et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results,” Astrophys. J. Suppl. 148 (2003) 1–27, arXiv:astro-ph/0302207 [astro-ph].

[66] SDSS Collaboration, D. J. Eisenstein et al., “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies,” Astrophys. J. 633 (2005) 560–574, arXiv:astro-ph/0501171 [astro-ph].

[67] A. G. Sanchez, M. Crocce, A. Cabre, C. M. Baugh, and E. Gaztanaga, “Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering,” Mon. Not. Roy. Astron. Soc. 400 (2009) 1643, arXiv:0901.2570 [astro-ph.CO].

[68] DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data,” Mon. Not. Roy. Astron. Soc. 480 (2018) 3879, arXiv:1711.00403 [astro-ph.CO].

[69] J. Hisano, M. Kawasaki, K. Kohri, T. Moroi, and K. Nakayama, “Cosmic Rays from Dark Matter Annihilation and Big-Bang Nucleosynthesis,” Phys. Rev. D79 (2009) 083522, arXiv:0901.3582 [hep-ph].

[70] B. Henning and H. Murayama, “Constraints on Light Dark Matter from Big Bang Nucleosynthesis,” arXiv:1205.6479 [hep-ph].

[71] Telescope Array Collaboration, R. U. Abbasi et al., “Mass composition of ultra-high-energy cosmic rays with the Telescope Array Surface Detector Data,” arXiv:1808.03680 [astro-ph.HE].

[72] Pierre Auger Collaboration, A. Aab et al., “Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory,” Astrophys. J. 868 no. 1, (2018) 4, arXiv:1808.03579 [astro-ph.HE].

[73] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive, and M. Srednicki, “Supersymmetric Relics from the Big Bang,” Nucl. Phys. B238 (1984) 453–476. [,223(1983)].

[74] M. Ibe, H. Murayama, and T. T. Yanagida, “Breit-Wigner Enhancement of Dark Matter Annihilation,” Phys. Rev. D79 (2009) 095009, arXiv:0812.0072 [hep-ph].

[75] J. Hisano, S. Matsumoto, and M. M. Nojiri, “Explosive dark matter annihilation,” Phys. Rev. Lett. 92 (2004) 031303, arXiv:hep-ph/0307216 [hep-ph].

[76] Fermi-LAT Collaboration, E. Charles et al., “Sensitivity Projections for Dark Matter Searches with the Fermi Large Area Telescope,” Phys. Rept. 636 (2016) 1–46, arXiv:1605.02016 [astro-ph.HE].

[77] J. Hisano, M. Kawasaki, K. Kohri, T. Moroi, K. Nakayama, and T. Sekiguchi, “Cosmological constraints on dark matter models with velocity-dependent annihilation cross section,” Phys. Rev. D83 (2011) 123511, arXiv:1102.4658 [hep-ph].

[78] S. Tulin and H.-B. Yu, “Dark Matter Self-interactions and Small Scale Structure,” Phys. Rept. 730 (2018) 1–57, arXiv:1705.02358 [hep-ph].

[79] D. N. Spergel and P. J. Steinhardt, “Observational evidence for selfinteracting cold dark matter,” Phys. Rev. Lett. 84 (2000) 3760–3763, arXiv:astro-ph/9909386 [astro-ph].

[80] W. J. G. de Blok, “The Core-Cusp Problem,” Adv. Astron. 2010 (2010) 789293, arXiv:0910.3538 [astro-ph.CO].

[81] M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, “Too big to fail? The puzzling darkness of massive Milky Way subhaloes,” Mon. Not. Roy. Astron. Soc. 415 (2011) L40, arXiv:1103.0007 [astro-ph.CO].

[82] J. Zavala, M. Vogelsberger, and M. G. Walker, “Constraining Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidals,” Mon. Not. Roy. Astron. Soc. 431 (2013) L20–L24, arXiv:1211.6426 [astro-ph.CO].

[83] M. Vogelsberger, J. Zavala, and A. Loeb, “Subhaloes in Self-Interacting Galactic Dark Matter Haloes,” Mon. Not. Roy. Astron. Soc. 423 (2012) 3740, arXiv:1201.5892 [astro-ph.CO].

[84] M. Bradac, S. W. Allen, T. Treu, H. Ebeling, R. Massey, R. G. Morris, A. von der Linden, and D. Applegate, “Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222,” Astrophys. J. 687 (2008) 959, arXiv:0806.2320 [astro-ph].

[85] J. Merten et al., “Creation of cosmic structure in the complex galaxy cluster merger Abell 2744,” Mon. Not. Roy. Astron. Soc. 417 (2011) 333–347, arXiv:1103.2772 [astro-ph.CO].

[86] W. A. Dawson et al., “Discovery of a Dissociative Galaxy Cluster Merger with Large Physical Separation,” Astrophys. J. 747 (2012) L42, arXiv:1110.4391 [astro-ph.CO].

[87] F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer, and S. Sarkar, “On the interpretation of dark matter self-interactions in Abell 3827,” Mon. Not. Roy. Astron. Soc. 452 no. 1, (2015) L54–L58, arXiv:1504.06576 [astro-ph.CO].

[88] E. K. Akhmedov, V. A. Rubakov, and A. Yu. Smirnov, “Baryogenesis via neutrino oscillations,” Phys. Rev. Lett. 81 (1998) 1359–1362, arXiv:hep-ph/9803255 [hep-ph].

[89] L. Canetti, M. Drewes, and M. Shaposhnikov, “Sterile Neutrinos as the Origin of Dark and Baryonic Matter,” Phys. Rev. Lett. 110 no. 6, (2013) 061801, arXiv:1204.3902 [hep-ph].

[90] A. D. Dolgov and S. H. Hansen, “Massive sterile neutrinos as warm dark matter,” Astropart. Phys. 16 (2002) 339–344, arXiv:hep-ph/0009083 [hep-ph].

[91] M. Laine and M. Shaposhnikov, “Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry,” JCAP 0806 (2008) 031, arXiv:0804.4543 [hep-ph].

[92] R. Shrock, “Decay l0 —¿ nu(lepton) gamma in gauge theories of weak and electromagnetic interactions,” Phys. Rev. D9 (1974) 743–748.

[93] P. B. Pal and L. Wolfenstein, “Radiative Decays of Massive Neutrinos,” Phys. Rev. D25 (1982) 766.

[94] V. D. Barger, R. J. N. Phillips, and S. Sarkar, “Remarks on the KARMEN anomaly,” Phys. Lett. B352 (1995) 365–371, arXiv:hep-ph/9503295 [hep-ph]. [Erratum: Phys. Lett.B356,617(1995)].

[95] A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, “Sterile Neutrino Dark Matter,” Prog. Part. Nucl. Phys. 104 (2019) 1–45, arXiv:1807.07938 [hep-ph].

[96] E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, and S. W. Randall, “Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters,” Astrophys. J. 789 (2014) 13, arXiv:1402.2301 [astro-ph.CO].

[97] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, “Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster,” Phys. Rev. Lett. 113 (2014) 251301, arXiv:1402.4119 [astro-ph.CO].

[98] C. R. Watson, Z.-Y. Li, and N. K. Polley, “Constraining Sterile Neutrino Warm Dark Matter with Chandra Observations of the Andromeda Galaxy,” JCAP 1203 (2012) 018, arXiv:1111.4217 [astro-ph.CO].

[99] S. Riemer-S ø rensen, “Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre,” Astron. Astrophys. 590 (2016) A71, arXiv:1405.7943 [astro-ph.CO].

[100] L. Gu, J. Kaastra, A. J. J. Raassen, P. D. Mullen, R. S. Cumbee, D. Lyons, and P. C. Stancil, “A novel scenario for the possible X-ray line feature at 3.5 keV: Charge exchange with bare sulfur ions,” Astron. Astrophys. 584 (2015) L11, arXiv:1511.06557 [astro-ph.HE].

[101] C. Shah, S. Dobrodey, S. Bernitt, R. Steinbr ü gge, J. R. C. L ó pez-Urrutia, L. Gu, and J. Kaastra, “Laboratory measurements compellingly support charge-exchange mechanism for the ’dark matter’ 3.5 keV X-ray line,” Astrophys. J. 833 no. 1, (2016) 52, arXiv:1608.04751 [astro-ph.HE].

[102] J. Baur, N. Palanque-Delabrouille, C. Yeche, A. Boyarsky, O. Ruchayskiy, U. Armengaud, and J. Lesgourgues, “Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos,” JCAP 1712 no. 12, (2017) 013, arXiv:1706.03118 [astro-ph.CO].

[103] M.-Y. Wang, J. F. Cherry, S. Horiuchi, and L. E. Strigari, “Bounds on Resonantly-Produced Sterile Neutrinos from Phase Space Densities of Milky Way Dwarf Galaxies,” arXiv:1712.04597 [astro-ph.CO].

[104] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443. [,328(1977)].

[105] M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett. 104B (1981) 199–202.

[106] R. D. Peccei, “The Strong CP problem and axions,” Lect. Notes Phys. 741 (2008) 3–17, arXiv:hep-ph/0607268 [hep-ph]. [,3(2006)].

[107] J. E. Kim and G. Carosi, “Axions and the Strong CP Problem,” Rev. Mod. Phys. 82 (2010) 557–602, arXiv:0807.3125 [hep-ph].

[108] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, “Ultralight scalars as cosmological dark matter,” Phys. Rev. D95 no. 4, (2017) 043541, arXiv:1610.08297 [astro-ph.CO].

[109] G. G. Raffelt, “Astrophysical axion bounds,” Lect. Notes Phys. 741 (2008) 51–71, arXiv:hep-ph/0611350 [hep-ph]. [,51(2006)].

[110] D. J. E. Marsh and J. C. Niemeyer, “Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II,” arXiv:1810.08543 [astro-ph.CO].

[111] S. Hoof, F. Kahlhoefer, P. Scott, C. Weniger, and M. White, “Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT,” arXiv:1810.07192 [hep-ph].

[112] C. Abel et al., “Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields,” Phys. Rev. X7 no. 4, (2017) 041034, arXiv:1708.06367 [hep-ph].

[113] T. Dafni, C. A. J. O’Hare, B. Laki ć , J. Gal á n, F. J. Iguaz, I. G. Irastorza, K. Jakov č i ć , G. Luz ó n, J. Redondo, and E. R. Ch ó liz, “Weighing the Solar Axion,” arXiv:1811.09290 [hep-ph].

[114] B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.

[115] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints on primordial black holes,” Phys. Rev. D81 (2010) 104019, arXiv:0912.5297 [astro-ph.CO].

[116] S. W. Hawking, “Black hole explosions,” Nature 248 (1974) 30–31.

[117] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975) 199–220. [,167(1975)].

[118] A. Barnacka, J. F. Glicenstein, and R. Moderski, “New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts,” Phys. Rev. D86 (2012) 043001, arXiv:1204.2056 [astro-ph.CO].

[119] K. Griest, A. M. Cieplak, and M. J. Lehner, “Experimental Limits on Primordial Black Hole Dark Matter from the First 2 yr of Kepler Data,” Astrophys. J. 786 no. 2, (2014) 158, arXiv:1307.5798 [astro-ph.CO].

[120] K. Griest, A. M. Cieplak, and M. J. Lehner, “New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data,” Phys. Rev. Lett. 111 no. 18, (2013) 181302.

[121] EROS-2 Collaboration, P. Tisserand et al., “Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds,” Astron. Astrophys. 469 (2007) 387–404, arXiv:astro-ph/0607207 [astro-ph].

[122] S. Calchi Novati, S. Mirzoyan, P. Jetzer, and G. Scarpetta, “Microlensing towards the SMC: a new analysis of OGLE and EROS results,” Mon. Not. Roy. Astron. Soc. 435 (2013) 1582, arXiv:1308.4281 [astro-ph.GA].

[123] E. Mediavilla, J. A. Munoz, E. Falco, V. Motta, E. Guerras, H. Canovas, C. Jean, A. Oscoz, and A. M. Mosquera, “Microlensing-Based Estimate of the Mass Fraction in Compact Objects in Lens,” Astrophys. J. 706 (2009) 1451–1462, arXiv:0910.3645 [astro-ph.CO].

[124] P. N. Wilkinson, D. R. Henstock, I. W. A. Browne, A. G. Polatidis, P. Augusto, A. C. S. Readhead, T. J. Pearson, W. Xu, G. B. Taylor, and R. C. Vermeulen, “Limits on the cosmological abundance of supermassive compact objects from a search for multiple imaging in compact radio sources,” Phys. Rev. Lett. 86 (2001) 584–587, arXiv:astro-ph/0101328 [astro-ph].

[125] F. Capela, M. Pshirkov, and P. Tinyakov, “Constraints on primordial black holes as dark matter candidates from capture by neutron stars,” Phys. Rev. D87 no. 12, (2013) 123524, arXiv:1301.4984 [astro-ph.CO].

[126] P. W. Graham, S. Rajendran, and J. Varela, “Dark Matter Triggers of Supernovae,” Phys. Rev. D92 no. 6, (2015) 063007, arXiv:1505.04444 [hep-ph].

[127] T. D. Brandt, “Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-Faint Dwarf Galaxies,” Astrophys. J. 824 no. 2, (2016) L31, arXiv:1605.03665 [astro-ph.GA].

[128] D. P. Quinn, M. I. Wilkinson, M. J. Irwin, J. Marshall, A. Koch, and V. Belokurov, “On the Reported Death of the MACHO Era,” Mon. Not. Roy. Astron. Soc. 396 (2009) 11, arXiv:0903.1644 [astro-ph.GA].

[129] B. J. Carr and M. Sakellariadou, “Dynamical constraints on dark compact objects,” Astrophys. J. 516 (1999) 195–220.

[130] K. Kohri and J. Yokoyama, “Primordial black holes and primordial nucleosynthesis. 1. Effects of hadron injection from low mass holes,” Phys. Rev. D61 (2000) 023501, arXiv:astro-ph/9908160 [astro-ph].

[131] H. Tashiro and N. Sugiyama, “Constraints on Primordial Black Holes by Distortions of Cosmic Microwave Background,” Phys. Rev. D78 (2008) 023004, arXiv:0801.3172 [astro-ph].

[132] Y. Inoue and A. Kusenko, “New X-ray bound on density of primordial black holes,” JCAP 1710 no. 10, (2017) 034, arXiv:1705.00791 [astro-ph.CO].

[133] M. Ricotti, J. P. Ostriker, and K. J. Mack, “Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates,” Astrophys. J. 680 (2008) 829, arXiv:0709.0524 [astro-ph].

[134] Y. Ali-Ha ï moud and M. Kamionkowski, “Cosmic microwave background limits on accreting primordial black holes,” Phys. Rev. D95 no. 4, (2017) 043534, arXiv:1612.05644 [astro-ph.CO].

[135] D. Aloni, K. Blum, and R. Flauger, “Cosmic microwave background constraints on primordial black hole dark matter,” JCAP 1705 no. 05, (2017) 017, arXiv:1612.06811 [astro-ph.CO].

[136] V. Poulin, J. Lesgourgues, and P. D. Serpico, “Cosmological constraints on exotic injection of electromagnetic energy,” JCAP 1703 no. 03, (2017) 043, arXiv:1610.10051 [astro-ph.CO].

[137] R. R. Lane, L. L. Kiss, G. F. Lewis, R. A. Ibata, A. Siebert, T. R. Bedding, and P. Szekely, “Testing Newtonian Gravity with AAOmega: Mass-to-Light Profiles of Four Globular Clusters,” Mon. Not. Roy. Astron. Soc. 400 (2009) 917–923, arXiv:0908.0770 [astro-ph.GA].

[138] H. Niikura et al., “Microlensing constraints on primordial black holes with the Subaru/HSC Andromeda observation,” arXiv:1701.02151 [astro-ph.CO].

[139] A. Franceschini, G. Rodighiero, and M. Vaccari, “The extragalactic optical-infrared background radiations, their time evolution and the cosmic photon-photon opacity,” Astron. Astrophys. 487 (2008) 837, arXiv:0805.1841 [astro-ph].

[140] A. De Angelis and M. Mallamaci, “Gamma-Ray Astrophysics,” Eur. Phys. J. Plus 133 (2018) 324, arXiv:1805.05642 [astro-ph.HE].

[141] Fermi-LAT Collaboration, M. Ackermann et al., “The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV,” Astrophys. J. 799 (2015) 86, arXiv:1410.3696 [astro-ph.HE].

[142] C. Blanco and D. Hooper, “Constraints on Decaying Dark Matter from the Isotropic Gamma-Ray Background,” arXiv:1811.05988 [astro-ph.HE].

[143] Y. Inoue and Y. T. Tanaka, “Lower Bound on the Cosmic TeV Gamma-ray Background Radiation,” Astrophys. J. 818 (2016) 187, arXiv:1512.00855 [astro-ph.HE].

[144] M. Di Mauro, F. Calore, F. Donato, M. Ajello, and L. Latronico, “Diffuse γ-ray emission from misaligned active galactic nuclei,” Astrophys. J. 780 (2014) 161, arXiv:1304.0908 [astro-ph.HE].

[145] S. Ando and E. Komatsu, “Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT,” Phys. Rev. D87 no. 12, (2013) 123539, arXiv:1301.5901 [astro-ph.CO].

[146] M. Fornasa et al., “Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation,” Phys. Rev. D94 no. 12, (2016) 123005, arXiv:1608.07289 [astro-ph.HE].

[147] Fermi-LAT Collaboration, M. Ackermann et al., “Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background,” JCAP 1509 (2015) 008, arXiv:1501.05464 [astro-ph.CO].

[148] M. H ü tten, C. Combet, and D. Maurin, “Extragalactic diffuse γ-rays from dark matter annihilation: revised prediction and full modelling uncertainties,” JCAP 1802 no. 02, (2018) 005, arXiv:1711.08323 [astro-ph.CO].

[149] H.-S. Zechlin, S. Manconi, and F. Donato, “Constraining Galactic dark matter with gamma-ray pixel counts statistics,” Phys. Rev. D98 no. 8, (2018) 083022, arXiv:1710.01506 [astro-ph.HE].

[150] S. Ando, A. Benoit-L é vy, and E. Komatsu, “Mapping dark matter in the gamma-ray sky with galaxy catalogs,” Phys. Rev. D90 no. 2, (2014) 023514, arXiv:1312.4403 [astro-ph.CO].

[151] A. Cuoco, J.-Q. Xia, M. Regis, E. Branchini, N. Fornengo, and M. Viel, “Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations With Galaxy Catalogs,” Astrophys. J. Suppl. 221 no. 2, (2015) 29, arXiv:1506.01030 [astro-ph.HE].

[152] T. Tr ö ster et al., “Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter,” arXiv:1611.03554 [astro-ph.CO]. [Mon. Not. Roy. Astron. Soc.467,no.3,2706(2017)].

[153] M. Shirasaki, S. Horiuchi, and N. Yoshida, “Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background: Constraints on the Dark Matter Annihilation Cross-Section,” Phys. Rev. D90 no. 6, (2014) 063502, arXiv:1404.5503 [astro-ph.CO].

[154] S. Ammazzalorso, N. Fornengo, S. Horiuchi, and M. Regis, “Characterizing the local gamma-ray Universe via angular cross-correlations,” Phys. Rev. D98 no. 10, (2018) 103007, arXiv:1808.09225 [astro-ph.CO].

[155] S. S. Campbell, A. Kwa, and M. Kaplinghat, “The galactic isotropic γ-ray background and implications for dark matter,” Mon. Not. Roy. Astron. Soc. 479 no. 3, (2018) 3616–3633, arXiv:1709.04014 [astro-ph.HE].

[156] T. Cohen, K. Murase, N. L. Rodd, B. R. Safdi, and Y. Soreq, “γ -ray Constraints on Decaying Dark Matter and Implications for IceCube,” Phys. Rev. Lett. 119 no. 2, (2017) 021102, arXiv:1612.05638 [hep-ph].

[157] M. Ackermann et al., “Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope,” JCAP 1005 (2010) 025, arXiv:1002.2239 [astro-ph.CO].

[158] X. Huang, G. Vertongen, and C. Weniger, “Probing Dark Matter Decay and Annihilation with Fermi LAT Observations of Nearby Galaxy Clusters,” JCAP 1201 (2012) 042, arXiv:1110.1529 [hep-ph].

[159] MAGIC Collaboration, V. A. Acciari et al., “Constraining Dark Matter lifetime with a deep gamma-ray survey of the Perseus Galaxy Cluster with MAGIC,” Phys. Dark Univ. 22 (2018) 38–47, arXiv:1806.11063 [astro-ph.HE].

[160] Fermi-LAT Collaboration, M. Ackermann et al., “Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum,” Phys. Rev. D86 (2012) 022002, arXiv:1205.2739 [astro-ph.HE].

[161] M. Benito, N. Bernal, N. Bozorgnia, F. Calore, and F. Iocco, “Particle Dark Matter Constraints: the Effect of Galactic Uncertainties,” JCAP 1702 no. 02, (2017) 007, arXiv:1612.02010 [hep-ph]. [Erratum: JCAP1806,no.06,E01(2018)].

[162] V. Lefranc, E. Moulin, P. Panci, F. Sala, and J. Silk, “Dark Matter in γ lines: Galactic Center vs dwarf galaxies,” JCAP 1609 no. 09, (2016) 043, arXiv:1608.00786 [astro-ph.HE].

[163] O. Y. Gnedin and J. R. Primack, “Dark Matter Profile in the Galactic Center,” Phys. Rev. Lett. 93 (2004) 061302, arXiv:astro-ph/0308385 [astro-ph].

[164] C. Taylor, M. Boylan-Kolchin, P. Torrey, M. Vogelsberger, and L. Hernquist, “The Mass Profile of the Milky Way to the Virial Radius from the Illustris Simulation,” Mon. Not. Roy. Astron. Soc. 461 no. 4, (2016) 3483–3493, arXiv:1510.06409 [astro-ph.CO].

[165] V. Gammaldi, V. Avila-Reese, O. Valenzuela, and A. X. Gonzales-Morales, “Analysis of the very inner Milky Way dark matter distribution and gamma-ray signals,” Phys. Rev. D94 no. 12, (2016) 121301, arXiv:1607.02012 [astro-ph.HE].

[166] D. Hooper, “The Density of Dark Matter in the Galactic Bulge and Implications for Indirect Detection,” Phys. Dark Univ. 15 (2017) 53–56, arXiv:1608.00003 [astro-ph.HE].

[167] Fermi-LAT Collaboration, M. Ackermann et al., “The Fermi Galactic Center GeV Excess and Implications for Dark Matter,” Astrophys. J. 840 no. 1, (2017) 43, arXiv:1704.03910 [astro-ph.HE].

[168] H.E.S.S. Collaboration, H. Abdalla et al., “H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center,” Phys. Rev. Lett. 117 no. 15, (2016) 151302, arXiv:1609.08091 [astro-ph.HE].

[169] D. Hooper and L. Goodenough, “Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope,” Phys. Lett. B697 (2011) 412–428, arXiv:1010.2752 [hep-ph].

[170] D. Hooper and T. Linden, “On The Origin Of The Gamma Rays From The Galactic Center,” Phys. Rev. D84 (2011) 123005, arXiv:1110.0006 [astro-ph.HE].

[171] T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, “The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter,” Phys. Dark Univ. 12 (2016) 1–23, arXiv:1402.6703 [astro-ph.HE].

[172] A. Boyarsky, D. Malyshev, and O. Ruchayskiy, “A comment on the emission from the Galactic Center as seen by the Fermi telescope,” Phys. Lett. B705 (2011) 165–169, arXiv:1012.5839 [hep-ph].

[173] C. Gordon and O. Macias, “Dark Matter and Pulsar Model Constraints from Galactic Center Fermi-LAT Gamma Ray Observations,” Phys. Rev. D88 no. 8, (2013) 083521, arXiv:1306.5725 [astro-ph.HE]. [Erratum: Phys. Rev.D89,no.4,049901(2014)].

[174] F. Calore, I. Cholis, and C. Weniger, “Background Model Systematics for the Fermi GeV Excess,” JCAP 1503 (2015) 038, arXiv:1409.0042 [astro-ph.CO].

[175] K. N. Abazajian and M. Kaplinghat, “Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission,” Phys. Rev. D86 (2012) 083511, arXiv:1207.6047 [astro-ph.HE]. [Erratum: Phys. Rev.D87,129902(2013)].

[176] R. Bartels, S. Krishnamurthy, and C. Weniger, “Strong support for the millisecond pulsar origin of the Galactic center GeV excess,” Phys. Rev. Lett. 116 no. 5, (2016) 051102, arXiv:1506.05104 [astro-ph.HE].

[177] E. Carlson, T. Linden, and S. Profumo, “Improved Cosmic-Ray Injection Models and the Galactic Center Gamma-Ray Excess,” Phys. Rev. D94 no. 6, (2016) 063504, arXiv:1603.06584 [astro-ph.HE].

[178] R. Bartels, E. Storm, C. Weniger, and F. Calore, “The Fermi-LAT GeV excess as a tracer of stellar mass in the Galactic bulge,” Nat. Astron. 2 no. 10, (2018) 819–828, arXiv:1711.04778 [astro-ph.HE].

[179] H.E.S.S. Collaboration, H. Abdallah et al., “Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S,” Phys. Rev. Lett. 117 no. 11, (2016) 111301, arXiv:1607.08142 [astro-ph.HE].

[180] HAWC Collaboration, A. U. Abeysekara et al., “A Search for Dark Matter in the Galactic Halo with HAWC,” JCAP 1802 no. 02, (2018) 049, arXiv:1710.10288 [astro-ph.HE].

[181] L. Pieri, J. Lavalle, G. Bertone, and E. Branchini, “Implications of High-Resolution Simulations on Indirect Dark Matter Searches,” Phys. Rev. D83 (2011) 023518, arXiv:0908.0195 [astro-ph.HE].

[182] M. Kuhlen, J. Guedes, A. Pillepich, P. Madau, and L. Mayer, “An Off-center Density Peak in the Milky Way’s Dark Matter Halo?,” Astrophys. J. 765 (2013) 10, arXiv:1208.4844 [astro-ph.GA].

[183] HESS Collaboration, H. Abdallah et al., “Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.,” Phys. Rev. Lett. 120 no. 20, (2018) 201101, arXiv:1805.05741 [astro-ph.HE].

[184] H.E.S.S. Collaboration, A. Abramowski et al., “Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the Milky Way Center with H.E.S.S.,” Phys. Rev. Lett. 114 no. 8, (2015) 081301, arXiv:1502.03244 [astro-ph.HE].

[185] A. Tasitsiomi, J. M. Siegal-Gaskins, and A. V. Olinto, “Gamma-ray and synchrotron emission from neutralino annihilation in the Large Magellanic Cloud,” Astropart. Phys. 21 (2004) 637–650, arXiv:astro-ph/0307375 [astro-ph].

[186] M. R. Buckley, E. Charles, J. M. Gaskins, A. M. Brooks, A. Drlica-Wagner, P. Martin, and G. Zhao, “Search for Gamma-ray Emission from Dark Matter Annihilation in the Large Magellanic Cloud with the Fermi Large Area Telescope,” Phys. Rev. D91 no. 10, (2015) 102001, arXiv:1502.01020 [astro-ph.HE].

[187] H.E.S.S. Collaboration, A. Abramowski et al., “The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud,” Science 347 no. 6220, (2015) 406–412, arXiv:1501.06578 [astro-ph.HE].

[188] M. Mateo, “Dwarf galaxies of the Local Group,” Ann. Rev. Astron. Astrophys. 36 (1998) 435–506, arXiv:astro-ph/9810070 [astro-ph].

[189] L. E. Strigari, S. M. Koushiappas, J. S. Bullock, M. Kaplinghat, J. D. Simon, M. Geha, and B. Willman, “The Most Dark Matter Dominated Galaxies: Predicted Gamma-ray Signals from the Faintest Milky Way Dwarfs,” Astrophys. J. 678 (2008) 614, arXiv:0709.1510 [astro-ph].

[190] G. Battaglia, A. Helmi, and M. Breddels, “Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way,” New Astron. Rev. 57 (2013) 52–79, arXiv:1305.5965 [astro-ph.CO].

[191] A. Geringer-Sameth, S. M. Koushiappas, and M. Walker, “Dwarf galaxy annihilation and decay emission profiles for dark matter experiments,” Astrophys. J. 801 no. 2, (2015) 74, arXiv:1408.0002 [astro-ph.CO].

[192] A. B. Pace and L. E. Strigari, “Scaling Relations for Dark Matter Annihilation and Decay Profiles in Dwarf Spheroidal Galaxies,” arXiv:1802.06811 [astro-ph.GA].

[193] HAWC Collaboration, A. Albert et al., “Dark Matter Limits From Dwarf Spheroidal Galaxies with The HAWC Gamma-Ray Observatory,” Astrophys. J. 853 no. 2, (2018) 154, arXiv:1706.01277 [astro-ph.HE].

[194] Fermi-LAT, MAGIC Collaboration, M. L. Ahnen et al., “Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies,” JCAP 1602 no. 02, (2016) 039, arXiv:1601.06590 [astro-ph.HE].

[195] VERITAS Collaboration, S. Archambault et al., “Dark Matter Constraints from a Joint Analysis of Dwarf Spheroidal Galaxy Observations with VERITAS,” Phys. Rev. D95 no. 8, (2017) 082001, arXiv:1703.04937 [astro-ph.HE].

[196] DES, Fermi-LAT Collaboration, A. Drlica-Wagner et al., “Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data,” Astrophys. J. 809 no. 1, (2015) L4, arXiv:1503.02632 [astro-ph.HE].

[197] MAGIC Collaboration, M. L. Ahnen et al., “Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC Telescopes,” JCAP 1803 no. 03, (2018) 009, arXiv:1712.03095 [astro-ph.HE].

[198] J. Aleksi ć et al., “Optimized dark matter searches in deep observations of Segue 1 with MAGIC,” JCAP 1402 (2014) 008, arXiv:1312.1535 [hep-ph].

[199] MAGIC Collaboration, J. Aleksic et al., “Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope,” JCAP 1106 (2011) 035, arXiv:1103.0477 [astro-ph.HE].

[200] MAGIC Collaboration, E. Aliu et al., “Upper limits on the VHE gamma-ray emission from the Willman 1 satellite galaxy with the MAGIC Telescope,” Astrophys. J. 697 (2009) 1299–1304, arXiv:0810.3561 [astro-ph].

[201] MAGIC Collaboration, J. Albert et al., “Upper limit for gamma-ray emission above 140-GeV from the dwarf spheroidal galaxy Draco,” Astrophys. J. 679 (2008) 428–431, arXiv:0711.2574 [astro-ph].

[202] HAWC Collaboration, S. H. Cadena, R. Alfaro, A. Sandoval, E. Belmont, H. Le ó n, V. Gammaldi, E. Karukes, and P. Salucci, “Searching for TeV DM evidence from Dwarf Irregular Galaxies with the HAWC Observatory,” PoS ICRC2017 (2018) 897, arXiv:1708.04642 [astro-ph.HE].

[203] HAWC Collaboration, A. U. Abeysekara et al., “Searching for Dark Matter Sub-structure with HAWC,” arXiv:1811.11732 [astro-ph.HE].

[204] H. Yuksel, S. Horiuchi, J. F. Beacom, and S. Ando, “Neutrino Constraints on the Dark Matter Total Annihilation Cross Section,” Phys. Rev. D76 (2007) 123506, arXiv:0707.0196 [astro-ph].

[205] G. Bertone, E. Nezri, J. Orloff, and J. Silk, “Neutrinos from dark matter annihilations at the Galactic Center,” Phys. Rev. D70 (2004) 063503, arXiv:astro-ph/0403322 [astro-ph].

[206] BAIKAL Collaboration, A. D. Avrorin et al., “A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200,” Astropart. Phys. 81 (2016) 12–20, arXiv:1512.01198 [astro-ph.HE].

[207] IceCube Collaboration, M. G. Aartsen et al., “Search for Dark Matter Annihilation in the Galactic Center with IceCube-79,” Eur. Phys. J. C75 no. 10, (2015) 492, arXiv:1505.07259 [astro-ph.HE].

[208] IceCube Collaboration, M. G. Aartsen et al., “All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore,” Eur. Phys. J. C76 no. 10, (2016) 531, arXiv:1606.00209 [astro-ph.HE].

[209] A. Albert et al., “Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope,” Phys. Lett. B769 (2017) 249–254, arXiv:1612.04595 [astro-ph.HE].

[210] M. Cirelli, R. Franceschini, and A. Strumia, “Minimal Dark Matter predictions for galactic positrons, anti-protons, photons,” Nucl. Phys. B800 (2008) 204–220, arXiv:0802.3378 [hep-ph].

[211] D. Maurin, F. Donato, R. Taillet, and P. Salati, “Cosmic rays below z=30 in a diffusion model: new constraints on propagation parameters,” Astrophys. J. 555 (2001) 585–596, arXiv:astro-ph/0101231 [astro-ph].

[212] H.-B. Jin, Y.-L. Wu, and Y.-F. Zhou, “Cosmic ray propagation and dark matter in light of the latest AMS-02 data,” JCAP 1509 no. 09, (2015) 049, arXiv:1410.0171 [hep-ph].

[213] T. Delahaye, R. Lineros, F. Donato, N. Fornengo, and P. Salati, “Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties,” Phys. Rev. D77 (2008) 063527, arXiv:0712.2312 [astro-ph].

[214] R. Trotta, G. Johannesson, I. V. Moskalenko, T. A. Porter, R. R. de Austri, and A. W. Strong, “Constraints on cosmic-ray propagation models from a global Bayesian analysis,” Astrophys. J. 729 (2011) 106, arXiv:1011.0037 [astro-ph.HE].

[215] R. Cowsik and T. Madziwa-Nussinov, “Spectral Intensities of Antiprotons and the Nested Leaky-box Model for Cosmic Rays in the Galaxy,” Astrophys. J. 827 no. 2, (2016) 119.

[216] M. Korsmeier and A. Cuoco, “Galactic cosmic-ray propagation in the light of AMS-02: Analysis of protons, helium, and antiprotons,” Phys. Rev. D94 no. 12, (2016) 123019, arXiv:1607.06093 [astro-ph.HE].

[217] M.-Y. Cui, X. Pan, Q. Yuan, Y.-Z. Fan, and H.-S. Zong, “Revisit of cosmic ray antiprotons from dark matter annihilation with updated constraints on the background model from AMS-02 and collider data,” JCAP 1806 no. 06, (2018) 024, arXiv:1803.02163 [astro-ph.HE].

[218] A. E. Vladimirov, S. W. Digel, G. Johannesson, P. F. Michelson, I. V. Moskalenko, P. L. Nolan, E. Orlando, T. A. Porter, and A. W. Strong, “GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions,” Comput. Phys. Commun. 182 (2011) 1156–1161, arXiv:1008.3642 [astro-ph.HE].

[219] P. Brun, “Indirect Searches for Dark Matter with AMS-02,” Eur. Phys. J. C56 (2008) 27–31, arXiv:0710.2458 [astro-ph].

[220] M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia, “Model-independent implications of the e+-, anti-proton cosmic ray spectra on properties of Dark Matter,” Nucl. Phys. B813 (2009) 1–21, arXiv:0809.2409 [hep-ph]. [Addendum: Nucl. Phys.B873,530(2013)].

[221] J. Kopp, “Constraints on dark matter annihilation from AMS-02 results,” Phys. Rev. D88 (2013) 076013, arXiv:1304.1184 [hep-ph].

[222] L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper, and C. Weniger, “New limits on dark matter annihilation from AMS cosmic ray positron data,” Phys. Rev. Lett. 111 (2013) 171101, arXiv:1306.3983 [astro-ph.HE].

[223] M. Di Mauro, F. Donato, N. Fornengo, and A. Vittino, “Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data,” JCAP 1605 no. 05, (2016) 031, arXiv:1507.07001 [astro-ph.HE].

[224] A. Cuoco, M. Kr ä mer, and M. Korsmeier, “Novel Dark Matter Constraints from Antiprotons in Light of AMS-02,” Phys. Rev. Lett. 118 no. 19, (2017) 191102, arXiv:1610.03071 [astro-ph.HE].

[225] A. Cuoco, J. Heisig, M. Korsmeier, and M. Kr ä mer, “Constraining heavy dark matter with cosmic-ray antiprotons,” JCAP 1804 no. 04, (2018) 004, arXiv:1711.05274 [hep-ph].

[226] H. M. K. K. Hiroshima, N., “Dependence of the accessible dark matter annihilation cross-section on the density profiles of dwarf spheroidal galaxies with Cherenkov Telescope Array,”.

[227] CTA Consortium Collaboration, B. S. Acharya et al., “Introducing the CTA concept,” Astropart. Phys. 43 (2013) 3–18.

[228] CTA Consortium Collaboration, M. Actis et al., “Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy,” Exper. Astron. 32 (2011) 193–316, arXiv:1008.3703 [astro-ph.IM].

[229] T. Hassan et al., “Monte Carlo Performance Studies for the Site Selection of the Cherenkov Telescope Array,” Astropart. Phys. 93 (2017) 76–85, arXiv:1705.01790 [astro-ph.IM].

[230] Cherenkov Telescope Array Consortium Collaboration, B. S. Acharya et al., “Science with the Cherenkov Telescope Array,” arXiv:1709.07997 [astro-ph.IM].

[231] “CTA’s expected baseline performance.” https://www.cta-observatory.org/science/cta-performance/.

[232] CTA Consortium Collaboration, K. Bernl ö hr et al., “Monte Carlo design studies for the Cherenkov Telescope Array,” Astropart. Phys. 43 (2013) 171–188, arXiv:1210.3503 [astro-ph.IM].

[233] T. P. Li and Y. Q. Ma, “Analysis methods for results in gamma-ray astronomy,” Astrophys. J. 272 (1983) 317–324.

[234] MAGIC Collaboration, J. Albert et al., “Unfolding of differential energy spectra in the MAGIC experiment,” Nucl. Instrum. Meth. A583 (2007) 494–506, arXiv:0707.2453 [astro-ph].

[235] Fermi-LAT Collaboration, W. B. Atwood et al., “The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission,” Astrophys. J. 697 (2009) 1071–1102, arXiv:0902.1089 [astro-ph.IM].

[236] MAGIC Collaboration, J. Aleksi ć et al., “The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula,” Astropart. Phys. 72 (2016) 76–94, arXiv:1409.5594 [astro-ph.IM].

[237] G. Lake, “Detectability of gamma-rays from clumps of dark matter,” Nature 346 (1990) 39–40.

[238] N. W. Evans, F. Ferrer, and S. Sarkar, “A ’Baedecker’ for the dark matter annihilation signal,” Phys. Rev. D69 (2004) 123501, arXiv:astro-ph/0311145 [astro-ph].

[239] N. F. Martin et al., “Hydra II: a faint and compact Milky Way dwarf galaxy found in the Survey of the Magellanic Stellar History,” Astrophys. J. 804 no. 1, (2015) L5, arXiv:1503.06216 [astro-ph.GA].

[240] D. Kim and H. Jerjen, “Horologium II: a Second Ultra-faint Milky Way Satellite in the Horologium Constellation,” Astrophys. J. 808 (2015) L39, arXiv:1505.04948 [astro-ph.GA].

[241] B. P. M. Laevens et al., “A New Faint Milky Way Satellite Discovered in the Pan-STARRS1 3 π Survey,” Astrophys. J. 802 (2015) L18, arXiv:1503.05554 [astro-ph.GA].

[242] B. P. M. Laevens et al., “Sagittarius II, Draco II and Laevens 3: Three new Milky way Satellites Discovered in the Pan-starrs 1 3 pi Survey,” Astrophys. J. 813 no. 1, (2015) 44, arXiv:1507.07564 [astro-ph.GA].

[243] DES Collaboration, E. Luque et al., “Digging Deeper into the Southern Skies: A Compact Milky-Way Companion Discovered in First-Year Dark Energy Survey Data,” Mon. Not. Roy. Astron. Soc. 458 no. 1, (2016) 603–612, arXiv:1508.02381 [astro-ph.GA].

[244] S. E. Koposov et al., “Kinematics and chemistry of recently discovered Reticulum 2 and Horologium 1 dwarf galaxies,” Astrophys. J. 811 no. 1, (2015) 62, arXiv:1504.07916 [astro-ph.GA].

[245] DES Collaboration, K. Bechtol et al., “Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data,” Astrophys. J. 807 no. 1, (2015) 50, arXiv:1503.02584 [astro-ph.GA].

[246] A. W. McConnachie, “The observed properties of dwarf galaxies in and around the Local Group,” Astron. J. 144 (2012) 4, arXiv:1204.1562 [astro-ph.CO].

[247] Gaia Collaboration, “Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way,” ”Astronomy & Astrophysics (2018) .

[248] J. D. Simon, “Gaia Proper Motions and Orbits of the Ultra-faint Milky Way Satellites,” ”Astrophys. J.” (2018) .

[249] L. E. Strigari, S. M. Koushiappas, J. S. Bullock, and M. Kaplinghat, “Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments,” Phys. Rev. D75 (2007) 083526, arXiv:astro-ph/0611925 [astro-ph].

[250] A. Charbonnier et al., “Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories - I. The classical dSphs,” Mon. Not. Roy. Astron. Soc. 418 (2011) 1526–1556, arXiv:1104.0412 [astro-ph.HE].

[251] K. Hayashi, K. Ichikawa, S. Matsumoto, M. Ibe, M. N. Ishigaki, and H. Sugai, “Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites,” Mon. Not. Roy. Astron. Soc. 461 no. 3, (2016) 2914–2928, arXiv:1603.08046 [astro-ph.GA].

[252] M. Irwin and D. Hatzidimitriou, “Structural parameters for the Galactic dwarf spheroidals,” Mon. Not. Roy. Astron. Soc. 277 (1995) 1354–1378.

[253] A. Geringer-Sameth, M. G. Walker, S. M. Koushiappas, S. E. Koposov, V. Belokurov, G. Torrealba, and N. W. Evans, “Indication of Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II,” Phys. Rev. Lett. 115 no. 8, (2015) 081101, arXiv:1503.02320 [astro-ph.HE].

[254] Fermi-LAT Collaboration, A. A. Abdo et al., “Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models,” Astrophys. J. 712 (2010) 147–158, arXiv:1001.4531 [astro-ph.CO].

[255] Fermi-LAT Collaboration, M. Ackermann et al., “Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope,” Phys. Rev. Lett. 107 (2011) 241302, arXiv:1108.3546 [astro-ph.HE].

[256] Fermi-LAT Collaboration, M. Ackermann et al., “Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope,” Phys. Rev. D89 (2014) 042001, arXiv:1310.0828 [astro-ph.HE].

[257] Fermi-LAT Collaboration, M. Ackermann et al., “Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data,” Phys. Rev. Lett. 115 no. 23, (2015) 231301, arXiv:1503.02641 [astro-ph.HE].

[258] MAGIC Collaboration, M. Doro, “A review of the past and present MAGIC dark matter search program and a glimpse at the future,” in 25th European Cosmic Ray Symposium (ECRS 2016) Turin, Italy, September 04-09, 2016. 2017. arXiv:1701.05702 [astro-ph.HE]. https://inspirehep.net/record/1510040/files/arXiv:1701.05702.pdf.

[259] H.E.S.S. Collaboration, F. Aharonian, “Observations of the Sagittarius Dwarf galaxy by the H.E.S.S. experiment and search for a Dark Matter signal,” Astropart. Phys. 29 (2008) 55–62, arXiv:0711.2369 [astro-ph]. [Erratum: Astropart. Phys.33,274(2010)].

[260] H.E.S.S. Collaboration, F. Aharonian, “A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S,” Astrophys. J. 691 (2009) 175–181, arXiv:0809.3894 [astro-ph].

[261] H.E.S.S. Collaboration, A. Abramowski et al., “H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies,” Astropart. Phys. 34 (2011) 608–616, arXiv:1012.5602 [astro-ph.HE].

[262] H.E.S.S. Collaboration, A. Abramowski et al., “Search for dark matter annihilation signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies,” Phys. Rev. D90 (2014) 112012, arXiv:1410.2589 [astro-ph.HE].

[263] VERITAS Collaboration, V. A. Acciari et al., “VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies,” Astrophys. J. 720 (2010) 1174–1180, arXiv:1006.5955 [astro-ph.CO].

[264] VERITAS Collaboration, E. Aliu et al., “VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1,” Phys. Rev. D85 (2012) 062001, arXiv:1202.2144 [astro-ph.HE]. [Erratum: Phys. Rev.D91,no.12,129903(2015)].

[265] R. Essig, N. Sehgal, L. E. Strigari, M. Geha, and J. D. Simon, “Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1,” Phys. Rev. D82 (2010) 123503, arXiv:1007.4199 [astro-ph.CO].

[266] V. Bonnivard et al., “Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs,” Mon. Not. Roy. Astron. Soc. 453 no. 1, (2015) 849–867, arXiv:1504.02048 [astro-ph.HE].

[267] L. Ambrogi, S. Celli, and F. Aharonian, “On the potential of Cherenkov Telescope Arrays and KM3 Neutrino Telescopes for the detection of extended sources,” Astropart. Phys. 100 (2018) 69–79, arXiv:1803.03565 [astro-ph.HE].

[268] HESS Collaboration, H. Abdalla et al., “Searches for gamma-ray lines and ’pure WIMP’ spectra from Dark Matter annihilations in dwarf galaxies with H.E.S.S,” JCAP 1811 no. 11, (2018) 037, arXiv:1810.00995 [astro-ph.HE].

[269] E. L. Lokas, “Dark matter distribution in dwarf spheroidal galaxies,” Mon. Not. Roy. Astron. Soc. 333 (2002) 697, arXiv:astro-ph/0112023 [astro-ph].

[270] E. L. Lokas, G. A. Mamon, and F. Prada, “Dark matter distribution in the Draco dwarf from velocity moments,” Mon. Not. Roy. Astron. Soc. 363 (2005) 918, arXiv:astro-ph/0411694 [astro-ph].

[271] S. Mashchenko, A. Sills, and H. M. P. Couchman, “Constraining global properties of the draco dwarf spheroidal galaxy,” Astrophys. J. 640 (2006) 252–269, arXiv:astro-ph/0511567 [astro-ph].

[272] M. A. Sanchez-Conde, F. Prada, E. L. Lokas, M. E. Gomez, R. Wojtak, and M. Moles, “Dark Matter annihilation in Draco: New considerations of the expected gamma flux,” Phys. Rev. D76 (2007) 123509, arXiv:astro-ph/0701426 [astro-ph].

[273] J. Kno¨ dlseder et al., “GammaLib and ctools: A software framework for the analysis of astronomical gamma-ray data,” Astron. Astrophys. 593 (2016) A1, arXiv:1606.00393 [astro-ph.IM].

[274] CTA Consortium Collaboration, P. Cumani, T. Hassan, L. Arrabito, K. Bernlo¨ hr, J. Bregeon, G. Maier, and A. Moralejo, “Baseline telescope layouts of the Cherenkov Telescope Array,” PoS ICRC2017 (2018) 811, arXiv:1709.00206 [astro-ph.IM].

[275] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, “CORSIKA: A Monte Carlo code to simulate extensive air showers,”.

[276] A. D. Panov et al., “Elemental Energy Spectra of Cosmic Rays from the Data of the ATIC-2 Experiment,” Bull. Russ. Acad. Sci. Phys. 71 (2007) 494–497, arXiv:astro-ph/0612377 [astro-ph]. [Izv. Ross. Akad. Nauk Ser. Fiz.71,512(2007)].

[277] H.E.S.S. Collaboration, F. Aharonian et al., “Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S,” Astron. Astrophys. 508 (2009) 561, arXiv:0905.0105 [astro-ph.HE].

[278] Fermi-LAT Collaboration, A. A. Abdo et al., “Measurement of the Cosmic Ray e+ plus e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope,” Phys. Rev. Lett. 102 (2009) 181101, arXiv:0905.0025 [astro-ph.HE].

[279] L. Hernquist, “An Analytical Model for Spherical Galaxies and Bulges,” Astrophys. J. 356 (1990) 359.

[280] H. Zhao, “Analytical models for galactic nuclei,” Mon. Not. Roy. Astron. Soc. 278 (1996) 488–496, arXiv:astro-ph/9509122 [astro-ph].

[281] J. F. Navarro, C. S. Frenk, and S. D. M. White, “A Universal density profile from hierarchical clustering,” Astrophys. J. 490 (1997) 493–508, arXiv:astro-ph/9611107 [astro-ph].

[282] A. Burkert, “The Structure of dark matter halos in dwarf galaxies,” IAU Symp. 171 (1996) 175, arXiv:astro-ph/9504041 [astro-ph]. [Astrophys. J.447,L25(1995)].

[283] V. Bonnivard, C. Combet, D. Maurin, and M. G. Walker, “Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - Impact of physical parameters and triaxiality,” Mon. Not. Roy. Astron. Soc. 446 (2015) 3002–3021, arXiv:1407.7822 [astro-ph.HE].

[284] V. Bonnivard, M. Hu¨ tten, E. Nezri, A. Charbonnier, C. Combet, and D. Maurin, “CLUMPY : Jeans analysis, γ-ray and ν fluxes from dark matter (sub-)structures,” Comput. Phys. Commun. 200 (2016) 336–349, arXiv:1506.07628 [astro-ph.CO].

[285] M. Hu¨ tten, C. Combet, G. Maier, and D. Maurin, “Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos,” JCAP 1609 no. 09, (2016) 047, arXiv:1606.04898 [astro-ph.HE].

[286] K. Griest and M. Kamionkowski, “Unitarity Limits on the Mass and Radius of Dark Matter Particles,” Phys. Rev. Lett. 64 (1990) 615.

[287] T. Sjo¨ strand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An Introduction to PYTHIA 8.2,” Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].

[288] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 05 (2006) 026, arXiv:hep-ph/0603175 [hep-ph].

[289] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput. Phys. Commun. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].

[290] A. V. Belikov and D. Hooper, “The Contribution Of Inverse Compton Scattering To The Diffuse Extragalactic Gamma-Ray Background From Annihilating Dark Matter,” Phys. Rev. D81 (2010) 043505, arXiv:0906.2251 [astro-ph.CO].

[291] M. Cirelli and P. Panci, “Inverse Compton constraints on the Dark Matter e+e- excesses,” Nucl. Phys. B821 (2009) 399–416, arXiv:0904.3830 [astro-ph.CO].

[292] S. Profumo and T. E. Jeltema, “Extragalactic Inverse Compton Light from Dark Matter Annihilation and the Pamela Positron Excess,” JCAP 0907 (2009) 020, arXiv:0906.0001 [astro-ph.CO].

[293] C. Blanco, J. P. Harding, and D. Hooper, “Novel Gamma-Ray Signatures of PeV-Scale Dark Matter,” JCAP 1804 no. 04, (2018) 060, arXiv:1712.02805 [hep-ph].

[294] R. Bartels, D. Gaggero, and C. Weniger, “Prospects for indirect dark matter searches with MeV photons,” JCAP 1705 no. 05, (2017) 001, arXiv:1703.02546 [astro-ph.HE].

[295] N. Hiroshima, S. Ando, and T. Ishiyama, “Modeling evolution of dark matter substructure and annihilation boost,” Phys. Rev. D97 no. 12, (2018) 123002, arXiv:1803.07691 [astro-ph.CO].

[296] N. Yoshida, V. Springel, S. D. M. White, and G. Tormen, “Weakly self-interacting dark matter and the structure of dark halos,” Astrophys. J. 544 (2000) L87–L90, arXiv:astro-ph/0006134 [astro-ph].

[297] F. C. van den Bosch, G. Tormen, and C. Giocoli, “The Mass function and average mass loss rate of dark matter subhaloes,” Mon. Not. Roy. Astron. Soc. 359 (2005) 1029–1040, arXiv:astro-ph/0409201 [astro-ph].

[298] C. Giocoli, L. Pieri, and G. Tormen, “Analytical Approach to Subhaloes Population in Dark Matter Haloes,” Mon. Not. Roy. Astron. Soc. 387 (2008) 689–697, arXiv:0712.1476 [astro-ph].

[299] F. Jiang and F. C. van den Bosch, “Statistics of dark matter substructure ‒ I. Model and universal fitting functions,” Mon. Not. Roy. Astron. Soc. 458 no. 3, (2016) 2848–2869, arXiv:1403.6827 [astro-ph.CO].

[300] J. Penarrubia and A. J. Benson, “Effects of dynamical evolution on the distribution of substructures,” Mon. Not. Roy. Astron. Soc. 364 (2005) 977–989, arXiv:astro-ph/0412370 [astro-ph].

[301] L. Gao, S. D. M. White, A. Jenkins, F. Stoehr, and V. Springel, “The Subhalo populations of lambda-CDM dark halos,” Mon. Not. Roy. Astron. Soc. 355 (2004) 819, arXiv:astro-ph/0404589 [astro-ph].

[302] J. Diemand, M. Kuhlen, and P. Madau, “Formation and evolution of galaxy dark matter halos and their substructure,” Astrophys. J. 667 (2007) 859–877, arXiv:astro-ph/0703337 [astro-ph].

[303] C. Giocoli, G. Tormen, and F. C. v. d. Bosch, “The Population of Dark Matter Subhaloes: Mass Functions and Average Mass Loss Rates,” Mon. Not. Roy. Astron. Soc. 386 (2008) 2135–2144, arXiv:0712.1563 [astro-ph].

[304] K. Dolag, S. Borgani, G. Murante, and V. Springel, “Substructures in hydrodynamical cluster simulations,” Mon. Not. Roy. Astron. Soc. 399 (2009) 497, arXiv:0808.3401 [astro-ph].

[305] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, “The Aquarius Project: the subhalos of galactic halos,” Mon. Not. Roy. Astron. Soc. 391 (2008) 1685–1711, arXiv:0809.0898 [astro-ph].

[306] F. C. van den Bosch, G. Ogiya, O. Hahn, and A. Burkert, “Disruption of Dark Matter Substructure: Fact or Fiction?,” Mon. Not. Roy. Astron. Soc. 474 no. 3, (2018) 3043–3066, arXiv:1711.05276 [astro-ph.GA].

[307] J. Diemand, M. Kuhlen, and P. Madau, “Dark matter substructure and gamma-ray annihilation in the Milky Way halo,” Astrophys. J. 657 (2007) 262–270, arXiv:astro-ph/0611370 [astro-ph].

[308] L. Pieri, G. Bertone, and E. Branchini, “Dark Matter Annihilation in Substructures Revised,” Mon. Not. Roy. Astron. Soc. 384 (2008) 1627, arXiv:0706.2101 [astro-ph].

[309] T. E. Jeltema and S. Profumo, “Searching for Dark Matter with X-ray Observations of Local Dwarf Galaxies,” Astrophys. J. 686 (2008) 1045, arXiv:0805.1054 [astro-ph].

[310] T. Ishiyama, “Hierarchical Formation of Dark Matter Halos and the Free Streaming Scale,” Astrophys. J. 788 (2014) 27, arXiv:1404.1650 [astro-ph.CO].

[311] R. Bartels and S. Ando, “Boosting the annihilation boost: Tidal effects on dark matter subhalos and consistent luminosity modeling,” Phys. Rev. D92 no. 12, (2015) 123508, arXiv:1507.08656 [astro-ph.CO].

[312] M. A. Sa´nchez-Conde and F. Prada, “The flattening of the concentration ‒ mass relation towards low halo masses and its implications for the annihilation signal boost,” Mon. Not. Roy. Astron. Soc. 442 no. 3, (2014) 2271–2277, arXiv:1312.1729 [astro-ph.CO].

[313] C. A. Correa, J. S. B. Wyithe, J. Schaye, and A. R. Duffy, “The accretion history of dark matter haloes ‒ I. The physical origin of the universal function,” Mon. Not. Roy. Astron. Soc. 450 no. 2, (2015) 1514–1520, arXiv:1409.5228 [astro-ph.GA].

[314] X. Yang, H. J. Mo, Y. Zhang, and F. C. v. d. Bosch, “An analytical model for the accretion of dark matter subhalos,” Astrophys. J. 741 (2011) 13, arXiv:1104.1757 [astro-ph.CO].

[315] G. L. Bryan and M. L. Norman, “Statistical properties of x-ray clusters: Analytic and numerical comparisons,” Astrophys. J. 495 (1998) 80, arXiv:astro-ph/9710107 [astro-ph].

[316] C. A. Correa, J. S. B. Wyithe, J. Schaye, and A. R. Duffy, “The accretion history of dark matter haloes ‒ III. A physical model for the concentration ‒ mass relation,” Mon. Not. Roy. Astron. Soc. 452 no. 2, (2015) 1217–1232, arXiv:1502.00391 [astro-ph.CO].

[317] W. Hu and A. V. Kravtsov, “Sample variance considerations for cluster surveys,” Astrophys. J. 584 (2003) 702–715, arXiv:astro-ph/0203169 [astro-ph].

[318] T. Ishiyama, J. Makino, S. Portegies Zwart, D. Groen, K. Nitadori, S. Rieder, C. de Laat, S. McMillan, K. Hiraki, and S. Harfst, “The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos,” Astrophys. J. 767 (2013) 146, arXiv:1101.2020 [astro-ph.CO].

[319] J. Penarrubia, A. J. Benson, M. G. Walker, G. Gilmore, A. McConnachie, and L. Mayer, “The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies,” Mon. Not. Roy. Astron. Soc. 406 (2010) 1290, arXiv:1002.3376 [astro-ph.GA].

[320] E. Hayashi, J. F. Navarro, J. E. Taylor, J. Stadel, and T. R. Quinn, “The Structural evolution of substructure,” Astrophys. J. 584 (2003) 541–558, arXiv:astro-ph/0203004 [astro-ph].

[321] A. D. Ludlow, S. Bose, R. E. Angulo, L. Wang, W. A. Hellwing, J. F. Navarro, S. Cole, and C. S. Frenk, “The mass ‒concentration ‒ redshift relation of cold and warm dark matter haloes,” Mon. Not. Roy. Astron. Soc. 460 no. 2, (2016) 1214–1232, arXiv:1601.02624 [astro-ph.CO].

[322] Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571 (2014) A16, arXiv:1303.5076 [astro-ph.CO].

[323] A. R. Wetzel, “On the Orbits of Infalling Satellite Halos,” Mon. Not. Roy. Astron. Soc. 412 (2011) 49, arXiv:1001.4792 [astro-ph.CO].

[324] T. Ishiyama, M. Enoki, M. A. R. Kobayashi, R. Makiya, M. Nagashima, and T. Oogi, “The ν2GC simulations: Quantifying the dark side of the universe in the Planck cosmology,” Publ. Astron. Soc. Jap. 67 no. 4, (2015) 61, arXiv:1412.2860 [astro-ph.CO].

[325] T. Ishiyama et al., “in preparation,”.

[326] T. Ishiyama, T. Fukushige, and J. Makino, “GreeM : Massively Parallel TreePM Code for Large Cosmological N-body Simulations,” Publ. Astron. Soc. Jap. 61 (2009) 1319–1330, arXiv:0910.0121 [astro-ph.IM].

[327] T. Ishiyama, K. Nitadori, and J. Makino, “4.45 Pflops Astrophysical N-Body Simulation on K computer – The Gravitational Trillion-Body Problem,” arXiv:1211.4406 [astro-ph.CO].

[328] P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu, “The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores,” Astrophys. J. 762 (2013) 109, arXiv:1110.4372 [astro-ph.CO].

[329] P. S. Behroozi, R. H. Wechsler, H.-Y. Wu, M. T. Busha, A. A. Klypin, and J. R. Primack, “Gravitationally Consistent Halo Catalogs and Merger Trees for Precision Cosmology,” Astrophys. J. 763 (2013) 18, arXiv:1110.4370 [astro-ph.CO].

[330] R. Makiya, M. Enoki, T. Ishiyama, M. A. R. Kobayashi, M. Nagashima, T. Okamoto, K. Okoshi, T. Oogi, and H. Shirakata, “The New Numerical Galaxy Catalog (ν2GC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmological N-body simulations,” Publ. Astron. Soc. Jap. 68 no. 2, (2016) 25, arXiv:1508.07215 [astro-ph.GA].

[331] J. Diemand, M. Kuhlen, and P. Madau, “Early supersymmetric cold dark matter substructure,” Astrophys. J. 649 (2006) 1–13, arXiv:astro-ph/0603250 [astro-ph].

[332] C. Giocoli, G. Tormen, R. K. Sheth, and F. C. van den Bosch, “The Substructure Hierarchy in Dark Matter Haloes,” Mon. Not. Roy. Astron. Soc. 404 (2010) 502–517, arXiv:0911.0436 [astro-ph.CO].

[333] M. Stref and J. Lavalle, “Modeling dark matter subhalos in a constrained galaxy: Global mass and boosted annihilation profiles,” Phys. Rev. D95 no. 6, (2017) 063003, arXiv:1610.02233 [astro-ph.CO].

[334] C. Okoli and N. Afshordi, “Concentration, Ellipsoidal Collapse, and the Densest Dark Matter haloes,” Mon. Not. Roy. Astron. Soc. 456 no. 3, (2016) 3068–3078, arXiv:1510.03868 [astro-ph.CO].

[335] M. Gosenca, J. Adamek, C. T. Byrnes, and S. Hotchkiss, “3D simulations with boosted primordial power spectra and ultracompact minihalos,” Phys. Rev. D96 no. 12, (2017) 123519, arXiv:1710.02055 [astro-ph.CO].

[336] T. Nakama, T. Suyama, K. Kohri, and N. Hiroshima, “Constraints on small-scale primordial power by annihilation signals from extragalactic dark matter minihalos,” Phys. Rev. D97 no. 2, (2018) 023539, arXiv:1712.08820 [astro-ph.CO].

[337] M. S. Delos, A. L. Erickcek, A. P. Bailey, and M. A. Alvarez, “Are ultracompact minihalos really ultracompact?,” Phys. Rev. D97 no. 4, (2018) 041303, arXiv:1712.05421 [astro-ph.CO].

[338] M. Kamionkowski and S. M. Koushiappas, “Galactic substructure and direct detection of dark matter,” Phys. Rev. D77 (2008) 103509, arXiv:0801.3269 [astro-ph].

[339] M. Kamionkowski, S. M. Koushiappas, and M. Kuhlen, “Galactic Substructure and Dark Matter Annihilation in the Milky Way Halo,” Phys. Rev. D81 (2010) 043532, arXiv:1001.3144 [astro-ph.GA].

[340] I. Cholis and D. Hooper, “Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio,” Phys. Rev. D89 no. 4, (2014) 043013, arXiv:1312.2952 [astro-ph.HE].

[341] M. Di Mauro and F. Donato, “Composition of the Fermi-LAT isotropic gamma-ray background intensity: Emission from extragalactic point sources and dark matter annihilations,” Phys. Rev. D91 no. 12, (2015) 123001, arXiv:1501.05316 [astro-ph.HE].

[342] S. Ando, “Gamma-ray background anisotropy from galactic dark matter substructure,” Phys. Rev. D80 (2009) 023520, arXiv:0903.4685 [astro-ph.CO].

[343] S. Ando and E. Komatsu, “Anisotropy of the cosmic gamma-ray background from dark matter annihilation,” Phys. Rev. D73 (2006) 023521, arXiv:astro-ph/0512217 [astro-ph].

[344] S. Ando, E. Komatsu, T. Narumoto, and T. Totani, “Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of cosmic gamma-ray background,” Phys. Rev. D75 (2007) 063519, arXiv:astro-ph/0612467 [astro-ph].

[345] S. Ando, M. Fornasa, N. Fornengo, M. Regis, and H.-S. Zechlin, “Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background,” Phys. Rev. D95 no. 12, (2017) 123006, arXiv:1701.06988 [astro-ph.HE].

[346] S. Ando, “Power spectrum tomography of dark matter annihilation with local galaxy distribution,” JCAP 1410 no. 10, (2014) 061, arXiv:1407.8502 [astro-ph.CO].

[347] N. Fornengo and M. Regis, “Particle dark matter searches in the anisotropic sky,” Front. Physics 2 (2014) 6, arXiv:1312.4835 [astro-ph.CO].

[348] M. Lisanti, S. Mishra-Sharma, N. L. Rodd, and B. R. Safdi, “A Search for Dark Matter Annihilation in Galaxy Groups,” arXiv:1708.09385 [astro-ph.CO].

[349] 松原隆彦, 現代宇宙論ー時空と物質の共進化. 東京大学出版会, 2010.

[350] E. W. Kolb and M. S. Turner, “The Early Universe,” Nature 294 (1981) 521.

[351] J. Abdallah et al., “Simplified Models for Dark Matter Searches at the LHC,” Phys. Dark Univ. 9-10 (2015) 8–23, arXiv:1506.03116 [hep-ph].

[352] A. Nelson, L. M. Carpenter, R. Cotta, A. Johnstone, and D. Whiteson, “Confronting the Fermi Line with LHC data: an Effective Theory of Dark Matter Interaction with Photons,” Phys. Rev. D89 no. 5, (2014) 056011, arXiv:1307.5064 [hep-ph].

[353] CMS Collaboration, A. M. Sirunyan et al., “Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at √s = 13 TeV,” Submitted to: JHEP (2018) , arXiv:1810.00196 [hep-ex].

[354] ATLAS Collaboration, M. Aaboud et al., “Search for dark matter at √s = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector,” Eur. Phys. J. C77 no. 6, (2017) 393, arXiv:1704.03848 [hep-ex].

[355] G. Busoni et al., “Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter,” arXiv:1603.04156 [hep-ex].

[356] G. B. Gelmini, “The Hunt for Dark Matter,” in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014): Boulder, Colorado, June 2-27, 2014, pp. 559–616. 2015. arXiv:1502.01320 [hep-ph].

[357] ATLAS Collaboration, M. Aaboud et al., “Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at √s = 13 TeV with the ATLAS detector,” Phys. Rev. D98 no. 9, (2018) 092012, arXiv:1806.02293 [hep-ex].

[358] CMS Collaboration, A. M. Sirunyan et al., “Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at √s = 13 TeV,” JHEP 03 (2018) 160, arXiv:1801.03957 [hep-ex].

[359] GAMBIT Collaboration, P. Athron et al., “Combined collider constraints on neutralinos and charginos,” arXiv:1809.02097 [hep-ph].

[360] J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6 (1996) 87–112.

[361] PandaX-II Collaboration, X. Cui et al., “Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment,” Phys. Rev. Lett. 119 no. 18, (2017) 181302, arXiv:1708.06917 [astro-ph.CO].

[362] XMASS Collaboration, M. Kobayashi et al., “Search for sub-GeV dark matter by annual modulation using XMASS-I detector,” arXiv:1808.06177 [astro-ph.CO].

[363] XMASS Collaboration, T. Suzuki et al., “Search for WIMP-129Xe inelastic scattering with particle identification in XMASS-I,” arXiv:1809.05358 [astro-ph.CO].

[364] DarkSide Collaboration, P. Agnes et al., “Low-Mass Dark Matter Search with the DarkSide-50 Experiment,” Phys. Rev. Lett. 121 no. 8, (2018) 081307, arXiv:1802.06994 [astro-ph.HE].

[365] SuperCDMS Collaboration, R. Agnese et al., “New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment,” Phys. Rev. Lett. 116 no. 7, (2016) 071301, arXiv:1509.02448 [astro-ph.CO].

[366] CRESST Collaboration, F. Petricca et al., “First results on low-mass dark matter from the CRESST-III experiment,” in 15th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2017) Sudbury, Ontario, Canada, July 24-28, 2017. 2017. arXiv:1711.07692 [astro-ph.CO].

[367] DAMA Collaboration, R. Bernabei et al., “First results from DAMA/LIBRA and the combined results with DAMA/NaI,” Eur. Phys. J. C56 (2008) 333–355, arXiv:0804.2741 [astro-ph].

[368] DAMA, LIBRA Collaboration, R. Bernabei et al., “New results from DAMA/LIBRA,” Eur. Phys. J. C67 (2010) 39–49, arXiv:1002.1028 [astro-ph.GA].

[369] R. Bernabei et al., “First Model Independent Results from DAMA/LIBRA ‒ Phase2,” Universe 4 no. 11, (2018) 116, arXiv:1805.10486 [hep-ex].

[370] J. Amare et al., “The ANAIS-112 experiment at the Canfranc Underground Laboratory,” in 15th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2017) Sudbury, Ontario, Canada, July 24-28, 2017. 2017. arXiv:1710.03837 [physics.ins-det].

[371] P. Adhikari et al., “Understanding internal backgrounds in NaI(Tl) crystals toward a 200 kg array for the KIMS-NaI experiment,” Eur. Phys. J. C76 no. 4, (2016) 185, arXiv:1510.04519 [physics.ins-det].

[372] G. Adhikari et al., “Initial Performance of the COSINE-100 Experiment,” Eur. Phys. J. C78 no. 2, (2018) 107, arXiv:1710.05299 [physics.ins-det].

[373] COSINE-100 Collaboration, C. Ha et al., “The First Direct Search for Inelastic Boosted Dark Matter with COSINE-100,” arXiv:1811.09344 [astro-ph.IM].

[374] DM-Ice Collaboration, E. Barbosa de Souza et al., “First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17,” Phys. Rev. D95 no. 3, (2017) 032006, arXiv:1602.05939 [physics.ins-det].

[375] SABRE Collaboration, C. Tomei, “SABRE: Dark matter annual modulation detection in the northern and southern hemispheres,” Nucl. Instrum. Meth. A845 (2017) 418–420.

[376] LUX Collaboration, D. S. Akerib et al., “Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment,” Phys. Rev. Lett. 116 no. 16, (2016) 161302, arXiv:1602.03489 [hep-ex].

[377] R. Essig, M. Sholapurkar, and T.-T. Yu, “Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils,” Phys. Rev. D97 no. 9, (2018) 095029, arXiv:1801.10159 [hep-ph].

[378] SENSEI Collaboration, M. Crisler, R. Essig, J. Estrada, G. Fernandez, J. Tiffenberg, M. Sofo haro, T. Volansky, and T.-T. Yu, “SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run,” Phys. Rev. Lett. 121 no. 6, (2018) 061803, arXiv:1804.00088 [hep-ex].

[379] C. V. Cappiello, K. C. Y. Ng, and J. F. Beacom, “Reverse Direct Detection: Cosmic Ray Scattering With Light Dark Matter,” arXiv:1810.07705 [hep-ph].

[380] T. Bringmann and M. Pospelov, “Novel direct detection constraints on light dark matter,” arXiv:1810.10543 [hep-ph].

[381] Y. Ema, F. Sala, and R. Sato, “Light Dark Matter at Neutrino Experiments,” arXiv:1811.00520 [hep-ph].

[382] A. K. Drukier, S. Baum, K. Freese, M. G ó rski, and P. Stengel, “Paleo-detectors: Searching for Dark Matter with Ancient Minerals,” arXiv:1811.06844 [astro-ph.CO].

[383] T. D. P. Edwards, B. J. Kavanagh, C. Weniger, S. Baum, A. K. Drukier, K. Freese, M. G ó rski, and P. Stengel, “Digging for Dark Matter: Spectral Analysis and Discovery Potential of Paleo-Detectors,” arXiv:1811.10549 [hep-ph].

[384] 井上一, 小山勝二, 高橋忠幸, 水本好彦, 宇宙の観測 III ー高エネルギー天文学, シリーズ現代の天文学 第 17 ❹. 日本評論社, 2008.

[385] R. Engel, D. Heck, and T. Pierog, “Extensive air showers and hadronic interactions at high energy,” Ann. Rev. Nucl. Part. Sci. 61 (2011) 467–489.

[386] R. L ó pez-Coto, Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs. PhD thesis, Barcelona, Autonoma U., 2015. https://magic.mpp.mpg.de/backend/publication/show/332.

[387] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 no. 3, (2018) 030001.

[388] F. Aharonian, W. Hofmann, A. Konopelko, and H. V ö lk, “The potential of ground based arrays of imaging atmospheric cherenkov telescopes. i. determination of shower parameters,” Astroparticle Physics 6 no. 3, (1997) 343 – 368. http://www.sciencedirect.com/science/article/pii/S0927650596000692.

[389] K. Bernlohr, “Simulation of Imaging Atmospheric Cherenkov Telescopes with CORSIKA and sim telarray,” Astropart. Phys. 30 (2008) 149–158, arXiv:0808.2253 [astro-ph].

[390] J. D. Jackson, Classical Electrodynamics, 3rd Edition. July, 1998.

[391] W. B. Atwood et al., “Design and Initial Tests of the Tracker-Converter of the Gamma-ray Large Area Space Telescope,” Astropart. Phys. 28 (2007) 422–434.

[392] V. Bonnivard, D. Maurin, and M. G. Walker, “Contamination of stellar-kinematic samples and uncertainty about dark matter annihilation profiles in ultrafaint dwarf galaxies: the example of Segue I,” Mon. Not. Roy. Astron. Soc. 462 no. 1, (2016) 223–234, arXiv:1506.08209 [astro-ph.GA].

[393] M. G. Coleman, K. Jordi, H.-W. Rix, E. K. Grebel, and A. Koch, “A Wide-Field View of Leo II – A Structural Analysis Using the SDSS,” Astron. J. 134 (2007) 1938–1951, arXiv:0708.1853 [astro-ph].

[394] V. Smolcic, D. Zucker, E. F. Bell, M. G. Coleman, H. W. Rix, E. Schinnerer, Z. Ivezic, and A. Kniazev, “Improved photometry of SDSS crowded field images: Structure and dark matter content in the dwarf spheroidal galaxy Leo I,” Astron. J. 134 (2007) 1901–1915, arXiv:0708.2661 [astro-ph].

[395] J. D. Simon and M. Geha, “The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem,” Astrophys. J. 670 (2007) 313–331, arXiv:0706.0516 [astro-ph].

[396] N. F. Martin, J. T. A. de Jong, and H.-W. Rix, “A comprehensive Maximum Likelihood analysis of the structural properties of faint Milky Way satellites,” Astrophys. J. 684 (2008) 1075–1092, arXiv:0805.2945 [astro-ph].

[397] N. F. Bate, B. McMonigal, G. F. Lewis, M. J. Irwin, E. Gonzalez-Solares, T. Shanks, and N. Metcalfe, “The shell game: a panoramic view of Fornax,” Mon. Not. Roy. Astron. Soc. (2015) .

[398] DES Collaboration, A. Drlica-Wagner et al., “Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey,” Astrophys. J. 813 no. 2, (2015) 109, arXiv:1508.03622 [astro-ph.GA].

[399] R. A. Ibata, G. F. Gilmore, and M. J. Irwin, “Sagittarius: The Nearest dwarf galaxy,” Mon. Not. Roy. Astron. Soc. 277 (1995) 781, arXiv:astro-ph/9506071 [astro-ph].

[400] S. R. Majewski, M. F. Skrutskie, M. D. Weinberg, and J. C. Ostheimer, “A 2mass all-sky view of the Sagittarius dwarf galaxy: I. Morphology of the Sagittarius core and tidal arms,” Astrophys. J. 599 (2003) 1082–1115, arXiv:astro-ph/0304198 [astro-ph].

[401] A. Koch, M. I. Wilkinson, J. T. Kleyna, M. Irwin, D. B. Zucker, V. Belokurov, G. F. Gilmore, M. Fellhauer, and N. W. Evans, “A spectroscopic confirmation of the Bootes II dwarf spheroidal,” Astrophys. J. 690 (2009) 453–462, arXiv:0809.0700 [astro-ph].

[402] F. Fraternali, E. Tolstoy, M. Irwin, and A. Cole, “Life at the Periphery of the Local Group: the kinematics of the Tucana Dwarf Galaxy,” Astron. Astrophys. 499 (2009) 121, arXiv:0903.4635 [astro-ph.CO].

[403] B. P. M. Laevens et al., “A new distant Milky Way globular cluster in the Pan-STARRS1 3π survey,” Astrophys. J. 786 (2014) L3, arXiv:1403.6593 [astro-ph.GA].

[404] E. N. Kirby, J. D. Simon, and J. G. Cohen, “Spectroscopic Confirmation of the Dwarf Galaxies Hydra II and Pisces II and the Globular Cluster Laevens 1,” Astrophys. J. 810 no. 1, (2015) 56, arXiv:1506.01021 [astro-ph.GA].

[405] DES Collaboration, J. D. Simon et al., “Stellar Kinematics and Metallicities in the Ultra-Faint Dwarf Galaxy Reticulum II,” Astrophys. J. 808 no. 1, (2015) 95, arXiv:1504.02889 [astro-ph.GA].

[406] D. Kim, H. Jerjen, M. Geha, A. Chiti, A. P. Milone, D. Mackey, G. Da Costa, A. Frebel, and B. Conn, “Portrait of a Dark Horse: a Photometric and Spectroscopic Study of the Ultra-faint Milky way Satellite Pegasus iii,” Astrophys. J. 833 no. 1, (2016) 16, arXiv:1608.04934 [astro-ph.GA].

[407] M. G. Walker et al., “Magellan/M2FS spectroscopy of Tucana 2 and Grus 1,” Astrophys. J. 819 no. 1, (2016) 53, arXiv:1511.06296 [astro-ph.GA].

[408] G. Torrealba et al., “At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data,” Mon. Not. Roy. Astron. Soc. .

[409] G. Torrealba et al., “Discovery of two neighbouring satellites in the Carina constellation with MagLiteS,” Mon. Not. Roy. Astron. Soc. 475 no. 4, (2018) 5085–5097, arXiv:1801.07279 [astro-ph.GA].

[410] A. B. Pace and T. S. Li, “Proper motions of Milky Way Ultra-Faint satellites with Gaia DR2 DES DR1,”.

[411] J. S. Kalirai, R. L. Beaton, M. C. Geha, K. M. Gilbert, P. Guhathakurta, E. N. Kirby, S. R. Majewski, J. C. Ostheimer, R. J. Patterson, and J. Wolf, “The SPLASH Survey: Internal Kinematics, Chemical Abundances, and Masses of the Andromeda I, II, III, VII, X, and XIV dSphs,” Astrophys. J. 711 (2010) 671–692, arXiv:0911.1998 [astro-ph.GA].

[412] M. L. M. Collins et al., “A Keck/DEIMOS spectroscopic survey of the faint M31 satellites And IX, And XI, And XII, and And XIII,” Mon. Not. Roy. Astron. Soc. 407 (2010) 2411, arXiv:0911.1365 [astro-ph.CO].

[413] E. F. Bell, C. T. Slater, and N. F. Martin, “Andromeda XXIX: A New Dwarf Spheroidal Galaxy 200kpc from Andromeda,” Astrophys. J. 742 (2011) L15, arXiv:1110.5906 [astro-ph.CO].

[414] N. F. Martin et al., “Lacerta I and Cassiopeia III: Two luminous and distant Andromeda satellite dwarf galaxies found in the 3π Pan-STARRS1 survey,” Astrophys. J. 772 (2013) 15, arXiv:1305.5301 [astro-ph.CO].

[415] M. L. M. Collins et al., “A kinematic study of the Andromeda dwarf spheroidal system,” Astrophys. J. 768 (2013) 172, arXiv:1302.6590 [astro-ph.CO].

[416] N. F. Martin et al., “The PAndAS View of the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies,” Astrophys. J. (2016) .

[417] J. T. A. de Jong et al., “The structural properties and star formation history of Leo T from deep LBT photometry,” Astrophys. J. 680 (2008) 1112, arXiv:0801.4027 [astro-ph].

[418] DES Collaboration, T. S. Li et al., “Farthest Neighbor: The Distant Milky Way Satellite Eridanus II,” Astrophys. J. 838 no. 1, (2017) 8, arXiv:1611.05052 [astro-ph.GA].

参考文献をもっと見る