リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for High-Energy Gamma Ray Line emission from Dark Matter annihilation in the Galactic Center」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for High-Energy Gamma Ray Line emission from Dark Matter annihilation in the Galactic Center

稲田, 知大 東京大学 DOI:10.15083/0002004675

2022.06.22

概要

It is widely believed that about 25 % of mass-energy in the universe can be explained by dark matter. Dark matter is expected a new fundamental particle at GeV - TeV energies beyond the standard model of particle physics. Weakly Interacting Massive Particle (WIMP) is one of the most famous candidates for dark matter. WIMP is searched in several ways such as direct detection experiments at detectors in the underground, collider experiments and indirect dark matter searches with cosmic rays. Direct detection experiments and collider experiments have searched for a long time. However, a discovery has not been reported yet. Considering current situations, the next frontier for dark matter search is the TeV-scale. Indirect dark matter searches with gamma rays give us the chance to search for heavy dark matter particles at TeV energies which are difficult to reach with the direct detection technique and collider experiments. We focused on the search for the gamma-ray line emission from dark matter annihilation because it provides a clear signal compared with other astrophysical backgrounds. As an observational target, we chose the Galactic Center of the Milky Way. The Galactic Center of the Milky Way is the most promising target for the dark matter search with gamma rays because it is believed to contain an extremely high density of dark matter.

 The MAGIC telescopes located on the Canary island of La Palma, Spain, are sensitive to gamma rays from 50 GeV to 50 TeV and have observed the Galactic Center for 6 years. The Galactic Center is visible at La Palma from zenith angles of 57 degrees, which is the minimum. In observations at large zenith angles, the collection area for gamma rays at TeV energies increases in proportional to approximately 1/cos2θ where θ is the zenith angles. However, compared to the observation at low zenith angles, the Cherenkov light is absorbed more by the atmosphere in the observation at large zenith angles because of the thickness of the atmosphere. Also, The Cherenkov light density on ground becomes dim because the Cherenkov light is spread over a large area. Those effects increase the energy threshold and systematics for energy estimation. We developed an analysis technique optimized for spectral line search and evaluated their systematics. The line emission search from dark matter annihilation was performed with 6 years datasets for the Galactic Center. We could not find a significant excess. Hence, We computed 95 % confidence level (C.L.) upper limits on annihilation cross-section for 45 dark matter masses (from 800 GeV to 50 TeV) with the Einasto profile, assuming that the branching ratio of χχ → γγ channel is 100 %. Most of the obtained limits in this work mark the most constraining in the TeV dark matter masses range (e.g., 1.2 × 10−27cm3 s−1 at ∼3 TeV and 2.0 × 10−27cm3 s−1 at ∼10 TeV) for the χ → γγ channel.

 We have worked for the Cherenkov Telescope Array (CTA) for future studies, which is the next generation ground-based observatory for gamma-ray astronomy at very-high-energies. CTA will cover a wide energy range, 20 GeV - 300 TeV by three types of telescopes whose diameters are different. CTA will consist of two observatories (one in the north in Spain, the other one in the south in Chile) for full sky coverage. We have developed for optical instruments of the Large-Sized Telescope (CTA-LST). CTA- LST is the largest among the telescopes of CTA, and CTA-LST is designed to cover the lowest energy range. CTA-LST will be built with 4 telescopes for both northern and southern observatories. Now the first CTA-LST has constructed in the same observatory of MAGIC. The shape of the primary mirror of CTA-LST is parabolic, and the primary mirror consists of 198 segmented mirrors. Each segmented mirror has a spherical curvature which has a different focal length. We arranged them to match the curvature on the dish to exploit the best performance of a telescope after 949 mirrors production for four CTA-LSTs. We estimated with ray-trace simulation that our arrangement of mirrors expected about 30 % smaller spot size of the telescope than one layout sample, which the mirror position is randomized. We installed mirrors following our arrangement and measured the spot size of the first CTA-LST. In the end, we confirmed that the measured value is consistent with the expected value.

 This thesis has three parts : Overview, Dark Matter Search in the Galactic Center and technical activities for CTA-LST. In the overview part, we introduce the field of high-energy astrophysics with very high-energy gamma rays in Chapter 1. We explain the dark matter paradigm to solve the dark matter quest and how to search candidates in Chapter 2. We describe imaging atmospheric Cherenkov telescopes, MAGIC and CTA from both physical and instrumental points of view in Chapter 3. In the Dark Matter Search in the Galactic Center part, we introduce the indirect dark matter search with gamma-ray and mention the motivation of the line search in Chapter 4. we describe the Galactic Center observation with the MAGIC telescopes and the analysis method optimized for the Galactic Center in Chapter 5 and represent the likelihood analysis dedicated for the line emission search and results and discussions in Chapter 6. In the technical activities for CTA-LST part, we describe the brief introduction to the optics for CTA-LST in Chapter 7. We explain the measurement and production of the segmented mirror of the CTA-LST in Chapter 8. We represent how the telescope was constructed and its commissioning in Chapter 9. In the end, we conclude this thesis and mention the future prospects in Chapter 10. .

この論文で使われている画像

参考文献

[1] W. L. Kraushaar et al. “High-Energy Cosmic Gamma-Ray Observations from the OSO-3 Satellite.” In: The Astrophysical Journal 177 (Nov. 1972), p. 341. DOI: 10.1086/151713 (cit. on p. 2).

[2] George B. Rybicki and Alan P. Lightman. Radiative Processes in Astrophysics. 1986 (cit. on p. 3).

[3] Felix A. Aharonian. Very High Energy Cosmic Gamma Radiation : A Crucial Window on the Extreme Universe. World Scientific, 2004 (cit. on p. 3).

[4] Thomas K. Gaisser, Ralph Engel, and Elisa Resconi. Cosmic Rays and Particle Physics. 2016 (cit. on p. 3).

[5] Alessandro De Angelis and Mario Pimenta. Introduction to Particle and Astroparticle Physics: Multimessenger Astronomy and its Particle Physics Foundataions. Springer, 2015 (cit. on pp. 3, 111).

[6] ENRICO Fermi. “On the Origin of the Cosmic Radiation.” In: Phys. Rev. 75 (8 1949), pp. 1169–1174 (cit. on p. 4).

[7] R. D. Blandford and J. P. Ostriker. “Particle acceleration by astrophysical shocks.” In: () (cit. on p. 4).

[8] CTA Consortium. “Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946.” In: The Astrophysical Journal 840 (2017), p. 74 (cit. on p. 5).

[9] M. A. Ruderman and P. G. Sutherland. “Theory of pulsars: polar gaps, sparks, and coherent microwave radiation.” In: The Astrophysical Journal 196 (Feb. 1975), pp. 51– 72. DOI: 10.1086/153393 (cit. on p. 5).

[10] K. S. Cheng, C. Ho, and M. Ruderman. “Energetic radiation from rapidly spinning pulsars. I - Outer magnetosphere gaps. II - VELA and Crab.” In: The Astrophysical Journal 300 (1986), pp. 500–539 (cit. on p. 5).

[11] J. Arons. “Pair creation above pulsar polar caps - Geometrical structure and energetics of slot gaps.” In: The Astrophysical Journal 266 (1983), pp. 215–241 (cit. on p. 5).

[12] MAGIC collaboration. “Observation of Pulsed g-Rays Above 25 GeV from the Crab Pulsar with MAGIC.” In: Science 322.5905 (2008), pp. 1221–1224. ISSN: 0036-8075. DOI: 10.1126/science.1164718. eprint: https://science.sciencemag.org/ content/322/5905/1221.full.pdf. URL: https://science.sciencemag.org/ content/322/5905/1221 (cit. on pp. 5, 6).

[13] MAGIC collaboration. “Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes.” In: Astronomy & Astrophysics 565 (2014), p. L12. DOI: 10.1051/0004-6361/201423664. URL: https://doi.org/10.1051/0004- 6361/201423664 (cit. on p. 5).

[14] MAGIC collaboration. “Phase-resolved energy spectra of the Crab pulsar in the range of 50-400 GeV measured with the MAGIC telescopes.” In: Astronomy & Astrophysics 540 (2012), A69. DOI: 10.1051/0004-6361/201118166. URL: https://doi.org/ 10.1051/0004-6361/201118166 (cit. on p. 5).

[15] VERITAS collaboration. “Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar.” In: Science 334.6052 (2011), pp. 69–72. ISSN: 0036-8075. DOI: 10.1126/ science.1208192. eprint: https://science.sciencemag .org /content/334 / 6052/69.full.pdf. URL: https://science.sciencemag.org/content/334/ 6052/69 (cit. on p. 5).

[16] C. M. Urry and P. Padovani. “Unified Schemes for Radio-Loud Active Galactic Nuclei.” In: Publications of the Astronomical Society of the Pacific 107 (1995), p. 803 (cit. on p. 7).

[17] Fermi-LAT collaboration. “FERMILARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBU- TION.” In: The Astrophysical Journal 736.2 (July 2011), p. 131. DOI: 10.1088/0004- 637x/736/2/131 (cit. on p. 7).

[18] MAGIC collaboration. “Observation of inverse Compton emission from a long g-ray burst.” In: Nature 575 (2019), pp. 459–463 (cit. on p. 6).

[19] P. Mezaros. “Gamma-Ray Bursts: Accumulating Afterglow Implications, Progenitor Clues,and Prospects.” In: Science (2019) (cit. on p. 8).

[20] MAGIC Collaboration. “Teraelectronvolt emission from the g-ray burst GRB 190114C.” In: Nature 575 (2019), pp. 455–458 (cit. on p. 8).

[21] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln.” In: Helvetica Physica Acta 6 (Jan. 1933), pp. 110–127 (cit. on p. 9).

[22] K. G. Begeman, A. H. Broeils, and R. H Sanders. “Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics.” In: Mon. Not. Roy. Astron. Soc. 249 (1991), p. 523 (cit. on p. 10).

[23] W. Tucker et al. “1E 0657 56: A CONTENDER FOR THE HOTTEST KNOWN CLUS- TER OF GALAXIES.” In: The Astrophysical Journal 496.1 (1998), pp. L5–L8 (cit. on p. 10).

[24] S. A. Shectman and M. Johns. “The Magellan Telescopes.” In: proceeding spie 4837 (2003), pp. 910–918. DOI: 10.1117/12.457909 (cit. on p. 10).

[25] Douglas Clowe et al. “A Direct Empirical Proof of the Existence of Dark Matter.” In: The Astrophysical Journal 648.2 (Aug. 2006), pp. L109–L113. DOI: 10.1086/508162. URL: https://doi.org/10.1086%2F508162 (cit. on p. 11).

[26] Andrew Liddle. An introduction to Modern Cosmology, second edition. 2003 (cit. on p. 10).

[27] Planck Collaboration. “Planck 2015 results - I. Overview of products and scientific results.” In: Astronomy and Astrophysics 594 (2016) (cit. on p. 11).

[28] Planck Collaboration. “Planck 2018 results - VI. Cosmological parameters.” In: Astron- omy and Astrophysics (2018) (cit. on p. 12).

[29] T. Matsubara. Gendai Utyuron [Introduction to the modern cosmology]. 2010 (cit. on p. 12).

[30] S. D. M. White, C. S. Frenk, and M. Davis. “Clustering in a neutrino-dominated uni- verse.” In: THE ASTROPHYSICAL JOUNAL LETTER 274 (1983) (cit. on p. 12).

[31] G. Bertone. Particle Dark Matter observations, Models and Searches. 2010 (cit. on pp. 12, 14, 57).

[32] S. Profumo. An introduction to Particle Dark Matter. 2017 (cit. on pp. 12, 13).

[33] D. Majumdar. DARK MATTER An introduction. 2015 (cit. on p. 12).

[34] G. Arcadi et al. “The waning of the WIMP? A review of models, searches, and con- strains.” In: THE European Journal C 78 (2018) (cit. on pp. 12, 13).

[35] S. Dimopoulos and H. Georgi. “Softly Broken Supersymmetry and SU(5).” In: Nuclear Physics B 193 (1981) (cit. on p. 14).

[36] S. P. martin. “A Supersymmetry Primer.” In: Adv.Ser.Direct.High Energy Phys. 21 (1998) (cit. on p. 14).

[37] M. Kamionkowki G. Jungman and K. Griest. “Supersymmetric dark matter.” In: Physics Report 267 (1996) (cit. on p. 14).

[38] T. Kaluza. “Zum Unita¨tsproblem der Physik.” In: Math Phys (1921) (cit. on p. 15).

[39] O. Klein. “Quantum Theory and Five-Dimensional Theory of Relativity.” In: Z. phys. 37 (1926) (cit. on p. 15).

[40] D. Karabacak K. Ghosh and S. Nandi. “Universal Extra Dimension models with gravity mediated decays after LHC Run II data.” In: Physics Letter B 788 (2019) (cit. on p. 15).

[41] D. Hooper and S. Profumo. “Dark matter and collider phenomenology of universal extra dimensions.” In: Physics Reports 453 (2007) (cit. on p. 15).

[42] T. Appelquist et al. “Bounds on universal extra dimensions.” In: Physics Letter D 64 (2001) (cit. on p. 15).

[43] R. D. Peccei and H. R. Quinn. “CP Conservation in the Presence of Psedoparticles.” In: Physical Review Letter 38 (1977) (cit. on p. 15).

[44] Particle Data Group. “2018 Review of Particle Physics.” In: Physical Review D 98 (2018) (cit. on pp. 15, 19, 111).

[45] R. D. Peccei and H. R. Quinn. “Constraints Imposed by CP Conservation in th Presence of Intantons.” In: Physical Review D 16 (1977) (cit. on p. 15).

[46] J. E. Kim and G. Carosi. “Axions and the strong CP problem.” In: Review of Modern Physics 82 (2010) (cit. on p. 15).

[47] J. Jaeckel and A. Ringwald. “The Low-Energy Frontier of Particle Physics.” In: Annual Review of Nuclear and Particle Science 60 (2010) (cit. on p. 15).

[48] R. Sikivie. “Experimental Tests lf the ”Invisible” Axion.” In: Physical Review Letter 51 (1983) (cit. on p. 15).

[49] M. Cahill-Rowley et al. “Complementarity of dark matter searches in the phenomenolog- ical MSSM.” In: Phys. Rev. D 91 (5 Mar. 2015), p. 055011 (cit. on p. 16).

[50] P. F. Smith J. D. Lewin. “Review of mathematics, numerical, factors, and corrections for dark matter experiments based on elastic nuclear recoil.” In: Astroparticle Physics 6 (1996) (cit. on pp. 17, 19).

[51] XENON Collaboration. “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T.” In: Physical Review Letter 121 (2018) (cit. on p. 17).

[52] LUX Collaboration. “Results from a Search for Dark Matter in the Complete LUX Exposure.” In: Physical Review Letter 118 (2017) (cit. on p. 17).

[53] Christian Isaila. “The Galactic Center resolved with MAGIC and a new technique for Atmospheric Calibration.” PhD thesis. TECHNISCHE UNIVERSITAT MUNCHEN, 2015 (cit. on p. 17).

[54] M. Lisanti K. Freese and C. Savage. “Annual modulation of dark matter.” In: REVIEWS OF MODERN PHYSICS 85 (2013) (cit. on p. 18).

[55] F. Mayet et al. “A review of the discovery reach of directional Dark Matter detection.” In: Physics Reports 627 (2016) (cit. on pp. 18, 19).

[56] Particle Data Group. “Direction-sensitive dark matter search with gaseous tracking detector NEWAGE-0.3b’.” In: Physical Review D 98 (2018) (cit. on p. 19).

[57] C. J. Martoff D. P. Snowden-lfft and J. M. Burwell. “Low pressure negative ion time projection chamber for dark matter.” In: Physical Review D 61 (2000) (cit. on p. 19).

[58] Daniel Santos. “Dark Matter Directional Detection with MIMAC.” In: Journal of Physics: Conference Series 1029 (May 2018), p. 012005. DOI: 10.1088/1742-6596/1029/1/ 012005 (cit. on p. 19).

[59] Cosmin Deaconu et al. “Measurement of the directional sensitivity of Dark Matter Time Projection Chamber detectors.” In: Phys. Rev. D 95 (12 June 2017), p. 122002. DOI: 10.1103/PhysRevD.95.122002. URL: https://link.aps.org/doi/10.1103/ PhysRevD.95.122002 (cit. on p. 19).

[60] PICO Collaboration. “Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber.” In: Phys. Rev. D 100 (2 July 2019), p. 022001. DOI: 10.1103/PhysRevD.100.022001. URL: https://link.aps.org/doi/10.1103/ PhysRevD.100.022001 (cit. on p. 19).

[61] Lars Bergstro¨ m and Piero Ullio. “Full one-loop calculation of neutralino annihilation into two photons.” In: Nuclear Physics B 504.1 (1997), pp. 27–44. ISSN: 0550-3213. DOI: https://doi.org/10.1016/S0550-3213(97)00530-0. URL: http://www. sciencedirect.com/science/article/pii/S0550321397005300 (cit. on pp. 20, 57, 61, 110).

[62] M. Doro et al. “Dark matter and fundamental physics with the Cherenkov Telescope Array.” In: Astroparticle Physics 43 (2013), pp. 189–214 (cit. on pp. 20, 57).

[63] Lars Bergstro¨m. “Radiative processes in dark matter photino annihilation.” In: Physics Letters B 225.4 (1989), pp. 372–380. ISSN: 0370-2693. DOI: https://doi.org/10. 1016/0370-2693(89)90585-6. URL: http://www.sciencedirect.com/science/ article/pii/0370269389905856 (cit. on p. 20).

[64] Torsten Bringmann and Christoph Weniger. “Gamma ray signals from dark matter: Concepts, status and prospects.” In: Physics of the Dark Universe 1.1 (2012). Next Decade in Dark Matter and Dark Energy, pp. 194–217. ISSN: 2212-6864. DOI: https: //doi.org/10.1016/j.dark.2012.10.005. URL: http://www.sciencedirect. com/science/article/pii/S221268641200009X (cit. on p. 20).

[65] S. Adria´n-Mart´ınez and others (THE ANTARES neutrino telescope collaboration). “Lim- its on dark matter annihilation in the sun using the ANTARES neutrino telescope.” In: Physics Letters B 759 (2016), pp. 69–74. ISSN: 0370-2693. DOI: https://doi.org/ 10.1016/j.physletb.2016.05.019. URL: http://www.sciencedirect.com/ science/article/pii/S0370269316301666 (cit. on p. 20).

[66] Dan Hooper, Pasquale Blasi, and Pasquale Dario Serpico. “Pulsars as the sources of high energy cosmic ray positrons.” In: Journal of Cosmology and Astroparticle Physics 2009.01 (Jan. 2009), pp. 025–025. DOI: 10.1088/1475-7516/2009/01/025 (cit. on p. 21).

[67] AMS Collaboration. “Towards Understanding the Origin of Cosmic-Ray Positrons.” In: Phys. Rev. Lett. 122 (4 Jan. 2019), p. 041102. DOI: 10.1103/PhysRevLett.122. 041102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.041102 (cit. on p. 21).

[68] The Large Hadron Collider. https://home.cern/science/accelerators/large- hadron-collider17thDecember,2019 (cit. on p. 21).

[69] ATLAS Collaboration. “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC.” In: Physics Letters B 716.1 (2012), pp. 1–29. ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.physletb. 2012.08.020. URL: http://www.sciencedirect.com/science/article/pii/ S037026931200857X (cit. on p. 21).

[70] CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC.” In: Physics Letters B 716.1 (2012), pp. 30–61. ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.physletb.2012.08.021. URL: http://www.sciencedirect.com/science/article/pii/S0370269312008581 (cit. on p. 21).

[71] The CMS Collaboration. “The CMS experiment at the CERN LHC.” In: Journal of Instrumentation 3.08 (Aug. 2008), S08004–S08004. DOI: 10.1088/1748-0221/3/08/ s08004 (cit. on pp. 21, 22).

[72] Antonio Boveia and Caterina Doglioni. “Dark Matter Searches at Colliders.” In: Annual Review of Nuclear and Particle Science 68.1 (2018), pp. 429–459. DOI: 10 . 1146 / annurev- nucl- 101917- 021008. eprint: https://doi.org/10.1146/annurev- nucl-101917-021008 (cit. on p. 22).

[73] D. Heck et al. “CORSIKA: a Monte Carlo code to simulate extensive air showers.” In: (1998) (cit. on p. 25).

[74] CORSIKA shower images : online access 30th Novermber 2019. https : / / www - zeuthen . desy . de / ˜jknapp / fs / showerimages . html17thDecember , 2019 (cit. on p. 25).

[75] F Aharonian et al. “High energy astrophysics with ground-based gamma ray detectors.” In: Reports on Progress in Physics 71.9 (Aug. 2008), p. 096901. DOI: 10.1088/0034- 4885/71/9/096901. URL: httsps://doi.org/10.1088%2F0034-4885%2F71%2F9% 2F096901 (cit. on pp. 24, 26).

[76] S. Oser et al. “High-Energy Gamma-Ray Observations of the Crab Nebula and Pulsar with the Solar Tower Atmospheric Cerenkov Effect Experiment.” In: The Astrophysical Journal 547.2 (Feb. 2001), pp. 949–958. DOI: 10.1086/318415. URL: https://doi. org/10.1086%2F318415 (cit. on p. 24).

[77] A. M. Hillas. “Cerenkov light images of EAS produced by primary gamma.” In: Interna- tional Cosmic Ray Conference 3 (Aug. 1985) (cit. on pp. 26, 38).

[78] Christian Fruck. “The Galactic Center resolved with MAGIC and a new technique for Atmospheric Calibration.” PhD thesis. TECHNISCHE UNIVERSITAT MUNCHEN, 2015 (cit. on pp. 27, 34, 60, 64, 65, 91, 101).

[79] Heinrich J. Vo¨ lk and Konrad Bernlo¨ hr. “Imaging very high energy gamma-ray tele- scopes.” In: Experimental Astronomy 25.1 (Aug. 2009), pp. 173–191. DOI: 10.1007/ s10686- 009- 9151- z. URL: https://doi.org/10.1007/s10686- 009- 9151- z (cit. on p. 28).

[80] J. Aleksic et al. “The major upgrade of the MAGIC telescopes, Part I: The hardware improvements and the commissioning of the system.” In: Astroparticle Physics 72 (2016), pp. 61–75 (cit. on pp. 29, 32, 33).

[81] MAGIC collaboration. “The major upgrade of the MAGIC telescopes, Part II: A per- formance study using observations of the Crab Nebula.” In: Astroparticle Physics 72 (Jan. 2016), pp. 76–94. DOI: 10 . 1016 / j. astropartphys . 2015 . 02 . 005. arXiv: 1409.5594 [astro-ph.IM] (cit. on pp. 29, 46–48, 75, 91, 92, 100, 102–105).

[82] Juan Cortina, Florian Goebel, and Thomas Schweizer. “Technical Performance of the MAGIC Telescopes.” In: arXiv e-prints, arXiv:0907.1211 (July 2009), arXiv:0907.1211. arXiv: 0907.1211 [astro-ph.IM] (cit. on p. 29).

[83] M. Doro et al. “The reflective surface of the MAGIC telescope.” In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 595.1 (2008). RICH 2007, pp. 200–203. ISSN: 0168-9002. DOI: https :// doi . org / 10 . 1016 / j. nima . 2008 . 07 . 073. URL: http :// www . sciencedirect.com/science/article/pii/S0168900208009765 (cit. on p. 30).

[84] Markus Garczarczyk. “First Observations of the GRBPrompt and Early Afterglow Emission Phase at 100GeV Energy Regimewith the 17m MAGIC Imaging Atmospheric Cherenkov Telescope.” PhD thesis. University of Rostock, 2007 (cit. on pp. 30, 35).

[85] Michele Doro. “Novel Reflective Elements and Indirect Dark Matter Searches for MAGIC II and Future IACTs.” PhD thesis. University of Padova, 2009 (cit. on p. 30).

[86] Jamie Holder. “Atmospheric Cherenkov Gamma-ray Telescopes.” In: arXiv e-prints, arXiv:1510.05675 (Oct. 2015), arXiv:1510.05675. arXiv: 1510.05675 [astro-ph.IM] (cit. on p. 30).

[87] New Imaging Camera for the MAGIC-I Telescope. 2013 (cit. on p. 30).

[88] Ruben Lopez Coto. “Very-high-energy-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs.” PhD thesis. Universitat Autonoma de Barcelona, 2015 (cit. on pp. 32, 38–40, 63).

[89] Mirzoyan Razmik and Eckart Lorenz. “Measurement of the night sky light background at La Palmas.” In: MPI-PhE/94-35 (1994) (cit. on p. 31).

[90] Julian Sitarek et al. “Analysis techniques and performance of the Domino Ring Sampler version 4 based readout for the MAGIC telescopes.” In: Nuclear Instruments and Methods in Physics Research A 723 (Sept. 2013), pp. 109–120. DOI: 10.1016/j.nima.2013. 05.014. arXiv: 1305.1007 [astro-ph.IM] (cit. on p. 33).

[91] R. Mirzoyan et al. “A method to measure the mirror reflectivity of a prime focus telescope.” In: Astroparticle Physics 27.6 (2007), pp. 509–511. ISSN: 0927-6505. DOI: https :// doi . org / 10 . 1016 / j. astropartphys . 2007 . 02 . 005. URL: http : //www.sciencedirect.com/science/article/pii/S0927650507000357 (cit. on pp. 34, 35).

[92] Michele Peresano et al. “The Crab Nebula Spectrum at 100 TeV Measured with MAGIC under Very Large Zenith Angles.” In: (2019). [PoSICRC2019,759(2019)]. arXiv: 1909. 03734 [astro-ph.IM] (cit. on pp. 34, 63).

[93] Razmik Mirzoyan et al. “Extending the observation limits of Imaging Air Cherenkov Telescopes toward horizon.” In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018). ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2018.11.046. URL: http://www.sciencedirect.com/science/article/pii/S0168900218316218 (cit. on pp. 34, 91, 93).

[94] Berge, D., Funk, S., and Hinton, J. “Background modelling in very-high-energy ronomy.” In: A&A 466.3 (2007), pp. 1219–1229. DOI: 10.1051/0004-6361:20066674. URL: https://doi.org/10.1051/0004-6361:20066674 (cit. on p. 36).

[95] Takayuki Saito. “Study of the High Energy Gamma-ray Emission from the Crab Pul- sar with the MAGIC telescope and Fermi-LAT.” PhD thesis. Ludwig-Maximilians- University (LMU Munich), 2019 (cit. on pp. 36, 68).

[96] A. Moralejo et al. “MARS, the MAGIC Analysis and Reconstruction Software.” In: arXiv e-prints, arXiv:0907.0943 (July 2009), arXiv:0907.0943. arXiv: 0907 . 0943 [astro-ph.IM] (cit. on p. 36).

[97] I. Antcheva et al. “ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization.” In: Computer Physics Communications 180.12 (2009). 40 YEARS OF CPC: A celebratory issue focused on quality software for high performance, grid and novel computing architectures, pp. 2499–2512. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2009.08.005. URL: http://www.sciencedirect. com/science/article/pii/S0010465509002550 (cit. on p. 36).

[98] R. Mirzoyan. “On the Calibration Accuracy of Light Sensors in Atmospheric Cherenkov Fluorescence and Neutrino Experiments.” In: International Cosmic Ray Conference 7 (Jan. 1997), p. 265 (cit. on p. 37).

[99] Leo Breiman. “Random Forests.” In: Machine Learning 45 (1 Oct. 2001), pp. 5–32 (cit. on p. 40).

[100] J. Albert et al. “Implementation of the Random Forest method for the Imaging Atmo- spheric Cherenkov Telescope MAGIC.” In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 588.3 (2008), pp. 424–432 (cit. on pp. 40, 42, 43).

[101] V. P. Fomin et al. “New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method.” In: Astroparticle Physics 2 (1994), pp. 137–150 (cit. on p. 43).

[102] R. W. Lessard et al. “A new analysis method for reconstructing the arrival direction of TeV gamma rays using a single imaging atmospheric Cherenkov telescope.” In: Astroparticle Physics 15 (2001), pp. 1–18 (cit. on p. 43).

[103] T.-P. Li and Y.-Q. Ma. “Analysis methods for results in gamma-ray astronomy.” In: The Astrophysical Journal 272 (1983), pp. 317–324 (cit. on p. 44).

[104] Tsutomu Nagayoshi. “Study of the shell-type astronomical onject HESS J1912+101 with the MAGIC telescopes.” PhD thesis. Saitama University, 2019 (cit. on p. 44).

[105] Kazuma Ishio. “Substantial improvement in the MAGIC energy reconstruction through machine learning algorithms.” In: 19, Ma¨ rz, 2018, DPG-Fru¨ hjahrstagung Wu¨ rzburg. 2018 (cit. on pp. 44, 63).

[106] The Cherenkov Telescope Array. https://www.cta-observatory.org 17th Decem- ber, 2019 (cit. on pp. 49–53).

[107] Volker Springel et al. “Simulations of the formation, evolution and clustering of galaxies and quasars.” In: Nature (2005) (cit. on p. 55).

[108] V. Springel et al. “The Aquarius Project: the subhaloes of galactic haloes.” In: Monthly Notices of the Royal Astronomical Society 391.4 (Dec. 2008), pp. 1685–1711. ISSN: 0035-8711. DOI: 10.1111/j.1365-2966.2008.14066.x. eprint: http://oup.prod. sis.lan/mnras/article- pdf/391 /4 /1685 /4881147 /mnras0391 - 1685 .pdf. URL: https://doi.org/10.1111/j.1365-2966.2008.14066.x (cit. on p. 55).

[109] J. F. Navarro, C. S. Frenk, and S. D. M. White. “The Structure of Cold Dark Matter Halos.” In: Astrophysical Jounal 462 (1996), p. 563 (cit. on p. 55).

[110] T. FUKUSHIGE and J. Makino. “ON THE ORIGIN OF CUSPS IN DARK MATTER HALOS.” In: THE ASTROPHYSICAL JOURNAL 477 (1997), pp. L9–L12 (cit. on p. 55).

[111] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “A Universal Density Profile from Hierarchical Clustering.” In: The Astrophysical Journal 490.2 (Dec. 1997), pp. 493– 508. DOI: 10.1086/304888. URL: https://doi.org/10.1086%2F304888 (cit. on p. 55).

[112] Julio F. Navarro et al. “The diversity and similarity of simulated cold dark matter haloes.” In: Monthly Notices of the Royal Astronomical Society 402.1 (Feb. 2010), pp. 21–34. ISSN: 0035-8711. DOI: 10 . 1111 / j. 1365 - 2966 . 2009 . 15878 . x. eprint: https : //academic.oup.com/mnras/article- pdf/402/1/21/18573804/mnras0402-0021.pdf. URL: https://doi.org/10.1111/j.1365-2966.2009.15878.x (cit. on p. 55).

[113] L. Gao et al. “The redshift dependence of the structure of massive cold dark matter haloes.” In: Monthly Notices of the Royal Astronomical Society 387 (2008), pp. 536–544 (cit. on p. 55).

[114] Julio F. Navarro et al. “The diversity and similarity of simulated cold dark matter haloes.” In: Monthly Notices of the Royal Astronomical Society 402 (2010), pp. 21–34 (cit. on p. 55).

[115] J. F. Navarro et al. “The inner structure of CDM haloes - III. Universality and asymptotic slopes.” In: Monthly Notices of the Royal Astronomical Society 349 (2004), pp. 1039– 1051 (cit. on p. 55).

[116] M. Oguri et al. “Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey.” In: Monthly Notices of the Royal Astronomical Society 420 (2012), pp. 3213–3239 (cit. on p. 55).

[117] Fabrizio Nesti and Paolo Salucci. “The Dark Matter halo of the Milky Way, AD 2013.” In: jcap 2013.7, 016 (July 2013), p. 016. DOI: 10.1088/1475-7516/2013/07/016. arXiv: 1304.5127 [astro-ph.GA] (cit. on pp. 56, 80).

[118] A. Burkert. “The Structure of Dark Matter Halos in Dwarf Galaxies.” In: The Astrophysi- cal Journal 447.1 (July 1995) (cit. on p. 56).

[119] Matthew G. Walker and Jorge Pen˜arrubia. “A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies.” In: THE ASTROPHYSICAL JOURNAL 742 (2011), p. 20 (cit. on p. 56).

[120] Stacy S. McGaugh W. J. G. de Blok1 and Vera C. Rubin. “High-Resolution Rotation Curves of Low Surface Brightness Galaxies. II. Mass Models.” In: THE ASTROPHYSI- CAL JOURNAL 122 (2001) (cit. on p. 56).

[121] Jennifer M. Gaskins. “A review of indirect searches for particle dark matter.” In: Contemp. Phys. 57.4 (2016), pp. 496–525. arXiv: 1604.00014 [astro-ph.HE] (cit. on pp. 56, 60).

[122] Lars Bergstro¨ m. “Dark matter and imaging air Cherenkov arrays.” In: Astroparticle Physics 43 (2013), pp. 44–49 (cit. on p. 57).

[123] Junji Hisano, Shigeki Matsumoto, and Mihoko M. Nojiri. “Explosive Dark Matter Anni- hilation.” In: Phys. Rev. Lett. 92 (3 Jan. 2004), p. 031303. DOI: 10.1103/PhysRevLett. 92 . 031303. URL: https:// link . aps. org / doi/ 10 . 1103 / PhysRevLett. 92 . 031303 (cit. on pp. 57, 110, 111).

[124] Massimiliano Lattanzi and Joseph Silk. “Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement?” In: Phys. Rev. D 79 (8 Apr. 2009), p. 083523. DOI: 10 .1103 /PhysRevD .79 .083523. URL: https://link.aps .org /doi /10 . 1103/PhysRevD.79.083523 (cit. on p. 57).

[125] Junji Hisano, Sh. Matsumoto, and Mihoko M. Nojiri. “Unitarity and higher-order cor- rections in neutralino dark matter annihilation into two photons.” In: Phys. Rev. D 67 (7 Apr. 2003), p. 075014. DOI: 10 .1103 /PhysRevD.67 .075014. URL: https://link.aps.org/doi/10.1103/PhysRevD.67.075014 (cit. on p. 57).

[126] Junji Hisano et al. “Non-perturbative effect on thermal relic abundance of dark matter.” In: Physics Letters B 646.1 (2007), pp. 34–38. ISSN: 0370-2693. DOI: https://doi. org/10.1016/j.physletb.2007.01.012. URL: http://www.sciencedirect. com/science/article/pii/S0370269307000913 (cit. on p. 57).

[127] Matthew Baumgart et al. “Resummed photon spectra for WIMP annihilation.” In: Journal of High Energy Physics 2018.3 (Mar. 2018), p. 117. ISSN: 1029-8479. DOI: 10.1007/ JHEP03(2018)117. URL: https://doi.org/10.1007/JHEP03(2018)117 (cit. on pp. 57, 110).

[128] Matthew Baumgart et al. “Precision photon spectra for wino annihilation.” In: Journal of High Energy Physics 2019.1 (Jan. 2019), p. 36. ISSN: 1029-8479. DOI: 10.1007/ JHEP01(2019)036. URL: https://doi.org/10.1007/JHEP01(2019)036 (cit. on pp. 57, 110).

[129] Lars Bergstro¨m. “Multi-Messenger Astronomy and Dark Matter.” In: Saas-Fee Advanced Course 40 (Jan. 2013), p. 123. DOI: 10 . 1007 / 978 - 3 - 642 - 36134 - 0 _ 2. arXiv: 1202.1170 [astro-ph.CO] (cit. on p. 58).

[130] Marco Cirelli, Filippo Sala, and Marco Taoso. “Erratum to: Wino-like Minimal Dark Matter and future colliders.” In: Journal of High Energy Physics 2015.1 (Jan. 2015), p. 41. ISSN: 1029-8479. DOI: 10.1007/JHEP01(2015)041. URL: https://doi.org/ 10.1007/JHEP01(2015)041 (cit. on p. 58).

[131] H.E.S.S. Collaboration. In: 2018.11 (Nov. 2018), pp. 037–037. URL: https://doi. org/10.1088%2F1475-7516%2F2018%2F11%2F037 (cit. on pp. 58, 61).

[132] Lidia Pieri et al. “Implications of high-resolution simulations on indirect dark matter searches.” In: Phys. Rev. D 83 (2 Jan. 2011), p. 023518. DOI: 10.1103/PhysRevD. 83.023518. URL: https://link.aps.org/doi/10.1103/PhysRevD.83.023518 (cit. on pp. 59, 79, 80).

[133] Kohei Hayashi et al. “Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites.” In: Monthly Notices of the Royal Astronomical Society 461.3 (June 2016), pp. 2914–2928. ISSN: 0035-8711. DOI: 10.1093/mnras/stw1457. eprint: http://oup.prod.sis.lan/mnras/article-pdf/461/3/2914/8108093/ stw1457.pdf. URL: https://doi.org/10.1093/mnras/stw1457 (cit. on p. 60).

[134] Fermi LAT Collaboration. “Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope.” In: Physical Review D 91.12, 122002 (June 2015), p. 122002. DOI: 10.1103/PhysRevD.91.122002. arXiv: 1506.00013 [astro-ph.HE] (cit. on pp. 60, 108, 109).

[135] H.E.S.S. Collaboration. “Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.” In: Phys. Rev. Lett. 117 (11 Sept. 2016), p. 111301. DOI: 10.1103/PhysRevLett.117.111301. URL: https://link. aps.org/doi/10.1103/PhysRevLett.117.111301 (cit. on p. 60).

[136] H.E.S.S. Collaboration. “Search for g-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.” In: Phys. Rev. Lett. 120 (20 May 2018), p. 201101. DOI: 10.1103/PhysRevLett.120.201101. URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.201101 (cit. on pp. 61, 74, 79, 80, 109).

[137] Lars Bergstro¨m, Piero Ullio, and James H. Buckley. “Observability of gamm rays from dark matter neutralino annihilations in the Milky Way halo.” In: Astroparticle Physics 9.2 (1998), pp. 137–162. ISSN: 0927-6505. DOI: https://doi.org/10.1016/S0927-6505(98)00015-2. URL: http://www.sciencedirect.com/science/article/ pii/S0927650598000152 (cit. on p. 61).

[138] TeVCat. http://tevcat.uchicago.edu/17thDecember,2019 (cit. on p. 62).

[139] observability.date. https : / / observability . date17thDecember , 2019 (cit. on p. 62).

[140] MAGIC collaboration. “Observations of Sagittarius A* during the pericenter passage of the G2 object with MAGIC.” In: Astronomy & Astrophysics 601, A33 (May 2017), A33. DOI: 10.1051/0004-6361/201629355. arXiv: 1611.07095 [astro-ph.HE] (cit. on p. 65).

[141] MAGIC collaboration. “Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC telescopes.” In: jcap 2018.3, 009 (Mar. 2018), p. 009. DOI: 10.1088/1475- 7516/2018/03/009. arXiv: 1712.03095 [astro-ph.HE] (cit. on pp. 74, 76).

[142] Vovk, I., Strzys, M., and Fruck, C. “Spatial likelihood analysis for MAGIC telescope data - From instrument response modelling to spectral extraction.” In: A&A 619 (2018). DOI: 10.1051/0004-6361/201833139. URL: https://doi.org/10.1051/0004- 6361/201833139 (cit. on p. 75).

[143] A. Charbonnier, C. Combet, and D. Maurin. “CLUMPY: A code for g-ray signals from dark matter structures.” In: Computer Physics Communications 183 (Mar. 2012), pp. 656– 668. DOI: 10.1016/j.cpc.2011.10.017. arXiv: 1201.4728 [astro-ph.HE] (cit. on pp. 77, 79).

[144] V. Bonnivard et al. “CLUMPY: Jeans analysis, g-ray and n fluxes from dark matter (sub-)structures.” In: Computer Physics Communications 200 (Mar. 2016), pp. 336–349. DOI: 10.1016/j.cpc.2015.11.012. arXiv: 1506.07628 (cit. on pp. 77, 79).

[145] M. Hu¨ tten, C. Combet, and D. Maurin. “CLUMPY v3: g-ray and n signals from dark matter at all scales.” In: Computer Physics Communications 235 (Feb. 2019), pp. 336– 345. DOI: 10.1016/j.cpc.2018.10.001. arXiv: 1806.08639 (cit. on pp. 77, 79).

[146] FERMI-LAT collaboration. “Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum.” In: Phys. Rev. D 86 (2 July 2012), p. 022002. DOI: 10.1103/PhysRevD.86.022002. URL: https://link.aps.org/doi/10.1103/ PhysRevD.86.022002 (cit. on pp. 76, 78).

[147] Gilles Vertongen and Christoph Weniger. “Hunting dark matter gamma-ray lines with the Fermi LAT.” In: Journal of Cosmology and Astroparticle Physics 2011.05 (May 2011), pp. 027–027. DOI: 10.1088/1475-7516/2011/05/027 (cit. on p. 83).

[148] Anthony R. Pullen, Ranga-Ram Chary, and Marc Kamionkowski. “Search with EGRET for a gamma ray line from the Galactic center.” In: Phys. Rev. D 76 (6 Sept. 2007), p. 063006. DOI: 10.1103/PhysRevD.76.063006. URL: https://link.aps.org/ doi/10.1103/PhysRevD.76.063006 (cit. on p. 83).

[149] Christoph Weniger. “A tentative gamma-ray line from Dark Matter annihilation at the Fermi Large Area Telescope.” In: Journal of Cosmology and Astroparticle Physics 2012.08 (Aug. 2012), pp. 007–007. DOI: 10.1088/1475-7516/2012/08/007 (cit. on p. 83).

[150] MAGIC collaboration. “Observations of Sagittarius A* during the pericenter passage of the G2 object with MAGIC.” In: Astronomy & Astrophysics (A&A) 601 (2017), A33. DOI: 10.1051/0004-6361/201629355. URL: https://doi.org/10.1051/0004- 6361/201629355 (cit. on p. 83).

[151] C. Fruck et al. “Deep MAGIC observations of the Galactic Centre region.” In: 36th International Cosmic Ray Conferences. 2019 (cit. on p. 83).

[152] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new physics.” In: The European Physical Journal C 71.2 (Feb. 2011), p. 1554. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-011-1554-0. URL: https://doi.org/10.1140/epjc/ s10052-011-1554-0 (cit. on p. 86).

[153] J. Rico et al. Conventions for CTA dark matter searches v1.0 (Internal Document). 2017 (cit. on p. 89).

[154] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new physics.” In: The European Physical Journal C 71.2 (Feb. 2011), p. 1554. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-011-1554-0. URL: https://doi.org/10.1140/epjc/ s10052-011-1554-0 (cit. on p. 89).

[155] MAGIC collaboration. “Performance of the MAGIC stereo system obtained with Crab Nebula data.” In: Astroparticle Physics 35.7 (2012), pp. 435–448. ISSN: 0927-6505. DOI: https://doi.org/10.1016/j.astropartphys.2011.11.007. URL: http://www.sciencedirect.com/science/article/pii/S0927650511002064 (cit. on pp. 91, 100, 101).

[156] Andrea Albert et al. “Search for 100 MeV to 10 GeV g-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the µnSSM.” In: Journal of Cosmology and Astroparticle Physics 2014.10 (Oct. 2014), pp. 023–023. DOI: 10.1088/1475- 7516/2014/10/023 (cit. on p. 98).

[157] Matthew R. Buckley et al. “Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope.” In: Phys. Rev. D 91 (10 May 2015), p. 102001. DOI: 10 . 1103 / PhysRevD . 91 . 102001. URL: https ://link.aps.org/doi/10.1103/PhysRevD.91.102001 (cit. on p. 98).

[158] F. Goebel et al. “Absolute energy scale calibration of the MAGIC telescope using muon images.” In: Proceedings of the 29th International Cosmic Ray Conference (2005) (cit. on p. 100).

[159] G. Vacanti et al. “Muon ring images with an atmospheric Cˇ erenkov telescope.” In: Astroparticle Physics 2.1 (1994), pp. 1–11. ISSN: 0927-6505. DOI: https :// doi . org/10.1016/0927-6505(94)90012-4. URL: http://www.sciencedirect.com/ science/article/pii/0927650594900124 (cit. on p. 100).

[160] MAGIC collaboration. “VHE g-Ray Observation of the Crab Nebula and its Pulsar with the MAGIC Telescope.” In: The Astrophysical Journal 674.2 (Feb. 2008), pp. 1037–1055. DOI: 10.1086/525270. URL: https://doi.org/10.1086%2F525270 (cit. on p. 101).

[161] MAGIC collaboration. “Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes.” In: Journal of High Energy Astrophysics 5 (Mar. 2015), pp. 30–38. DOI: 10.1016/j.jheap.2015.01.002. arXiv: 1406.6892 (cit. on p. 103).

[162] MAGIC Collaboration. “Optimized dark matter searches in deep observations of Segue 1 with MAGIC.” In: Journal of Cosmology and Astroparticle Physics 2014.02 (Feb. 2014), pp. 008–008. DOI: 10.1088/1475-7516/2014/02/008. URL: https://doi.org/10. 1088%2F1475-7516%2F2014%2F02%2F008 (cit. on pp. 108, 109).

[163] H.E.S.S. Collaboration. “Search for Photon-Linelike Signatures from Dark Matter An- nihilations with H.E.S.S.” In: Phys. Rev. Lett. 110 (4 Jan. 2013), p. 041301. DOI: 10 . 1103 / PhysRevLett . 110 . 041301. URL: https :// link . aps . org / doi / 10 . 1103/PhysRevLett.110.041301 (cit. on p. 109).

[164] Junji Hisano, Koji Ishiwata, and Natsuni Nagata. “QCD Effects on Direct Detection of Wino Dark Matter.” In: JHEP (2015) (cit. on p. 110).

[165] Marco Cirelli, Filippo Sala, and Marco Taoco. “Wino-like Minimal Dark Matter and future colliders.” In: JHEP (2014) (cit. on p. 110).

[166] Masahiko Saito et al. “Discovery reach for wino and higgsino dark matter with a disap- pearing track signature at a 100 TeV pp collider.” In: JHEP (2019) (cit. on p. 110).

[167] Lucia Rinchiuso et al. “Hunting for heavy winos in the Galactic Center.” In: Phys. Rev. D 98 (12 Dec. 2018), p. 123014. DOI: 10.1103/PhysRevD.98.123014. URL: https://link.aps.org/doi/10.1103/PhysRevD.98.123014 (cit. on pp. 110, 111).

[168] T K Gaisser. “The Cosmic-ray Spectrum: from the knee to the ankle.” In: Journal of Physics: Conference Series 47 (Oct. 2006), pp. 15–20. DOI: 10.1088/1742-6596/47/ 1/002. URL: https://doi.org/10.1088%2F1742-6596%2F47%2F1%2F002 (cit. on p. 111).

[169] R. Canestrari et al. “Techniques for the manufacturing of stiff and lightweight optical mir- ror panelsbased on slumping of glass sheets: concepts and results.” In: The International Society for Optical Engineering (2009) (cit. on p. 118).

[170] G. Pareschi et al. “Glass mirrors by cold slumping to cover 100 m2 of the MAGIC II Cherenkov telescope reflecting surface.” In: 7018 (2008). Ed. by Eli Atad-Ettedgui and Dietrich Lemke, pp. 315–325. DOI: 10.1117/12.790404. URL: https://doi.org/ 10.1117/12.790404 (cit. on p. 118).

[171] dcraw. https://www.dechifro.org/dcraw/ 17th December, 2019 (cit. on p. 126).

[172] ImageMagick. http://www.imagemagick.org/script/index.php 17th December, 2019 (cit. on p. 126).

[173] Akira Okumura, Koji Noda, and Cameron Rulten. “ROBAST: Development of a ROOT- based ray-tracing library for cosmic-ray telescopes and its applications in the Cherenkov Telescope Array.” In: Astroparticle Physics 76 (2016), pp. 38–47. ISSN: 0927-6505. DOI: https://doi.org/10.1016/j.astropartphys.2015.12.003. URL: http://www.sciencedirect.com/science/article/pii/S0927650515001735 (cit. on pp. 133, 135).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る