リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design of an anti-cancer drug screening model combined with three-dimensional cell culture and drug release system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design of an anti-cancer drug screening model combined with three-dimensional cell culture and drug release system

新居 輝樹 Teruki Nii 東京理科大学 DOI:info:doi/10.20604/00003609

2021.06.09

概要

 現在の抗がん剤スクリーニングでは、一般的に培養皿で2次元培養されたがん細胞を用いて行われる。しかし、この培養職境は体内のがん環境と大きく異なるため、ヒト治験での抗がん剤効果を適切に予想することが難しいことが多い。そのため、がん環境の模倣が期待できる3次元細胞培養(以下、細胞凝集体)は抗がん剤スクリーニングに有用と考えられる。しかしながら、細胞凝集体内部への酸素や栄養分の供給が悪く、細胞が死滅するという問題があった。1つの解決法として、われわれは、これまでにゼラチンハイドロゲル粒子を細胞凝集体内部に組み込んだ細胞凝集体の作製を報告している。この粒子は、細胞活性化薬物や成長因子を徐放することができる。本研究では、薬物含有粒子を含む細胞凝集体を作製し、がん環境を模倣することを試みた。
 本論文は、「第1章(序論)、第2章、第3章、第4章、第5章、および第6章(総括)』で構成されている。

第1章 序輪
 再生医療の基本概念は、体本来がもつ自然治癒力を介して、損傷した生体組織を再生修復させることである。再生医療には、実際に臨床で患者を治療する「再生治療」と次世代の治療を支える「再生研究』がある。再生研究には、細胞を用いた薬の活性および毒性を評価する創薬研究がある。試験管の中で、細胞活性の高い細胞を用いることによって薬物の活性をより効率よく評価することが可能となる。細胞の活性を高めるために、2つの技術の活用が有用であると考えられる。1つは3次元細胞培養である。正常細胞は固体状の基材に接着できなければ、自動的に死滅する。そのため、細胞接着しにくい基材上で培養すると、自然と細胞同士が接着し、細胞は3次元の凝集体を形成する。実際に、肝細胞の凝集体は単独の肝細胞に比べて、細胞の生物活性は髙い。また、胚性幹細胞も凝集体を形成することで分化を始めることが知られている。細胞の活性を高めるためのもう1つの技術として、生体材料の活用が考えられる。現在の細胞培養は、ポリスチレン容器にて行われている。これは人工的に構築された環境であり、細胞の体内環境とは大きく異なる。そのため、このような人工的な環境の下で体内の細胞状態を調べるには限界がある。体内の細胞调辺環境に近い性質をもつ生体材料を活用することによって細胞活性を髙めることが期 待できる。

第2章 振盪培養がゼラチンハイドロゲル粒子含有細胞凝集体の生物学的機能に与える影響
 本研究では、ゼラチンハイドロゲル粒子のftを変化させ、かつ凝集体内郎への酸素や栄餐の供給状態を改善するために振盪馆養法を適用した。これらの工夫による細胞凝集体の機能変化について調べた。ゼラチンハイドロゲル粒子と細胞との混合比、振盪培養の有無によらず、U底well中に細胞凝集体の形成が見られた。細胞に対するゼラチンハイドロゲル粒子の混合比率が高くなるとともに、細胞凝集体のサイズは大きくなった。また、ゼラチンハイドロゲル粒子を含有した細胞凝集体において、培養2週間まではサイズは変化しなかったが、3週間後ではそのサイズが小さくなった。これは、細胞凝集体内のゼラチンハイドロゲル粒子の分解が影饗していると考えられる。ゼラチンハイドロゲル粒子の混合比率が低い場合には、静置埼養と比較して、振盪培養された細胞凝集体の細胞当たりのATP量とミトコンドリア活性は有意に高くなった。これに対して、ゼラチンハイドロゲル粒子比率が高くなると振盪培養による影響は見られなかった。これらの結果は、低いゼラチンハイドロゲル粒子比率では、振盪による埼養液の動きが、凝集体内の細胞機能に影響することを示している。

第3章 p53阻害剤を含んだゼラチンハイドロゲル粒子含有がん関連線維芽細胞凝集体を組み込んだがん浸潤モデル
 がんの浸澗は、がん転移において重要なプロセスである。このプロセスの研究には、体内のがん環境に近い培養条件でのがん浸澗モデルの作製が必要不可欠になる。がん細胞の周辺に豊富に存在するがん関連線維芽細胞(CAF)とがん細胞との相互作用が、がん浸澗に大きく影饗すると言われている。そこで本研究では、p53阻害剤を含んだゼラチンハイドロゲル粒子を組み込んだ3次元CAF凝集体とがん細胞の共培養を行った。細胞非接着処理したU底ブレートにCAFおよびp 53阻害剤含有ゼラチンハイドロゲル粒子を播種することで、粒子とCAFからなる凝集体を作製した。高濃度の薬物含有粒子-CAF凝集体では、空の粒子-CAF凝集体、および低濃度の薬物含有粒子-CAF凝集体に比べてalpha-smooth muscle actin(a-SMA)値が有意に上昇し、凝集体内部での薬物徐放によるCAF機能が増強された。また、薬物含有培地で培養された空の粒T-CAF凝集体では、同濃度の薬物含有粒子-CAF凝集体に比べて、a-SMA値が有意に低下した。モデル基底膜上にがん細胞を、膜下に薬物含有粒子-CAF凝集体を播種したところ、2次元培養CAF、または空の粒子-CAF凝集体播種の場合と比較して、有意にがん細胞の浸潤率が上昇した。さらに、マトリックスメタロプロテアーゼ阻害剤の添加により、がん細胞浸潤の抑制が見られた。以上の結果は、薬物徐放化粒子とCAFの3次元凝集体の利用ががん細胞の浸潤評価に有効であることを示している。

第4章 TGF-β1放出システムを組み込んだがん関連線維芽細胞凝集体のがん浸潤モデル
 この研究の目的は、試験管内でがん細胞の浸潤率を調節できるがん浸潤モデルを創製することである。 —般的に、①がん環境で分泌されているtransforming growth factor-βl(TGF-βl)によるがん関連線維芽細胞(CAF)凝集体の活性増強、②活性化されたCAF凝集体とがん細胞による相互作用の増大、③相互作用によるマトリックスメタロプロテアーゼ(MMP)の過剰産生、そして④MMPによって分解された基底膜をがん細胞が通過することをがん浸潤とよぶ。一連のプロセスを試験管内で再現するために、まず「TGF-βI徐放粒子を含むCAF凝集体」を作製した。このTGF-βl徐放粒子を含むCAF凝集体のalpha-smooth muscle actin値は、2次元培養CAF、および空の粒子を含むCAF凝集体と比較して有意に上昇した。このことは、CAFの3次元組織化とDDS技術との組み合わせが、試験管内でもCAFの活性を高めたことを示している。次に、TGF-βl徐放粒子を含むCAF凝集体をモデル基底膜を介してがん細胞と共培養したところ、2次元培養CAF、および空の粒子を含むCAF凝集体播棰群と比較して、がん細胞の浸潤率が有意に上昇した。さらに、がん細胞の浸潤率とTGF-βlの濃度に正の相関性が得られた。このことは、TGF-βlの濃度を変化させることで試験管内でがん細胞の浸潤率をコントロールすることができることを示している。このモデルはがん細胞の浸潤率や治療効果を試験管内で評価するための有用なツールとなり得る。

第5章 がん細胞浸潤のための生傳分子放出を組み込んだ3 次元がん関連マクロファージと3次元がん関連線維芽細胞の共培養システム
 がん関連マクロファージ(TAM)は、がん細胞周辺に豊富に存在する間質細胞の一つであり、がん細胞の増殖、浸潤、転移、および薬剤抵抗性などに関与する重要な細胞である。
 このTAMを体内に近い状態で培養するためには、3次元培養とTAM機能を維持する薬物の持続的投与との組み合わせが有効である。そこで、本研究では、アデノシン含有ゼラチンハイドロゲル粒子を含むTAMの3次元凝集体を調製した。ヒト単球細胞株(THP-1)をホルボール12-ミリステート13-アセテートで刺激し、リポ多糖およびアデノシンを添加することで、TAMを得た。細胞非接着性処理をしたU底wellで、TAMとアデノシン徐放化粒子を共培養することで、アデノシン含有粒子を含むTAM凝集体を作製した。このTAM凝集体からの血管内皮増殖因子(VEGF)分泌量は、2次元培養TAMおよび空の粒子を含むTAM凝集体と比較して有意に上昇し、TAM機能の増強が確認された。次に、モデル基底膜上に肝がん細胞株(HepG2)を、膜下にアデノシン含有粒子を含むTAM凝集体を培養した。その結果、他のコントロールと比較して、有意にがん細胞の浸潤率は増大した。以上の結果は、アデノシン徐放化粒子を含むTAMの3次元凝集体の利用が、TAM機能の維持およびがん細胞の浸潤評価に有効であることを示している。さらに、transforming growth factor-β1含有粒子を含むCAF凝集体とアデノシン含有粒子を含むTAM凝集体の混合比率を変化させることで、肝がん細胞株に加えて、乳がん細胞株や肺がん細胞株でのがん細胞の浸澗を評価することが可能となった。

第6章総括
 3次元細胞培養とDrug Delivery System技術を融合させることにより、再生研究の重要な柱の一つである創薬研究への応用に期待できる。

関連論文

参考文献

1. Nii, T.; Makino, K.; Tabata, Y. Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel), 2020, 12, 2754. DOI:10.3390/cancers12102754

2. Fukuda, J.; Sakai, Y.; Nakazawa, K. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials, 2006, 27, 1061-1070.

3. Rodriguez-Enriquez, S.; Gallardo-Perez, J.C.; Aviles-Salas, A.; Marin-Hernandez, A.; Carreno-Fuentes, L.; Maldonado-Lagunas, V.; Moreno-Sanchez, R. Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol, 2008, 216, 189-197.

4. Kurosawa, H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng, 2007, 103, 389-398.

5. Lin, R.Z.; Chang, H.Y. Recent advances in three -dimensional multicellular spheroid culture for biomedical research. Biotechnol J, 2008, 3, 1172-1184.

6. Breslin, S.; O'Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today, 2013, 18, 240-249.

7. Hait, W.N. Anticancer drug development: the grand challenges. Nat Rev Drug Discov, 2010, 9, 253-254.

8. Benton, G.; George, J.; Kleinman, H.K.; Arnaoutova, I.P. Advancing science and technology via 3D culture on basement membrane matrix . J Cell Physiol, 2009, 221, 18-25.

9. Mohan, N.; Nair, P.D.; Tabata, Y. A 3D biodegradable protein based matrix for cartilage tissue engineering and stem cell differentiation to cartilage. J Mater Sci Mater Med, 2009, 20 Suppl 1, S49-60.

10. Okochi, M.; Takano, S.; Isaji, Y.; Senga, T.; Hamaguchi, M.; Honda, H. Three-dimensional cell culture array using magnetic force -based cell patterning for analysis of invasive capacity of BALB/3T3/v -src. Lab Chip, 2009, 9, 3378-3384.

11. Hanjaya-Putra, D.; Gerecht, S. Vascular engineering using human embryonic stem cells. Biotechnol Prog, 2009, 25, 2-9.

12. Kellner, K.; Liebsch, G.; Klimant, I.; Wolfbeis, O.S.; Blunk, T.; Schulz, M.B.; Gopferich, A. Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol Bioeng, 2002, 80, 73-83.

13. Bradford, A. The role of hypoxia and platelets in air travel-related venous thromboembolism. Curr Pharm Des, 2007, 13, 2668-2672.

14. Hayashi, K.; Tabata, Y. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater, 2011, 7, 2797-2803.

15. Zekorn, D. Intravascular retention, dispersal, excretion and break-down of gelatin plasma substitutes. Bibl Haematol, 1969, 33, 131-140.

16. Narita, A.; Takahara, M.; Ogino, T.; Fukushima, S.; Kimura, Y.; Tabata, Y. Effect of gelatin hydrogel incorporating fibroblast growth factor 2 on human meniscal cells in an organ culture model. Knee, 2009, 16, 285-289.

17. Takahashi, Y.; Yamamoto, M.; Tabata, Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials, 2005, 26, 3587-3596.

18. Hori, Y.; Inoue, S.; Hirano, Y.; Tabata, Y. Effect of culture substrates and fibroblast growth factor addition on the proliferation and differentiation of rat bone marrow stromal cells. Tissue Eng, 2004, 10, 995-1005.

19. Watanabe, M.; Jo, J.; Radu, A.; Kaneko, M.; Tabata, Y.; Flake, A.W. A tissue engineering approach for prenatal closure of myelomeningocele with gelatin sponges incorporating basic fibroblast growth factor. Tissue Eng Part A, 2010, 16, 1645-1655.

20. Akagawa, Y.; Kubo, T.; Koretake, K.; Hayashi, K.; Doi, K.; Matsuura, A.; Morita, K.; Takeshita, R.; Yuan, Q.; Tabata, Y. Initial bone regeneration around fenestrated implants in Beagle dogs using basic fibroblast growth factor-gelatin hydrogel complex with varying biodegradation rates. J Prosthodont Res, 2009, 53, 41-47.

21. Hiraoka, Y.; Yamashiro, H.; Yasuda, K.; Kimura, Y.; Inamoto, T.; Tabata, Y. In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng, 2006, 12, 1475-1487.

22. Igai, H.; Chang, S.S.; Gotoh, M.; Yamamoto, Y.; Misaki, N.; Okamoto, T.; Yamamoto, M.; Tabata, Y.; Yokomise, H. Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. ASAIO J, 2006, 52, 86-91.

23. Okamoto, T.; Yamamoto, Y.; Gotoh, M.; Huang, C.L.; Nakamura, T.; Shimizu, Y.; Tabata, Y.; Yokomise, H. Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model. J Thorac Cardiovasc Surg, 2004, 127, 329-334.

24. Kimura, Y.; Tabata, Y. Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis. J Biomater Sci Polym Ed, 2010, 21, 37-51.

25. Esaki, J.; Marui, A.; Tabata, Y.; Komeda, M. Controlled release systems of angiogenic growth factors for cardiovascular diseases. Expert Opin Drug Deliv, 2007, 4, 635-649.

26. Tabata, Y.; Nagano, A.; Ikada, Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng, 1999, 5, 127-138.

27. Ozeki, M.; Tabata, Y. In vivo degradability of hydrogels prepared from different gelatins by various cross-linking methods. J Biomater Sci Polym Ed, 2005, 16, 549-561.

28. Nitta, N.; Ohta, S.; Tanaka, T.; Takazakura, R.; Toyama, T.; Sonoda, A.; Seko, A.; Furukawa, A.; Takahashi, M.; Murata, K., et al. An initial clinical study on the efficacy of cisplatin-releasing gelatin microspheres for metastatic liver tumors. Eur J Radiol, 2009, 71, 519-526.

29. Patel, Z.S.; Yamamoto, M.; Ueda, H.; Tabata, Y.; Mikos, A.G. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater, 2008, 4, 1126-1138.

30. Kikuchi, T.; Kubota, S.; Asaumi, K.; Kawaki, H.; Nishida, T.; Kawata,K.; Mitani, S.; Tabata, Y.; Ozaki, T.; Takigawa, M. Promotion of bone regeneration by CCN2 incorporated into gelatin hydrogel. Tissue Eng Part A, 2008, 14, 1089-1098.

31. Kushibiki, T.; Tomoshige, R.; Iwanaga, K.; Kakemi, M.; Tabata, Y. Controlled release of plasmid DNA from hydrogels prepared from gelatin cationized by different amine compounds. J Control Release, 2006, 112, 249-256.

32. Ichinohe, N.; Kuboki, Y.; Tabata, Y. Bone regeneration using titanium nonwoven fabrics combined with fgf-2 release from gelatin hydrogel microspheres in rabbit skull defects. Tissue Eng Part A, 2008, 14, 1663-1671.

33. Patel, Z.S.; Ueda, H.; Yamamoto, M.; Tabata, Y.; Mikos, A.G. In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res, 2008, 25, 2370-2378.

34. Tabata, Y.; Hijikata, S.; Muniruzzaman, M.; Ikada, Y. Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed, 1999, 10, 79-94.

35. Ikada, Y.; Tabata, Y. Protein release from gelatin matrices. Adv Drug Deliv Rev, 1998, 31, 287-301.

36. Xie, Y.; Hardouin, P.; Zhu, Z.; Tang, T.; Dai, K.; Lu, J. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng, 2006, 12, 3535-3543.

37. Yeatts, A.B.; Fisher, J.P. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone, 2011, 48, 171-181.

38. Teixeira, F.G.; Panchalingam, K.M.; Assuncao-Silva, R.; Serra, S.C.; Mendes-Pinheiro, B.; Patricio, P.; Jung, S.; Anjo, S.I.; Manadas, B.; Pinto, L., et al. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation. Sci Rep, 2016, 6, 27791. DOI:10.1038/srep27791

39. Baraniak, P.R.; Cooke, M.T.; Saeed, R.; Kinney, M.A.; Fridley, K.M.; McDevitt, T.C. Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J Mech Behav Biomed Mater, 2012, 11, 63-71.

40. Dang, P.N.; Dwivedi, N.; Phillips, L.M.; Yu, X.; Herberg, S.; Bowerman, C.; Solorio, L.D.; Murphy, W.L.; Alsberg, E. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification. Stem Cells Transl Med, 2016, 5, 206-217.

41. Tajima, S.; Tabata, Y. Preparation and functional evaluation of cell aggregates incorporating gelatin microspheres with different degradabilities. J Tissue Eng Regen Med, 2013, 7, 801-811.

42. Petty, R.D.; Sutherland, L.A.; Hunter, E.M.; Cree, I.A. Comparison of MTT and ATP-based assays for the measurement of viable cell number. J Biolumin Chemilumin, 1995, 10, 29-34.

43. Efron, N.; Morgan, P.B.; Cameron, I.D.; Brennan, N.A.; Goodwin, M. Oxygen permeability and water content of silicone hydrogel contact lens materials. Optom Vis Sci, 2007, 84, 328-337.

44. Chung, H.J.; Park, T.G. Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering. Tissue Eng Part A, 2009, 15, 1391-1400.

45. Zhang, H.N.; Leng, P.; Wang, Y.Z.; Lu, C.Y.; Wang, X.D.; Wang, C.Y. [Repair full-thickness meniscal defects with injectable tissue engineering technique]. Zhonghua Wai Ke Za Zhi, 2010, 48, 1309-1312.

46. Shiga, K.; Hara, M.; Nagasaki, T.; Sato, T.; Takahashi, H.; Takeyama, H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel), 2015, 7, 2443-2458.

47. Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat Rev Cancer, 2006, 6, 392-401.

48. Li, H.; Fan, X.; Houghton, J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem, 2007, 101, 805-815.

49. Kuperwasser, C.; Chavarria, T.; Wu, M.; Magrane, G.; Gray, J.W.; Carey, L.; Richardson, A.; Weinberg, R.A. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A, 2004, 101, 4966-4971.

50. Grum-Schwensen, B.; Klingelhofer, J.; Berg, C.H.; El-Naaman, C.; Grigorian, M.; Lukanidin, E.; Ambartsumian, N. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res, 2005, 65, 3772-3780.

51. Cornil, I.; Theodorescu, D.; Man, S.; Herlyn, M.; Jambrosic, J.; Kerbel, R.S. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression . Proc Natl Acad Sci U S A, 1991, 88, 6028-6032.

52. Powell, D.W.; Mifflin, R.C.; Valentich, J.D.; Crowe, S.E.; Saada, J.I.; West, A.B. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol, 1999, 277, C1-9.

53. Infante, J.R.; Matsubayashi, H.; Sato, N.; Tonascia, J.; Klein, A.P.; Riall, T.A.; Yeo, C.; Iacobuzio-Donahue, C.; Goggins, M. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol, 2007, 25, 319-325.

54. Wandel, E.; Grasshoff, A.; Mittag, M.; Haustein, U.F.; Saalbac h, A. Fibroblasts surrounding melanoma express elevated levels of matrix metalloproteinase-1 (MMP-1) and intercellular adhesion molecule-1 (ICAM-1) in vitro. Exp Dermatol, 2000, 9, 34-41.

55. Wilson, C.L.; Heppner, K.J.; Labosky, P.A.; Hogan, B.L.; Matrisi an, L.M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A, 1997, 94, 1402-1407.

56. Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol, 1998, 153, 457-467.

57. Place, A.E.; Jin Huh, S.; Polyak, K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res, 2011, 13, 227.

58. Boire, A.; Covic, L.; Agarwal, A.; Jacques, S.; Sherifi, S.; Kuliopulos, A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 2005, 120, 303-313.

59. Stetler-Stevenson, W.G.; Aznavoorian, S.; Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol, 1993, 9, 541-573.

60. Takahashi, M.; Fukami, S.; Iwata, N.; Inoue, K.; Itohara, S.; Itoh, H.; Haraoka, J.; Saido, T. In vivo glioma growth requires host-derived matrix metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol Res, 2002, 46, 155-163.

61. Koontongkaew, S.; Amornphimoltham, P.; Monthanpisut, P.; Saensuk, T.; Leelakriangsak, M. Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic head and neck cancer cells. Med Oncol, 2012, 29, 690-703.

62. Sandler, R.S.; Halabi, S.; Baron, J.A.; Budinger, S.; Paskett, E.; Keresztes, R.; Petrelli, N.; Pipas, J.M.; Karp, D.D.; Loprinzi, C.L., et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med, 2003, 348, 883-890.

63. Tredan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007, 99, 1441-1454.

64. Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol, 2007, 8, 839-845.

65. Nelson, L.J.; Walker, S.W.; Hayes, P.C.; Plevris, J.N. Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures. Cells Tissues Organs, 2010, 192, 125-140.

66. Compan, V.; Guzman, J.; Riande, E. A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes. Biomaterials, 1998, 19, 2139-2145.

67. Brancato, V.; Gioiella, F.; Profeta, M.; Imparato, G.; Guarnieri, D.; Urciuolo, F.; Melone, P.; Netti, P.A. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems. Acta Biomater, 2017, 57, 47-58.

68. Brancato, V.; Comunanza, V.; Imparato, G.; Cora, D.; Urciuolo, F.; Noghero, A.; Bussolino, F.; Netti, P.A. Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer. Acta Biomater, 2017, 49, 152-166.

69. Brancato, V.; Gioiella, F.; Imparato, G.; Guarnieri, D.; Urciuo lo, F.; Netti, P.A. 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free -doxorubicin in vitro. Acta Biomater, 2018, 75, 200-212.

70. Rebelo, S.P.; Pinto, C.; Martins, T.R.; Harrer, N.; Estrada, M.F.; Loza-Alvarez, P.; Cabecadas, J.; Alves, P.M.; Gualda, E.J.; Sommergruber, W., et al. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials, 2018, 163, 185-197.

71. Ferreira, L.P.; Gaspar, V.M.; Mano, J.F. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Biomaterials, 2018, 185, 155-173.

72. Nii, T.; Makino, K.; Tabata, Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng, 2019, 128, 606-612.

73. Hill, R.; Song, Y.; Cardiff, R.D.; Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 2005, 123, 1001-1011.

74. Arandkar, S.; Furth, N.; Elisha, Y.; Nataraj, N.B.; van der Kuip, H.; Yarden, Y.; Aulitzky, W.; Ulitsky, I.; Geiger, B.; Oren, M. Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features. Proc Natl Acad Sci U S A, 2018, 115, 6410-6415.

75. Procopio, M.G.; Laszlo, C.; Al Labban, D.; Kim, D.E.; Bordignon, P.; Jo, S.H.; Goruppi, S.; Menietti, E.; Ostano, P.; Ala, U., et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat Cell Biol, 2015, 17, 1193-1204.

76. Tabata, Y.; Ikada, Y. Synthesis of gelatin microspheres containing interferon. Pharm Res, 1989, 6, 422-427.

77. Nii, T.; Takeuchi, I.; Kimura, Y.; Makino, K. Effects of the conformation of PLGA molecules in the organic solvent on the aerodynamic diameter of spray dried microparticles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2018, 539, 347-353.

78. Sappino, A.P.; Skalli, O.; Jackson, B.; Schurch, W.; Gabbiani, G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer, 1988, 41, 707-712.

79. Orimo, A.; Weinberg, R.A. Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther, 2007, 6, 618-619.

80. Ji, H.; Ramsey, M.R.; Hayes, D.N.; Fan, C.; McNamara, K.; Kozlowski, P.; Torrice, C.; Wu, M.C.; Shimamura, T.; Perera, S.A., et al. LKB1 modulates lung cancer differentiation and metastasis. Nature, 2007, 448, 807-810.

81. Chueca, E.; Apostolova, N.; Esplugues, J.V.; Garcia -Gonzalez, M.A.; Lanas, A.; Piazuelo, E. Proton Pump Inhibitors Display Antitumor Effects in Barrett's Adenocarcinoma Cells. Front Pharmacol, 2016, 7, 452. DOI:10.3389/fphar.2016.00452

82. Ishii, S.; Yamashita, K.; Harada, H.; Ushiku, H.; Tanaka, T.; Nishizawa, N.; Yokoi, K.; Washio, M.; Ema, A.; Mieno, H., et al. The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget, 2017, 8, 74567-74581.

83. Smith, R.W.; Coleman, J.D.; Thompson, J.T.; Vanden Heuvel, J.P. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor beta/delta and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells. Biochem Biophys Rep, 2016, 8, 395-402.

84. Loizou, G.D. Animal-Free Chemical Safety Assessment. Front Pharmacol, 2016, 7, 218. DOI:10.3389/fphar.2016.00218

85. Mahler, G.J.; Esch, M.B.; Stokol, T.; Hickman, J.J.; Shuler, M.L. Body-on-a-chip systems for animal-free toxicity testing. Altern Lab Anim, 2016, 44, 469-478.

86. Leist, M.; Hasiwa, N.; Rovida, C.; Daneshian, M.; Basketter, D.; Kimber, I.; Clewell, H.; Gocht, T.; Goldberg, A.; Busquet, F., et al. Consensus report on the future of animal-free systemic toxicity testing. ALTEX, 2014, 31, 341-356.

87. Pfuhler, S.; Fautz, R.; Ouedraogo, G.; Latil, A.; Kenny, J.; Moore, C.; Diembeck, W.; Hewitt, N.J.; Reisinger, K.; Barroso, J. The Co smetics Europe strategy for animal-free genotoxicity testing: project status up-date. Toxicol In Vitro, 2014, 28, 18-23.

88. Mittal, R.; Woo, F.W.; Castro, C.S.; Cohen, M.A.; Karanxha, J.; Mittal, J.; Chhibber, T.; Jhaveri, V.M. Organ-on-chip models: Implications in drug discovery and clinical applications. J Cell Physiol, 2019, 234, 8352-8380.

89. Cochrane, A.; Albers, H.J.; Passier, R.; Mummery, C.L.; van den Berg, A.; Orlova, V.V.; van der Meer, A.D. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev, 2019, 140, 68-77.

90. Zahedi-Tabar, Z.; Bagheri-Khoulenjani, S.; Mirzadeh, H.; Amanpour, S. 3D in vitro cancerous tumor models: Using 3D printers. Med Hypotheses, 2019, 124, 91-94.

91. Boutin, M.E.; Kramer, L.L.; Livi, L.L.; Brown, T.; Moore, C.; Hoffman-Kim, D. A three-dimensional neural spheroid model for capillary-like network formation. J Neurosci Methods, 2018, 299, 55-63.

92. Alexander, F., Jr.; Eggert, S.; Wiest, J. A novel lab-on-a-chip platform for spheroid metabolism monitoring. Cytotechnology, 2018, 70, 375-386.

93. Oyama, H.; Takahashi, K.; Tanaka, Y.; Takemoto, H.; Haga, H. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel. Cell Struct Funct, 2018, 43, 85-94.

94. Yu, F.; Hunziker, W.; Choudhury, D. Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines (Basel), 2019, 10, 165. DOI:10.3390/mi10030165

95. Nayak, B.; Balachander, G.M.; Manjunath, S.; Rangarajan, A.; Chatterjee, K. Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids Surf B Biointerfaces, 2019, 180, 334-343.

96. Ogawa, T.; Akazawa, T.; Tabata, Y. In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-beta1 release. J Biomater Sci Polym Ed, 2010, 21, 609-621.

97. Nii, T.; Makino, K.; Tabata, Y. A Cancer Invasion Model Combined with Cancer-Associated Fibroblasts Aggregates Incorporating Gelatin Hydrogel Microspheres Containing a p53 Inhibitor. Tissue Eng Part C Methods, 2019, 25, 711-720.

98. Inoo, K.; Bando, H.; Tabata, Y. Insulin secretion of mixed insul inoma aggregates-gelatin hydrogel microspheres after subcutaneous transplantation. Regen Ther, 2018, 8, 38-45.

99. Inoo, K.; Bando, H.; Tabata, Y. Enhanced survival and insulin secretion of insulinoma cell aggregates by incorporating gelatin hydrogel microspheres. Regen Ther, 2018, 8, 29-37.

100. Tajima, S.; Tabata, Y. Preparation of EpH4 and 3T3L1 cells aggregates incorporating gelatin hydrogel microspheres for a cell condition improvement. Regen Ther, 2017, 6, 90-99.

101. Tajima, S.; Tabata, Y. Preparation of epithelial cell aggregates incorporating matrigel microspheres to enhance proliferation and differentiation of epithelial cells. Regen Ther, 2017, 7, 34-44.

102. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017 . CA Cancer J Clin, 2017, 67, 7-30.

103. Shan, T.; Chen, S.; Chen, X.; Lin, W.R.; Li, W.; Ma, J.; Wu, T.; Cui, X.; Ji, H.; Li, Y., et al. Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep, 2017, 37, 1971-1979.

104. Alvarez-Teijeiro, S.; Garcia-Inclan, C.; Villaronga, M.A.; Casado, P.; Hermida-Prado, F.; Granda-Diaz, R.; Rodrigo, J.P.; Calvo, F.; Del-Rio-Ibisate, N.; Gandarillas, A., et al. Factors Secreted by Cancer-Associated Fibroblasts that Sustain Cancer Stem Properties in Head and Neck Squamous Carcinoma Cells as Potential Therapeutic Targets. Cancers (Basel), 2018, 10, 334. DOI: 10.3390/cancers10090334

105. Kalluri, R. The biology and function of fibroblasts in cancer. Nat Rev Cancer, 2016, 16, 582-598.

106. Micke, P.; Ostman, A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 2004, 45, S163-S175.

107. Casey, T.M.; Eneman, J.; Crocker, A.; White, J.; Tessitore, J.; Stanley, M.; Harlow, S.; Bunn, J.Y.; Weaver, D.; Muss, H., et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study . Breast Cancer Res Treat, 2008, 110, 39-49.

108. McEarchern, J.A.; Kobie, J.J.; Mack, V.; Wu, R.S.; Meade -Tollin, L.; Arteaga, C.L.; Dumont, N.; Besselsen, D.; Seftor, E.; Hendrix, M.J., et al. Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer, 2001, 91, 76-82.

109. Wick, W.; Platten, M.; Weller, M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol, 2001, 53, 177-185.

110. Bratt-Leal, A.M.; Carpenedo, R.L.; Ungrin, M.D.; Zandstra, P.W.; McDevitt, T.C. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials, 2011, 32, 48-56.

111. Cheng, C.Y.; Pho, Q.H.; Wu, X.Y.; Chin, T.Y.; Chen, C.M.; Fang, P.H.; Lin, Y.C.; Hsieh, M.F. PLGA Microspheres Loaded with beta-Cyclodextrin Complexes of Epigallocatechin-3-Gallate for the Anti-Inflammatory Properties in Activated Microglial Cells. Polymers (Basel), 2018, 10, 519. DOI: 10.3390/polym10050519

112. Alenezi, A.; Naito, Y.; Terukina, T.; Prananingrum, W.; Jinno, Y.; Tagami, T.; Ozeki, T.; Galli, S.; Jimbo, R. Controlled release of clarithromycin from PLGA microspheres enhances bone regeneration in rabbit calvaria defects. J Biomed Mater Res B Appl Biomater, 2018, 106, 201-208.

113. Yuan, Y.; Shi, X.; Gan, Z.; Wang, F. Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds. Colloids Surf B Biointerfaces, 2018, 161, 162-168.

114. Thaya, R.; Vaseeharan, B.; Sivakamavalli, J.; Iswarya, A.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-Anbr, M.N.; Khaled, J.M.; Benelli, G. Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb Pathog, 2018, 114, 17-24.

115. Zeng, J.; Li, L.; Zhang, H.; Li, J.; Liu, L.; Zhou, G.; Du, Q.; Zheng, C.; Yang, X. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization. Theranostics, 2018, 8, 4591-4600.

116. Friedman, A.; Kim, Y. Tumor cells proliferation and migration under the influence of their microenvironment. Math Biosci Eng, 2011, 8, 371-383.

117. Kim, Y.; Stolarska, M.A.; Othmer, H.G. The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol, 2011, 106, 353-379.

118. Spano, D.; Zollo, M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis, 2012, 29, 381-395.

119. Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front Oncol, 2020, 10, 188.

120. Patel, A.K.; Singh, S. Cancer associated fibroblasts: phenotypic and functional heterogeneity. Front Biosci (Landmark Ed), 2020, 25, 961-978.

121. Ireland, L.V.; Mielgo, A. Macrophages and Fibroblasts, Key Players in Cancer Chemoresistance. Front Cell Dev Biol, 2018, 6, 131. DOI:10.3389/fcell.2018.00131

122. Yang, J.; Li, X.; Liu, X.; Liu, Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis. Int J Clin Exp Pathol, 2015, 8, 6656-6664.

123. Panchabhai, S.; Kelemen, K.; Ahmann, G.; Sebastian, S.; Mantei, J.; Fonseca, R. Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma . Leukemia, 2016, 30, 951-954.

124. Liu, L.; Ye, Y.; Zhu, X. MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. Biomed Pharmacother, 2019, 117, 109096. DOI:10.1016/j.biopha.2019.109096

125. Komohara, Y.; Takeya, M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol, 2017, 241, 313-315.

126. Astashkina, A.; Mann, B.; Grainger, D.W. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther, 2012, 134, 82-106.

127. Marino, S.; Bishop, R.T.; de Ridder, D.; Delgado-Calle, J.; Reagan, M.R. 2D and 3D In Vitro Co-Culture for Cancer and Bone Cell Interaction Studies. Methods Mol Biol, 2019, 1914, 71-98.

128. Chitcholtan, K.; Asselin, E.; Parent, S.; Sykes, P.H.; Evans, J.J. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Exp Cell Res, 2013, 319, 75-87.

129. DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. The cost of drug development. N Engl J Med, 2015, 372, 1972.

130. Baras, A.I.; Baras, A.S.; Schulman, K.A. Drug development risk and the cost of capital. Nat Rev Drug Discov, 2012, 11, 347-348.

131. Nii, T.; Makino, K.; Tabata, Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-beta1 release system. Regen Ther, 2020, 14, 196-204.

132. Burdett, E.; Kasper, F.K.; Mikos, A.G.; Ludwig, J.A. Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng Part B Rev, 2010, 16, 351-359.

133. Tajima, S.; Tabata, Y. Preparation of cell aggregates incorporating gelatin hydrogel microspheres containing bone morphogenic protein-2 with different degradabilities. J Biomater Sci Polym Ed, 2018, 29, 775-792.

134. Huang, X.; Li, Y.; Fu, M.; Xin, H.B. Polarizing Macrophages In Vitro. Methods Mol Biol, 2018, 1784, 119-126.

135. Ferrante, C.J.; Pinhal-Enfield, G.; Elson, G.; Cronstein, B.N.; Hasko, G.; Outram, S.; Leibovich, S.J. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 2013, 36, 921-931.

136. Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, 41, 14-20.

137. Kuen, J.; Darowski, D.; Kluge, T.; Majety, M. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One, 2017, 12, e0182039. DOI:10.1371/journal.pone.0182039

138. Liu, X.Q.; Kiefl, R.; Roskopf, C.; Tian, F.; Huber, R.M. Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression. PLoS One, 2016, 11, e0156268. DOI:10.1371/journal.pone.0156268

139. Jung, H.; Jang, H.E.; Kang, Y.Y.; Song, J.; Mok, H. PLGA Microspheres Coated with Cancer Cell-Derived Vesicles for Improved Internalization into Antigen-Presenting Cells and Immune Stimulation. Bioconjug Chem, 2019, 30, 1690-1701.

140. Mi, X.; Wang, X.; Xu, C.; Zhang, Y.; Tan, X.; Gao, J.; Liu, Y. Alginate microspheres prepared by ionic crosslinking of pickering alginate emulsions. J Biomater Sci Polym Ed, 2019, 30, 1083-1096.

141. Uyen, N.T.T.; Hamid, Z.A.A.; Tram, N.X.T.; Ahmad, N. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol, 2020, 153, 1035-1046.

142. Chen, K.; Zhang, H. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. Int J Biol Macromol, 2019, 136, 936-943.

143. Zhang, S.; Dai, W.; Lu, Z.; Lei, Z.; Yang, B.; He, B.; Zhou, H.; Cao, J. Preparation and evaluation of cefquinome-loaded gelatin microspheres and the pharmacokinetics in pigs. J Vet Pharmacol Ther, 2018, 41, 117-124.

144. Nakamura, K.; Saotome, T.; Shimada, N.; Matsuno, K.; Tabata, Y. A Gelatin Hydrogel Nonwoven Fabric Facilitates Metabolic Activity of Multilayered Cell Sheets. Tissue Eng Part C Methods, 2019, 25, 344-352.

145. Nakamura, K.; Nobutani, K.; Shimada, N.; Tabata, Y. Gelatin Hydrogel-Fragmented Fibers Suppress Shrinkage of Cell She et. Tissue Eng Part C Methods, 2020, 26, 216-224.

146. Chu, W.K.; Hsu, C.C.; Huang, S.F.; Hsu, C.C.; Chow, S.E. Caspase 12 degrades IkappaBalpha protein and enhances MMP-9 expression in human nasopharyngeal carcinoma cell invasion. Oncotarget, 2017, 8, 33515-33526.

147. Muscella, A.; Vetrugno, C.; Cossa, L.G.; Marsigliante, S. TGF -beta1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities. J Neurochem, 2020, 153, 525-538.

参考文献をもっと見る