リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrochemical technique for cell viability assessment via monitoring of intracellular NADH with a modified double mediator system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrochemical technique for cell viability assessment via monitoring of intracellular NADH with a modified double mediator system

ALIM Md. Abdul 富山大学

2022.03.23

概要

In this thesis, I proposed and developed a new electrochemical technique for cell viability assessment via monitoring of intracellular NADH with a modified double mediator system.

Developing of rapid and precise methods for cell counting and cell viability assessment is very important to evaluate the acute cytotoxicity of fast-acting drugs, pollutants, food additives, fermentation processes in the food processing industry, and in cell biology. There are various kinds of conventional methods have been developed for cell viability assessment. However, some methods such as the fluorescent dye-staining methods take a time to analysis and cannot assess the intracellular metabolic activity. To resolve this problem, electrical methods such as the impedance spectroscopy method and electro-orientation method have been developed. These methods are rapid but still unable to assess an intracellular metabolism as cell viability. On the other hand, conventional MTT or WST assays can assess the total intracellular NADH as a marker of cell viability though it is time-consuming. These colorimetric methods have some other limitations such as cytotoxicity of assay dye, several steps to get results, scattering effect of cells suspended in medium, and therefore cannot evaluate the toxic effect of fast-acting drugs or chemicals.

With this background, the main objective of this study was to develop a rapid, precise, and convenient electrochemical method to evaluate the real cell viability through the monitoring of intracellular NADH which is one of the most important metabolites for not only mammalian cells but also microorganisms.

In chapter 1, I highlighted the background and purpose of this study, and provided some important biological terms related to this study. In chapter 2, I comprehensively explained the required materials and methods for this study.

In chapter 3, I introduced the electrochemical technique with 1-methoxy-5-methylphenazinium methyl sulfate (mPMS) and [Fe(CN)6]3-(FeCN) as a modified double mediator system to monitor intracellular NADH on mammalian cells. A combination of 10 µM mPMS and 500 µM FeCN was the optimum concentration, and 10 minutes of incubation was enough to monitor intracellular NADH by chronoamperometry at +0.5 V applications. My this mPMS/FeCN system worked as useful as previously reported enzyme-dependent menadione (Mena)/FeCN system. I confirmed that the electron transfer from intracellular NADH to mPMS occurred non-enzymatically, though the cytosolic enzyme catalyzed the electron transfer from intracellular NADH to Mena. Next, I applied my modified double mediator system to count the various kinds of mammalian cells. Here the cell counting results by my method were compared with the results by conventional WST-1 assay. The oxidation current in chronoamperometry after 10 minutes of incubation showed an excellent linear relationship in two times wider cell concentration as compared to the cell concentration detected by conventional WST-1 assay. Furthermore, I applied my method to investigate the acute toxic effect of oxamic acid on metabolic activity in PC12 cells as a model tumor cell by blocking LDH. Recently, lactate dehydrogenase (LDH) inhibition by oxamic acid has taken a lot of attention for the anti-cancer drug. My result demonstrated that the electrochemical technique with the modified double mediator system might be useful for screening of fast-acting drugs to intracellular metabolism.

In chapter 4, I described the application of my method for yeast cell counting and to evaluate the acute cytotoxicity of two antifungal agents in yeast cells. Firstly, I paid attention to itaconic acid that has been especially used to make hydrogels for water decontamination and eco-friendly biodegradable polymer. Itaconic acid is also important as a natural metabolite that acts as a key regulator for the TCA cycle by an inhibitory effect on succinate dehydrogenase (SDH). Itaconic acid with mM concentration interferes the TCA cycle metabolism by direct inhibition of SDH. So, itaconic acid cytotoxicity monitoring is highly important. I succeeded to evaluate the metabolic inhibition effect of itaconic acid in yeast cells by electrochemical monitoring of intracellular NADH with my modified double mediator system. Further, I applied my method to evaluate the toxic effect of nystatin in yeast cells. Nystatin is widely used as an anti-fungal drug. It has been reported that the toxic effect of nystatin at the concentration of µg/mL range was evaluated by the colony counting method on the basis of cell membrane disruption. Here, the toxic effect of nystatin with two order lower concentration was evaluated by my method. The results obtained by my method demonstrated that 0.01 µg/mL of nystatin induced intracellular NADH decrease to promote apoptosis without cell membrane disruption.

In chapter 5, I concluded this research. Result obtained in this study suggested that my method might be applicable to evaluate the various types of acute cytotoxicity such as inhibition of respiratory chain, protein and DNA synthesis, etc. I believe that my method might be useful as a tool for academic study, cell-based research, medical and pharmaceutical applications. Finally, in the future perspective, I introduced the possibility of controlling intracellular metabolic activity by electrochemical reduction of intracellular NAD+ to NADH.

この論文で使われている画像

参考文献

[1] M. Kwolek-Mirek, R. Zadrag-Tecza, Comparison of methods used for assessing the viability and vitality of yeast cells, FEMS Yeast Res. 14 (2014) 1068–1079. https://doi.org/10.1111/1567-1364.12202.

[2] S.A. Altman, L. Randers, G. Rao, Comparison of Trypan Blue Dye Exclusion and Fluorometric Assays for Mammalian Cell Viability Determinations, Biotechnol. Prog. 9 (1993) 671–674. https://doi.org/10.1021/bp00024a017.

[3] W. Strober, Trypan blue exclusion test of cell viability., Curr. Protoc. Immunol. Appendix 3 (2001) 2–3. https://doi.org/10.1002/0471142735.ima03bs21.

[4] F. Piccinini, A. Tesei, C. Arienti, A. Bevilacqua, Cell Counting and Viability Assessment of 2D and 3D Cell Cultures: Expected Reliability of the Trypan Blue Assay, Biol. Proced. Online. 19 (2017) 1–12. https://doi.org/10.1186/s12575-017-0056-3.

[5] K.S. Louis, A.C. Siegel, Cell Viability Analysis Using Trypan Blue: Manual and Automated Methods Kristine, 2011. https://doi.org/10.1007/978-1-61779-108-6.

[6] X. Gong, Z. Liang, Y. Yang, H. Liu, J. Ji, Y. Fan, A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process, Regen. Biomater. 7 (2020) 271–281. https://doi.org/10.1093/rb/rbaa002.

[7] J. O’Brien, I. Wilson, T. Orton, F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur. J. Biochem. 267 (2000) 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x.

[8] R.C. Borra, M.A. Lotufo, S.M. Gagioti, F. de M. Barros, P.M. Andrade, A simple method to measure cell viability in proliferation and cytotoxicity assays, Braz. Oral Res. 23 (2009) 255–262. https://doi.org/10.1590/S1806-83242009000300006.

[9] H. Babich, E. Borenfreund, Applications of the Neutral Red Cytotoxicity Assay to In Vitro Toxicology, Altern. to Lab. Anim. 18 (1990) 129–144. https://doi.org/10.1177/026119299001800116.1.

[10] M. Bacanli, H.G. Anlar, A.A. Başaran, N. Başaran, Fenoliklerin sitotoksisite profillerinin değerlendirilmesi: Farklı hücrelerde farklı zaman aralıklarında nötral kırmızı ve MTT Yöntemlerinin karşılaştırılması, Turkish J. Pharm. Sci. 14 (2017) 95–107. https://doi.org/10.4274/tjps.07078.

[11] G. Repetto, A. del Peso, J.L. Zurita, Neutral red uptake assay for the estimation of cell viability/ cytotoxicity, Nat. Protoc. 3 (2008) 1125–1131. https://doi.org/10.1038/nprot.2008.75.

[12] P. Stiefel, S. Schmidt-Emrich, K. Maniura-Weber, Q. Ren, Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide, BMC Microbiol. 15 (2015) 1–9. https://doi.org/10.1186/s12866-015-0376-x.

[13] N. Atale, S. Gupta, U.C.S. Yadav, V. Rani, Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques, J. Microsc. 255 (2014) 7–19. https://doi.org/10.1111/jmi.12133.

[14] E. Berdalet, Q. Dortch, New double-staining technique for RNA and DNA measurement in marine phytoplankton, Mar. Ecol. Prog. Ser. 73 (1991) 295–305. https://doi.org/10.3354/meps073295.

[15] M. Rosario, G. Armesto, M. Prieto, A. Otero, Microbiología ^ ggM, (1993).

[16] G. Serhan, C.M. Stack, G.G. Perrone, C.O. Morton, The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides, Ann. Clin. Microbiol. Antimicrob. 13 (2014) 18–21. https://doi.org/10.1186/1476-0711-13-18.

[17] S. Sieuwerts, F.A.M. De Bok, E. Mols, W.M. De Vos, J.E.T. Van Hylckama Vlieg, A simple and fast method for determining colony forming units, Lett. Appl. Microbiol. 47 (2008) 275–278. https://doi.org/10.1111/j.1472-765X.2008.02417.x.

[18] H.S. Bhargav, S.D. Shastri, S.P. Poornav, K.M. Darshan, M.M. Nayak, Measurement of the Zone of Inhibition of an Antibiotic, Proc. - 6th Int. Adv. Comput. Conf. IACC 2016. (2016) 409–414. https://doi.org/10.1109/IACC.2016.82.

[19] M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal. 6 (2016) 71–79. https://doi.org/10.1016/j.jpha.2015.11.005.

[20] B. Bonev, J. Hooper, J. Parisot, Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method, J. Antimicrob. Chemother. 61 (2008) 1295– 1301. https://doi.org/10.1093/jac/dkn090.

[21] V.R. Krishnamurthi, I.I. Niyonshuti, J. Chen, Y. Wang, A new analysis method for evaluating bacterial growth with microplate readers, PLoS One. 16 (2021) 1–19. https://doi.org/10.1371/journal.pone.0245205.

[22] S.E. McBirney, K. Trinh, A. Wong-Beringer, A.M. Armani, Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates, Biomed. Opt. Express. 7 (2016) 4034. https://doi.org/10.1364/boe.7.004034.

[23] K. Stevenson, A.F. McVey, I.B.N. Clark, P.S. Swain, T. Pilizota, General calibration of microbial growth in microplate readers, Sci. Rep. 6 (2016) 4–10. https://doi.org/10.1038/srep38828.

[24] R. Wang, B. Lorantfy, S. Fusco, L. Olsson, C.J. Franzén, Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes, Sci. Rep. 11 (2021) 1–12. https://doi.org/10.1038/s41598-021-90703-8.

[25] T.A. Mensah, Measurement of Yeast Growth Using, (2018). https://doi.org/10.13140/RG.2.2.15418.03527.

[26] M. Suga, A. Kunimoto, H. Shinohara, Non-invasive, electro-orientation-based viability assay using optically transparent electrodes for individual fission yeast cells, Biosens. Bioelectron. 97 (2017) 53–58. https://doi.org/10.1016/j.bios.2017.05.034.

[27] M.C. Hofmann, M. Funke, J. Büchs, W. Mokwa, U. Schnakenberg, Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes, Sensors Actuators, B Chem. 147 (2010) 93–99. https://doi.org/10.1016/j.snb.2010.03.041.

[28] B. Luchterhand, J. Nolten, S. Hafizovic, T. Schlepütz, S.J. Wewetzer, E. Pach, K. Meier, G. Wandrey, J. Büchs, Newly designed and validated impedance spectroscopy setup in microtiter plates successfully monitors viable biomass online, Biotechnol. J. 10 (2015) 1259–1268. https://doi.org/10.1002/biot.201400534.

[29] I. Giaever, C.R. Keese, A morphological biosensor for mammalian cells, Nature. 366 (1993) 591–592. https://doi.org/10.1038/366591a0.

[30] L. Wang, L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo, J. Cheng, Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip, Biosens. Bioelectron. 25 (2010) 990–995. https://doi.org/10.1016/j.bios.2009.09.012.

[31] C. Lo, J. Ferrier, Bioimpedance Sensing, Encycl. Nanotechnol. 57 (2016) 257–257. https://doi.org/10.1007/978-94-017-9780-1_100077.

[32] Y. Xu, X. Xie, Y. Duan, L. Wang, Z. Cheng, J. Cheng, A review of impedance measurements of whole cells, Biosens. Bioelectron. 77 (2016) 824–836. https://doi.org/10.1016/j.bios.2015.10.027.

[33] Q. Hassan, S. Ahmadi, K. Kerman, Recent advances in monitoring cell behavior using cell-based impedance spectroscopy, Micromachines. 11 (2020). https://doi.org/10.3390/MI11060590.

[34] E. Takahashi, Y. Yamaoka, Simple and inexpensive technique for measuring oxygen consumption rate in adherent cultured cells, J. Physiol. Sci. 67 (2017) 731–737. https://doi.org/10.1007/s12576-017-0563-7.

[35] R.J. Aitken, Nitroblue tetrazolium (NBT) assay, Reprod. Biomed. Online. 36 (2018) 90–91. https://doi.org/10.1016/j.rbmo.2017.09.005.

[36] S.C. Hyung, W.K. Jun, Y.N. Cha, C. Kim, A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells, J. Immunoass. Immunochem. 27 (2006) 31–44. https://doi.org/10.1080/15321810500403722.

[37] L. Sandvik, J. Erikssen, E. Thaulow, G. Erikssen, The New England Journal of Medicine Downloaded from nejm.org at MCGILL UNIVERSITY LIBRARY on November 30, 2015. For personal use only. No other uses without permission. From the NEJM Archive. Copyright © 2010 Massachusetts Medical Society. All rights rese, Phys. Fit. as a Predict. Mortal. Men. 328(8) (1993) 2010–2013.

[38] P.D. Kilmer, Review Article: Review Article, Journalism. 11 (2010) 369–373. https://doi.org/10.1177/1461444810365020.

[39] T. Bernas, J.W. Dobrucki, The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC, Arch. Biochem. Biophys. 380 (2000) 108–116. https://doi.org/10.1006/abbi.2000.1907.

[40] M. V. Berridge, A.S. Tan, Characterization of the Cellular Reduction of 3-(4,5- dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction, Arch. Biochem. Biophys. 303 (1993) 474–482. https://doi.org/10.1006/abbi.1993.1311.

[41] J.C. Stockert, R.W. Horobin, L.L. Colombo, A. Blázquez-Castro, Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives, Acta Histochem. 120 (2018) 159–167. https://doi.org/10.1016/j.acthis.2018.02.005.

[42] A. Bahuguna, I. Khan, V.K. Bajpai, S.C. Kang, MTT assay to evaluate the cytotoxic potential of a drug, Bangladesh J. Pharmacol. 12 (2017) 115–118. https://doi.org/10.3329/bjp.v12i2.30892.

[43] P. Ngamwongsatit, P.P. Banada, W. Panbangred, A.K. Bhunia, WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line, J. Microbiol. Methods. 73 (2008) 211–215. https://doi.org/10.1016/j.mimet.2008.03.002.

[44] C.J. Goodwin, S.J. Holt, S. Downes, N.J. Marshall, Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS, J. Immunol. Methods. 179 (1995) 95–103. https://doi.org/10.1016/0022-1759(94)00277-4.

[45] M. V. Berridge, P.M. Herst, A.S. Tan, Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction, Biotechnol. Annu. Rev. 11 (2005) 127–152. https://doi.org/10.1016/S1387-2656(05)11004-7.

[46] L.M. Yin, Y. Wei, Y. Wang, Y.D. Xu, Y.Q. Yang, Long term and standard incubations of WST-1 reagent reflect the same inhibitory trend of cell viability in rat airway smooth muscle cells, Int. J. Med. Sci. 10 (2012) 68–72. https://doi.org/10.7150/ijms.5256.

[47] J.A. Barltrop, T.C. Owen, A.H. Cory, J.G. Cory, 5-(3-carboxymethoxyphenyl)-2-(4,5- dimethylthiazolyl)-3-(4-sulfophenyl)te trazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indica, Bioorganic Med. Chem. Lett. 1 (1991) 611–614. https://doi.org/10.1016/S0960-894X(01)81162-8.

[48] K. Nonami, NII-Electronic Library Service, Chem. Pharm. Bull. 57 (2002) 364–370. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake- volcano-group-central-japan/.

[49] A. V. Peskin, C.C. Winterbourn, A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1), Clin. Chim. Acta. 293 (2000) 157–166. https://doi.org/10.1016/S0009-8981(99)00246-6.

[50] D.A. Scudiero, R.H. Shoemaker, K.D. Paull, A. Monks, S. Tierney, T.H. Nofziger, M.J. Currens, D. Seniff, M.R. Boyd, Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines, Cancer Res. 48 (1988) 4827–4833.

[51] M. V. Berridge, A.S. Tan, Trans-plasma membrane electron transport: A cellular assay for NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1, Protoplasma. 205 (1998) 74–82. https://doi.org/10.1007/BF01279296.

[52] J.C.W. Comley, C.H. Turner, Potential of a soluble tetrazolium/formazan assay for the evaluation of filarial viability, Int. J. Parasitol. 20 (1990) 251–255. https://doi.org/10.1016/0020-7519(90)90107-X.

[53] P.M. Debnam, G. Shearer, Colorimetric assays for substrates of NADP+-dependent dehydrogenases based on reduction of a tetrazolium dye to its soluble formazan, Anal. Biochem. 250 (1997) 253–255. https://doi.org/10.1006/abio.1997.2245.

[54] A. Heiskanen, J. Yakovleva, C. Spégel, R. Taboryski, M. Koudelka-Hep, J. Emnéus, T. Ruzgas, Amperometric monitoring of redox activity in living yeast cells: Comparison of menadione and menadione sodium bisulfite as electron transfer mediators, Electrochem. Commun. 6 (2004) 219–224. https://doi.org/10.1016/j.elecom.2003.12.003.

[55] A. Heiskanen, C. Spégel, N. Kostesha, S. Lindahl, T. Ruzgas, J. Emnéus, Mediator- assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells, Anal. Biochem. 384 (2009) 11–19. https://doi.org/10.1016/j.ab.2008.08.030.

[56] M. Rahimi, H.Y. Youn, D.J. McCanna, J.G. Sivak, S.R. Mikkelsen, Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells, Anal. Bioanal. Chem. 405 (2013) 4975–4979. https://doi.org/10.1007/s00216-013-6843-z.

[57] K. Ino, T. Onodera, M.T. Fukuda, Y. Nashimoto, H. Shiku, Combination of Double- Mediator System with Large-Scale Integration-Based Amperometric Devices for Detecting NAD(P)H:quinone Oxidoreductase 1 Activity of Cancer Cell Aggregates, ACS Sensors. 4 (2019) 1619–1625. https://doi.org/10.1021/acssensors.9b00344.

[58] M. Mazloum-Ardakani, B. Barazesh, S.M. Moshtaghioun, M.H. Sheikhha, Designing and optimization of an electrochemical substitute for the MTT (3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) cell viability assay, Sci. Rep. 9 (2019) 1–8. https://doi.org/10.1038/s41598-019-51241-6.

[59] G. Gao, D. Fang, Y. Yu, L. Wu, Y. Wang, J. Zhi, A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater, Talanta. 167 (2017) 208–216. https://doi.org/10.1016/j.talanta.2017.01.081.

[60] K. Stapelfeldt, E. Ehrke, J. Steinmeier, W. Rastedt, R. Dringen, Menadione-mediated WST1 reduction assay for the determination of metabolic activity of cultured neural cells, Anal. Biochem. 538 (2017) 42–52. https://doi.org/10.1016/j.ab.2017.09.011.

[61] V.E. Acceptors, l-Methoxy-5-Methylphenazinium Methyl Sulfate, 1473 (1977) 1469–1473.

[62] P. Kugler, Quantitative dehydrogenase histochemistry with exogenous electron carriers (PMS, MPMS, MB), Histochemistry. 75 (1982) 99–112. https://doi.org/10.1007/BF00492537.

[63] M.A. Alim, M. Suga, H. Shinohara, Rapid and Highly Sensitive Electrochemical Technique for Cell Viability Assay via Monitoring of Intracellular NADH with New Double Mediator System, Electrochemistry. 12 (2021) 2–7. https://doi.org/10.5796/electrochemistry.21-00088.

[64] J.C. Stockert, A. Blázquez-Castro, M. Cañete, R.W. Horobin, Á. Villanueva, MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets, Acta Histochem. 114 (2012) 785–796. https://doi.org/10.1016/j.acthis.2012.01.006.

[65] Y. Matsumae, Y. Takahashi, K. Ino, H. Shiku, T. Matsue, Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system, Anal. Chim. Acta. 842 (2014) 20–26. https://doi.org/10.1016/j.aca.2014.06.047.

[66] H. Tominaga, M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hamamoto, K. Suzuki, M. Watanabe, A water-soluble tetrazolium salt useful for colorimetric cell viability assay, Anal. Commun. 36 (1999) 47–50. https://doi.org/10.1039/a809656b.

[67] L. Fiume, M. Vettraino, M. Manerba, G. Di Stefano, Inhibition of lactic dehydrogenase as a way to increase the anti-proliferative effect of multi-targeted kinase inhibitors, Pharmacol. Res. 63 (2011) 328–334. https://doi.org/10.1016/j.phrs.2010.12.005.

[68] X. Li, W. Lu, Y. Hu, S. Wen, C. Qian, W. Wu, P. Huang, Effective inhibition of nasopharyngeal carcinoma in vitro and in vivo by targeting glycolysis with oxamate, Int. J. Oncol. 43 (2013) 1710–1718. https://doi.org/10.3892/ijo.2013.2080.

[69] S.R. Choi, A.B. Beeler, A. Pradhan, E.B. Watkins, J.M. Rimoldi, B. Tekwani, M.A. Avery, Generation of oxamic acid libraries: Antimalarials and inhibitors of plasmodium falciparum lactate dehydrogenase, J. Comb. Chem. 9 (2007) 292–300. https://doi.org/10.1021/cc060110n.

[70] X. Zhai, Y. Yang, J. Wan, R. Zhu, Y. Wu, Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells, Oncol. Rep. 30 (2013) 2983–2991. https://doi.org/10.3892/or.2013.2735.

[71] R. Moreno-Sánchez, Á. Marín-Hernández, I. Del Mazo-Monsalvo, E. Saavedra, S. Rodríguez-Enríquez, Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism, Biochim. Biophys. Acta - Gen. Subj. 1861 (2017) 3221–3236. https://doi.org/10.1016/j.bbagen.2016.08.006.

[72] W.K. Miskimins, H.J. Ahn, J.Y. Kim, S. Ryu, Y.S. Jung, J.Y. Choi, Synergistic anti- cancer effect of phenformin and oxamate, PLoS One. 9 (2014). https://doi.org/10.1371/journal.pone.0085576.

[73] H. Akbari, K. Karimi, M. Lundin, M.J. Taherzadeh, Optimization of baker’s yeast drying in industrial continuous fluidized bed dryer, Food Bioprod. Process. 90 (2012) 52–57. https://doi.org/10.1016/j.fbp.2010.12.005.

[74] M. Ciani, F. Comitini, I. Mannazzu, P. Domizio, Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking, FEMS Yeast Res. 10 (2010) 123–133. https://doi.org/10.1111/j.1567-1364.2009.00579.x.

[75] E.J. Lodolo, J.L.F. Kock, B.C. Axcell, M. Brooks, The yeast Saccharomyces cerevisiae - The main character in beer brewing, FEMS Yeast Res. 8 (2008) 1018–1036. https://doi.org/10.1111/j.1567-1364.2008.00433.x.

[76] W.A. Elkhateeb, M. Akram, Yeast as Biotechnological Tool in Food Industry Yeast as Biotechnological Tool in Food Industry, (2021). https://doi.org/10.23880/oajpr-16000243.

[77] C.C. Tonon, R.S. Francisconi, E.A.F. Bordini, P.M.M. Huacho, J. de C.O. Sardi, D.M.P. Spolidorio, Interactions between terpinen-4-ol and nystatin on biofilm of Candida albicans and Candida tropicalis, Braz. Dent. J. 29 (2018) 359–367. https://doi.org/10.1590/0103-6440201802073.

[78] Y. Viability, M. With, Determine yeast concentration and viability at your benchtop, BioProbes. 4 (2012) 28–29.

[79] B.E. Teleky, D.C. Vodnar, Biomass-derived production of itaconic acid as a building block in specialty polymers, Polymers (Basel). 11 (2019). https://doi.org/10.3390/polym11061035.

[80] C.S. Marvel, T.H. Shepherd, Polymerization Reactions of Itaconic Acid and Some of Its Derivatives, J. Org. Chem. 24 (1959) 599–605. https://doi.org/10.1021/jo01087a006.

[81] Á.P. Molnár, Z. Németh, I.S. Kolláth, E. Fekete, M. Flipphi, N. Ág, Á. Soós, B. Kovács, E. Sándor, C.P. Kubicek, L. Karaffa, High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus, Appl. Microbiol. Biotechnol. 102 (2018) 8799–8808. https://doi.org/10.1007/s00253-018-9325-6.

[82] S. Krull, L. Eidt, A. Hevekerl, A. Kuenz, U. Prüße, Itaconic acid production from wheat chaff by Aspergillus terreus, Process Biochem. 63 (2017) 169–176. https://doi.org/10.1016/j.procbio.2017.08.010.

[83] L. van der Straat, M. Vernooij, M. Lammers, W. van den Berg, T. Schonewille, J. Cordewener, I. van der Meer, A. Koops, L.H. De Graaff, Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger, Microb. Cell Fact. 13 (2014). https://doi.org/10.1186/1475-2859-13-11.

[84] M. Okabe, D. Lies, S. Kanamasa, E.Y. Park, Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus, Appl. Microbiol. Biotechnol. 84 (2009) 597– 606. https://doi.org/10.1007/s00253-009-2132-3.

[85] A.H. Hossain, A. Li, A. Brickwedde, L. Wilms, M. Caspers, K. Overkamp, P.J. Punt, Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger, Microb. Cell Fact. 15 (2016) 1–15. https://doi.org/10.1186/s12934-016-0527-2.

[86] T. Boruta, M. Bizukojc, Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective, World J. Microbiol. Biotechnol. 33 (2017) 1–12. https://doi.org/10.1007/s11274-017-2206-9.

[87] F. Carstensen, T. Klement, J. Büchs, T. Melin, M. Wessling, Continuous production and recovery of itaconic acid in a membrane bioreactor, Bioresour. Technol. 137 (2013) 179–187. https://doi.org/10.1016/j.biortech.2013.03.044.

[88] Y. Xu, Z. Li, Utilization of ethanol for itaconic acid biosynthesis by engineered Saccharomyces cerevisiae , FEMS Yeast Res. 21 (2021) 1–13. https://doi.org/10.1093/femsyr/foab043.

[89] V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E.E. Vincent, E. Loginicheva, L. Cervantes-Barragan, X. Ma, S.C.C. Huang, T. Griss, C.J. Weinheimer, S. Khader, G.J. Randolph, E.J. Pearce, R.G. Jones, A. Diwan, M.S. Diamond, M.N. Artyomov, Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation, Cell Metab. 24 (2016) 158–166. https://doi.org/10.1016/j.cmet.2016.06.004.

[90] T. Cordes, M. Wallace, A. Michelucci, A.S. Divakaruni, S.C. Sapcariu, C. Sousa, H. Koseki, P. Cabrales, A.N. Murphy, K. Hiller, C.M. Metallo, Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels, J. Biol. Chem. 291 (2016) 14274–14284. https://doi.org/10.1074/jbc.M115.685792.

[91] T. Cordes, C.M. Metallo, Itaconate alters succinate and coenzyme a metabolism via inhibition of mitochondrial complex II and methylmalonyl‐coa mutase, Metabolites. 11 (2021) 1–14. https://doi.org/10.3390/metabo11020117.

[92] A. Michelucci, T. Cordes, J. Ghelfi, A. Pailot, N. Reiling, O. Goldmann, T. Binz, A. Wegner, A. Tallam, A. Rausell, M. Buttini, C.L. Linster, E. Medina, R. Balling, K. Hiller, Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 7820–7825. https://doi.org/10.1073/pnas.1218599110.

[93] L.A.J. O’Neill, A Broken Krebs Cycle in Macrophages, Immunity. 42 (2015) 393–394. https://doi.org/10.1016/j.immuni.2015.02.017.

[94] B.A. McFadden, S. Purohit, Itaconate, an isocitrate lyase directed inhibitor in Pseudomonas indigofera, J. Bacteriol. 131 (1977) 136–144. https://doi.org/10.1128/jb.131.1.136-144.1977.

[95] B.X.C. Kwai, A.J. Collins, M.J. Middleditch, J. Sperry, G. Bashiri, I.K.H. Leung, Itaconate is a covalent inhibitor of theMycobacterium tuberculosisisocitrate lyase, RSC Med. Chem. 12 (2021) 57–61. https://doi.org/10.1039/d0md00301h.

[96] C. Nastasi, A. Willerlev-Olsen, K. Dalhoff, S.L. Ford, A.S.Ø. Gadsbøll, T.B. Buus, M. Gluud, M. Danielsen, T. Litman, C.M. Bonefeld, C. Geisler, N. Ødum, A. Woetmann, Inhibition of succinate dehydrogenase activity impairs human T cell activation and function, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-020-80933-7.

[97] W.W. Ackermann, V.R. Potter, Enzyme Inhibition in Relation to Chemotherapy, Proc. Soc. Exp. Biol. Med. 72 (1949) 1–9. https://doi.org/10.3181/00379727-72-17313.

[98] F.C. Odds, A.J.P. Brown, N.A.R. Gow, Antifungal agents: Mechanisms of action, Trends Microbiol. 11 (2003) 272–279. https://doi.org/10.1016/S0966-842X(03)00117-3.

[99] H. Lee, D.G. Lee, Novel approaches for efficient antifungal drug action, J. Microbiol. Biotechnol. 28 (2018) 1771–1781. https://doi.org/10.4014/jmb.1807.07002.

[100] A. Ogita, K.I. Fujita, T. Tanaka, Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B, Front. Microbiol. 3 (2012) 1–6. https://doi.org/10.3389/fmicb.2012.00100.

[101] S.A.A. Mousavi, G.D. Robson, Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype, Microbiology. 150 (2004) 1937–1945. https://doi.org/10.1099/mic.0.26830-0.

[102] K.I. Fujita, M. Tatsumi, A. Ogita, I. Kubo, T. Tanaka, Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae, FEBS J. 281 (2014) 1304–1313. https://doi.org/10.1111/febs.12706.

[103] B.M.E. Hayes, M.A. Anderson, A. Traven, N.L. Van Der Weerden, M.R. Bleackley, Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins, Cell. Mol. Life Sci. 71 (2014) 2651–2666. https://doi.org/10.1007/s00018-014-1573-8.

[104] X. Lyu, C. Zhao, Z.M. Yan, H. Hua, Efficacy of nystatin for the treatment of oral candidiasis: A systematic review and meta-analysis, Drug Des. Devel. Ther. 10 (2016) 1161–1171. https://doi.org/10.2147/DDDT.S100795.

[105] B. Chudzik, M. Koselski, A. Czuryło, K. Trębacz, M. Gagoś, A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions, Eur. Biophys. J. 44 (2015) 77–90. https://doi.org/10.1007/s00249-014-1003-8.

[106] A.J. Phillips, I. Sudbery, M. Ramsdale, Apoptosis induced by environmental stresses and amphotericin B in Candida albicans, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 14327– 14332. https://doi.org/10.1073/pnas.2332326100.

[107] R.S. Al-Dhaheri, L.J. Douglas, Apoptosis in Candida biofilms exposed to amphotericin B, J. Med. Microbiol. 59 (2010) 149–157. https://doi.org/10.1099/jmm.0.015784-0.

[108] B. Almeida, A. Silva, A. Mesquita, B. Sampaio-Marques, F. Rodrigues, P. Ludovico, Drug-induced apoptosis in yeast, Biochim. Biophys. Acta - Mol. Cell Res. 1783 (2008) 1436–1448. https://doi.org/10.1016/j.bbamcr.2008.01.005.

[109] K. Baronian, A. Downard, R. Lowen, N. Pasco, Detection of two distinct substrate- dependent catabolic responses in yeast cells using a mediated electrochemical method, Appl. Microbiol. Biotechnol. 60 (2002) 108–113. https://doi.org/10.1007/s00253-002-1108-3.

[110] M. Lou Fultz, R.A. Durst, Mediator compounds for the electrochemical study of biological redox systems: a compilation, Anal. Chim. Acta. 140 (1982) 1–18. https://doi.org/10.1016/S0003-2670(01)95447-9.

参考文献をもっと見る