リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Novel Intramolecular Charge Transfer Functional Dyes Based on Control of the Excited States」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Novel Intramolecular Charge Transfer Functional Dyes Based on Control of the Excited States

林 祐一朗 大阪府立大学 DOI:info:doi/10.24729/00017355

2021.04.21

概要

Charge transfer is one of the fundamental processes in many chemistry and biology [1]. Charge transfer processes can be divided into two categories. One is the charge transfer from an electron-rich donor molecule to a different electron-poor acceptor molecule, known as intermolecular charge transfer. The other is the charge transfer in the molecule containing the donor and the acceptor, generally called intramolecular charge transfer (ICT). The ICT process generally occurs upon the photoexcitation. The photoexcitation facilitates charge transfer from one part of a molecule in the ground state to another part in the excited state, resulting in the charge distribution in the excited state being significantly different from that in the ground state. Recently, π-conjugated organic molecules composed of electron donor (D) and acceptor (A) units (D–A-type ICT molecules, Fig. 1) have received a great deal of attention as a class of dyes exhibiting ICT behavior.

It is well known that D–A-type ICT molecules often give rise to dual emission. The peak found at the blue end of the emission spectrum is generally assumed to originate from the locally excited (LE) state, while the peak seen at the red end is generally assigned to the ICT excited species. The ICT process is promoted in polar solvents, and the large Stokes shift for the ICT fluorescence is due to electrostatic stabilization of the excited state by solvation [2]. In Fig. 2, the potential energy surface (PES) of the ground state S0 and the excited state S1 are illustrated for an ICT molecule, where both LE and ICT states are given for S1. In this scheme, the molecule is photoexcited and then subjected to relaxation to the LE state. The ICT reaction proceeds from the LE state to the ICT state across an activation energy barrier. This equilibrium between the LE and ICT states results in dual emission. Lippert et al. reported the dual emission of 4-N,N-dimethylaminobenzonitrile (DMABN) in 1962 [3]. The origin of the dual emission of DMABN had been discussed for several years, and finally, it was concluded that the double emission observed in DMABN was caused by the ICT in the excited state from the dimethylamino group to the cyano group upon photoexcitation. Subsequently, many related derivatives of DMABN have been reported to investigate the dynamics of the ICT process [4].

The early results of experimental and theoretical studies on the ICT process of DMABN suggest the twisted intramolecular charge transfer (TICT) [3]. In the TICT model, the ICT state is only generated by an adiabatic process from the LE state through rotational motion around the bond between the donor and acceptor subunits. In the absence of an energy barrier between the LE and ICT states, the relaxation of the excited state occurs very rapidly, leading to emission only from the ICT state. The TICT model had been recognized one of the common concepts in explaining the ICT process. However, there are many experimental results that cannot be explained by this model. For example, Yoshihara et al. reported that N-phenylpyrrole and its planar analogue (fluorazene phenylpyrrole), exhibit similar LE and ICT emission energies (Fig. 3) [5]. Hence, the planar intramolecular charge transfer (PICT) mechanism was proposed to explain these experimental results. There are several examples supporting the fact that the ICT state of the molecule does not have to be twisted [6].

ICT molecules form the molecular orbitals (MOs) extended over the entire D–A system by D–A interactions in the ground state (Fig. 4). The low bandgap transition induced by these MOs provides a broad electronic absorption band in the visible region. This transition is often called the ICT transition. The band gap of the ICT transition can be further reduced by extending the π-conjugation system between the donor and accepter moieties, as seen in a class of molecules called D–π–A type ICT molecules [7]. Molecules with D–A–D (or D–π–A–π–D) [8] and A–D– A (or A–π–D–π–A) [9] structures also belong to the group of ICT molecules, allowing us to design a wide range of functional dyes showing various photophysical properties. As shown above, ICT molecules exhibit specific and useful photophysical properties. Therefore, ICT functional dyes promise for applications such as nonlinear optical (NLO) materials [10], organic light emitting diodes (OLED) [8a,8c,11], solar energy conversion [7a,7b,9], and fluorescence sensing [12].

この論文で使われている画像

参考文献

Chapter1

[1] (a) G. Sedghi, K. Sawada, L. J. Esdaile, M. Hoffmann, H. L. Anderson, D. Bethell, W.Haiss, S. J. Higgins and R. J. Nichols, J. Am. Chem. Soc., 2008, 130, 8582–8583. (b) G.L. Closs and J. R. Miller, Science, 1988, 240, 440–447. (c) J. L. Brédas, J. P. Calbert, D.A. Da Silva Filho and J. Cornil, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5804–5809. (d)P. F. Barbara, G. C. Walker and T. P. Smith, Science, 1992, 256, 975–981.

[2] S. I. Druzhinin, P. Mayer, D. Stalke, R. Von Bülow, M. Noltemeyer and K. A.Zachariasse,J. Am. Chem. Soc., 2010, 132, 7730–7744.

[3] Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev., 2003, 103, 3899–4031.

[4] (a) W. Fuß, W. E. Schmid, K. K. Pushpa, S. A. Trushin and T. Yatsuhashi, Phys. Chem.Chem. Phys., 2007, 9, 1151–1169. (b) W. Fuß, K. K. Pushpa, W. Rettig, W. E. Schmid and S. A. Trushin, Photochem. Photobiol. Sci., 2002, 1, 255–262. (c) S. A. Trushin, T. Yatsuhashi, W. Fuß and W. E. Schmid, Chem. Phys. Lett., 2003, 376, 282–291. (d) T. Yatsuhashi, S. A. Trushin, W. Fuß, W. Rettig, W. E. Schmid and S. Zilberg, Chem. Phys. 2004, 296, 1–12. (e) K. A. Zachariasse, S. I. Druzhinin, W. Bosch and R. Machinek, J. Am. Chem. Soc., 2004, 126, 1705–1715.

[5] T. Yoshihara, S. I. Druzhinin and K. A. Zachariasse, J. Am. Chem. Soc., 2004, 126, 8535–8539.

[6] (a) I. Gómez, M. Reguero, M. Boggio-Pasqua and M. A. Robb, J. Am. Chem. Soc., 2005,127, 7119–7129. (b) S. Cogan, S. Zilberg and Y. Haas, J. Am. Chem. Soc., 2006, 128,3335–3345. (c) C. A. Guido, B. Mennucci, D. Jacquemin and C. Adamo, Phys. Chem.Chem. Phys., 2010, 12, 8016–8023.

[7] (a) Y. K. Eom, I. T. Choi, S. H. Kang, J. Lee, J. Kim, M. J. Ju and H. K. Kim, Adv. EnergyMater., 2015, 5, 1–9. (b) S. S. Soni, K. B. Fadadu, J. V. Vaghasiya, B. G. Solanki, K. K. Sonigara, A. Singh, D. Das and P. K. Iyer, J. Mater. Chem. A, 2015, 3, 21664–21671. (c)X. Qiu, S. Ying, C. Wang, M. Hanif, Y. Xu, Y. Li, R. Zhao, D. Hu, D. Ma and Y. Ma, J.Mater. Chem. C, 2019, 7, 592–600.

[8] (a) G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, M. Dongge and Z. Y. Wang, Chem.Mater., 2008, 20, 6208–6216. (b) T. Shigehiro, S. Yagi, T. Maeda, H. Nakazumi and H. Fujiwara, Tetrahedron Lett., 2014, 55, 5195–5198. (c) J. S. Ward, R. S. Nobuyasu, M. A.Fox, A. S. Batsanov, J. Santos, F. B. Dias and M. R. Bryce, J. Org. Chem., 2018, 83, acs.joc.8b02187.

[9] (a) C. L. Chung, C. Y. Chen, H. W. Kang, H. W. Lin, W. L. Tsai, C. C. Hsu and K. T. Wong, Org. Electron. physics, Mater. Appl., 2016, 28, 229–238. (b) J. Wu, Y. Ma, N. Wu, Y. Lin, J. Lin, L. Wang and C. Q. Ma, Org. Electron. physics, Mater. Appl., 2015, 23, 28–38.

[10] (a) S. K. Lanke and N. Sekar, Dye. Pigment., 2016, 124, 82–92. (b) F. Liu, Y. Yang, S.Cong, H. Wang, M. Zhang, S. Bo, J. Liu, Z. Zhen, X. Liu and L. Qiu, RSC Adv., 2014, 4,52991–52999. (c) K. P. Divya, S. Sreejith, P. Ashokkumar, K. Yuzhan, Q. Peng, S. K.Maji, Y. Tong, H. Yu, Y. Zhao, P. Ramamurthy and A. Ajayaghosh, Chem. Sci., 2014, 5,3469–3474.

[11] (a) C. Adachi, Jpn. J. Appl. Phys., 2014, 53, 060101. (b) Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka and C. Adachi, Nat. Photonics, 2014, 8, 326–332. (c) Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.

[12] N. I. Georgiev, N. V. Marinova and V. B. Bojinov, J. Photochem. Photobiol. A Chem., 2020, 401, 112733.

[13] (a) P. Esser, B. Pohlmann and H.-D. Scharfet, Angew. Chemie, 1994, 106, 2093–2108. (b) P. Liang, C. Zhang, X. Duan, H. Sun, S. Liu, M. O. Tade and S. Wang, Environ. Sci. Nano, 2017, 4, 315–324.

[14] (a) G. Jiang, J. Chen, J. S. Huang and C. M. Che, Org. Lett., 2009, 11, 4568–4571. (b) T.Montagnon, M. Tofi and G. Vassilikogiannakis, Acc. Chem. Res., 2008, 41, 1001–1011.

[15] (a) X. L. Wang, Y. Zeng, Y. Z. Zheng, J. F. Chen, X. Tao, L. X. Wang and Y. Teng, Chem.- A Eur. J., 2011, 17, 11223–11229. (b) M. Wainwright and K. B. Crossley, Int. Biodeterior. Biodegrad., 2004, 53, 119–126.

[16] (a) S. O. Duke, J. M. Becerril, T. D. Sherman and H. Matsumoto, ACS Symp. Ser., 1991, 449, 371–386. (b) C. A. Rebeiz, J. A. Juvik, C. C. Rebeiz, C. E. Bouton and L. J. Gut, Pestic. Biochem. Physiol., 1990, 36, 201–207.

[17] (a) T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J.Moan and Q. Peng, J. Natl. Cancer Inst., 1998, 90, 889‒905. (b) S. B. Brown, E. A. Brown and I. Walker, Lancet Oncol., 2004, 5, 497‒508. (c) J. P. Celli, B. Q. Spring, I.Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, Chem. Rev., 2010,110, 2795‒2838. (d) A. Master, M. Livingston and A. S. Gupta, J. Control. Release., 2013,168, 88‒102.

[18] (a) A. P. Castano, T. N. Demidova and M. R. Hamblin, Photodiagnosis Photodyn Ther,2004, 1, 279–293. (b) Z. Huang, Technol. Cancer Res. Treat., 2005, 4, 283–293.

[19] (a) T. J. Dougherty, Photochem. Photobiol., 1983, 38, 377–379. (b) M. O. Senge and J. C. Brandt, Photochem. Photobiol., 2011, 87, 1240–1296. (c)

[20] (a) S. Tachikawa, M. E. El-Zaria, R. Inomata, S. Sato and H. Nakamura, Bioorganic Med. Chem., 2014, 22, 4745–4751. (b) S. Tachikawa, S. Sato, H. Hazama, Y. Kaneda, K. Awazu and H. Nakamura, Bioorganic Med. Chem., 2015, 23, 7578–7584.

[21] (a) J. D. Miller, E. D. Baron, H. Scull, A. Hsia, J. C. Berlin, T. McCormick, V. Colussi, M. E. Kenney, K. D. Cooper and N. L. Oleinick, Toxicol. Appl. Pharmacol., 2007, 224, 290–299. (b) T. Nyokong and I. Gledhill, AIP Conf. Proc., 2013, 1517, 49–52.

[22] E. Panzarini, V. Inguscio, G. M. Fimia and L. Dini, PLoS One, 2014, 9, 20–22.

[23] (a) A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and K. Burgess, Chem. Soc. Rev., 2013, 42, 77–88. (b)M. Gorbe, A. M. Costero, F. Sancenón, R. Martínez-Máñez, R. Ballesteros-Cillero, L. E. Ochando, K. Chulvi, R. Gotor and S. Gil, Dye. Pigment., 2019, 160, 198–207.

[24] Y. Chen, S. Li, Y. Chi, Y. Cheng, Y. Yeh, and P. Chou, ChemPhysChem, 2005, 6, 2012– 2017.

[25] T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa and T. Nagano, J. Am. Chem. Soc., 2005, 127, 12162–12163.

[26] R. Acharya, S. Cekli, C. J. Zeman, R. M. Altamimi and K. S. Schanze, J. Phys. Chem. Lett., 2016, 7, 693–697.

[27] S. Xu, Y. Yuan, X. Cai, C. J. Zhang, F. Hu, J. Liang, G. Zhang, D. Zhang and B. Liu, Chem. Sci., 2015, 6, 5824–5830.

[28] (a) M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke and H. Kobayashi, Nat. Med., 2011, 17, 1685–1691. (b) Z. Guo, S. Park, J. Yoon and I. Shin, Chem. Soc. Rev., 2014, 43, 16–29.

[29] C. Zhong, Phys. Chem. Chem. Phys., 2015, 17, 9248–9257.

[30] S. Umar, A. K. Jha and A. Goel, Asian J. Org. Chem., 2016, 5, 187–191.

[31] S. Yu, X. Yang, Z. Shao, Y. Feng, X. Xi, R. Shao, Q. Guo and X. Meng, Sensors Actuators, B Chem., 2016, 235, 362–369.

[32] (a) M. A. Haidekker and E. A. Theodorakis, J. Biol. Eng., 2010, 4, 1–14. (b) W. J. Akers and M. A. Haidekker, J. Biomech. Eng., 2005, 127, 450–454. (c) M. A. Haidekker and E. A. Theodorakis, Org. Biomol. Chem., 2007, 5, 1669–1678. (d) M. K. Kuimova, Phys. Chem. Chem. Phys., 2012, 14, 12671–12686.

[33] V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, V. N. Uversky, I. M. Kuznetsova and K. K. Turoverov, J. Phys. Chem. B, 2008, 112, 15893–15902.

Chapter2

Section 2.1.

[1] P. Esser, B. Pohlmann and H.-D. Scharf, Angew. Chem. Int. Ed. Engl., 1994, 33, 2009– 2023.

[2] P. Liang, C. Zhang, X. Duan, H. Sun, S. Liu, M. O. Tade and S. Wang, Envion. Sci.: Nano, 2017, 4, 315–324.

[3] G. Jiang, J. Chen, J.-S. Huang and C.-M. Che, Org. Lett., 2009, 11, 4568–4571.

[4] T. Montagnon, M. Tofi and G. Vassilikogiannakis, Acc. Chem. Res., 2008, 41,1001–1011.

[5] X.-L. Wang, Y. Zeng, Y.-Z. Zheng, J.-F. Chen, X. Tao, L.-X. Wang and Y. Teng, Chem.Eur. J., 2011, 17, 11223–11229.

[6] M. Wainwright and K. B. Crossley, Int. Biodeterior. Biodegrad., 2004, 53, 119–126.

[7] S. O. Duke, J. M. Becerril, T. D. Sherman and H. Matsumoto, ACS Symp. Ser., 1991, 449, 371–386.

[8] C. A. Rebeiz, J. A. Juvik, C. C. Rebeiz, C. E. Bouton and L. J. Gut, Pestic. Biochem. Physiol., 1990, 36, 201–207.

[9] M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 233/234, 351–371.

[10] K. V. Sudheesh, P. S. Jayaram, A. Samanta, K. S. Bejoymohandas, R. S. Jayasree and A. Ajayaghosh, Chem. Eur. J., 2018, 24, 10999–11007.

[11] L. V. Nair, S. S. Nazeer, R. S. Jayasree and A. Ajayaghosh, ACS Nano, 2015, 9, 5825– 5832.

[12] T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, J. Natl. Cancer Inst., 1998, 90, 889–905.

[13] S. B. Brown, E. A. Brown and I. Walker, Lancet Oncol., 2004, 5, 497–508.

[14] J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, Chem. Rev., 2010, 110, 2795–2838.

[15] A. Master, M. Livingston and A. S. Gupta, J. Control. Release, 2013, 168, 88–102.

[16] A. P. Castano, T. N. Demidova and M. R. Hamblin, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

[17] Z. Huang, Technol. Cancer Res. Treat., 2005, 4, 283–293.

[18] Z. Diwu and J. W. Lown, Pharmac. Ther., 1994, 63, 1–35.

[19] M. Wainwright, Chem. Soc. Rev., 1996, 25, 351–359.

[20] B Pucelik, L. Gürol, V. Ahsen, F. Dumoulin and J. M. Dąbrowski, Eur. J. Med. Chem., 2016, 124, 284–298.

[21] X. Li, D. Lee, J.-D. Huang and J. Yoon, Angew. Chem. Int. Ed., 2018, 57, 9885–9890.

[22] E. Panzarini, V. Inguscio, G. M. Fimia and L. Dini, PloS One, 2014, 9, e105778 (12 pages).

[23] A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and K. Burgess, Chem. Soc. Rev., 2013, 42, 77–88.

[24] M. Gorbe, A. M. Costero, F. Sancenón, R. Martínez-Máñez, R. Ballesteros-Cillero, L. E. Ochando, K. Chulvi, R. Gotor and S. Gil, Dyes Pigm., 2019, 160, 198–207.

[25] S. Fuse, M. Takizawa, K. Matsumura, S. Sato, S. Okazaki and H. Nakamura, Eur. J. Org.Chem., 2017, 2017, 5170–5177.

[26] Y. Gao, Q. C. Zheng, S. Xu, Y. Yuan, X. Cheng, S. Jiang, Kenry, Q. Yu, Z. Song, B. Liu and M. Li, Theranostics, 2019, 9, 1264–1279.

[27] A. W. McKinley, P. Lincoln and E. M. Tuite, Coord. Chem. Rev., 2011, 255, 2676–2692.

[28] M. Li, P. Lincoln and J. Andersson, J. Phys. Chem. B, 2011, 115, 7923–7931.

[29] B. A. Albani, B. Peña, N. A. Leed, N. A. B. G. de Paula, C. Pavani, M. S. Baptista, K. R. Dunbar and C. Turro, J. Am. Chem. Soc., 2014, 136, 17095–17101.

[30] T. Shigehiro, S. Yagi, T. Maeda, H. Nakazumi, H. Fujiwara and Y. Sakurai, Tetrahedron Lett., 2014, 55, 5195–5198.

[31] T. Shigehiro, Y.Kawai, S. Yagi, T. Maeda, H. Nakazumi and Y. Sakurai, Chem. Lett., 2015, 44, 288–290.

[32] Y. He, Y. Hayashi, T. Maeda, H. Nakazumi and S. Yagi, J. Jpn. Soc. Colour Mater., 2016, 89, 371–379.

[33] R. Karpicz, S. Puzinas, S. Krotkus, K. Kazlauskas, S. Jursenas, J. V. Grazulevicius, S. Grigalevicius and V. Gulbinas, J. Chem. Phys., 2011, 134, 204508.

[34] Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata and C. Adachi, J. Am. Chem. Soc., 2014, 136, 18070–18081.

[35] D. G. Patel, F. Feng, Y. Ohnishi, K. A. Abboud, S. Hirata, K. S. Schanze and J. R. Reynolds, J. Am. Chem. Soc., 2012, 134, 2599–2612.

[36] A. Parthasarathy, S. Goswami, T. S. Corbitt, E. Ji, D. Dascier, D. G. Whitten and K. S. Schanze, ACS Appl. Mater. Interfaces, 2013, 5, 4516–4520.

[37] A. Gorman, J. Killoran, C. O’Shea, T. Kenna, W. M. Gallagher and D. F. O’Shea, J. Am. Chem. Soc., 2004, 126, 10619–10631.

[38] J. Zhao, W. Wu, J. Sun and S. Guo, Chem. Soc. Rev., 2013, 42, 5323–5351.

[39] J. C. Koziar and D. O. Cowan, Acc. Chem. Res., 1978, 11, 334–341.

[40] P. I. Djurovich, D. Murphy, M. E. Thompson, B. Hernandez, R. Gao, P. L. Hunt and M. Selke, Dalton Trans., 2007, 34, 3763–3770.

[41] R. D. Pensack, Y. Song, T. M. McCormick, A. A. Jahnke, J. Hollinger, D. S. Seferos and G. D. Scholes, J. Phys. Chem. B, 2014, 118, 2589–2597.

[42] R. Acharya, S. Cekli, C. J. Zeman, IV, R. M. Altamimi and K. S. Schanze, J. Phys. Chem. Lett., 2016, 7, 693–697.

[43] J. Tian, L. Ding, H.-J. Xu, Z. Shen, H. Ju, L. Jia, L. Bao and J.-S. Yu, J. Am. Chem. Soc., 2013, 135, 18850–18858.

[44] S. Takizawa, R. Aboshi and S. Murata, Photochem. Photobiol. Sci., 2011, 10, 895–903.

[45] L. Huang, X. Cui, B. Therrien and J. Zhao, Chem. Eur. J., 2013, 19, 17472–17482.

[46] Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu and T. Nagano, J. Am. Chem. Soc., 2003, 215, 12803–12809.

[47] X. Tong, L. Zhang, L. Li, Y. Li, Z. Yang, D. Zhu and Z. Xie, Dalton Trans., 2020, 49, 11493–11497.

[48] I. Ӧmeroğlu, M. Göksel, V. Kussovski, V. Mantareva and М. Durmuş, Macroheterocycles, 2019, 12, 255–263.

[49] M. Uchiyama, A. Momotake, T. Ikeue and Y. Yamamoto, Bull. Chem. Soc. Jpn., 2020, 93, 1504–1508.

[50] R. Li, Y. Du, W. Guo, Y. Su, Y. Meng, Z. Shan, Y. Feng and S. Meng, Dyes Pigm., 2020, 179, 108351 (10 pages).

[51] O. Karaman, T. Almammadov, M. E. Gedik, G. Gunaydin, S. Kolemen and G. Gunbas, ChemMedChem, 2019, 14, 1879–1886.

[52] S. Tachikawa, M. E. El-Zaria, R. Inomata, S. Sato and H. Nakamura, Bioorg. Med. Chem., 2014, 22, 4745–4751.

[53] S. Tachikawa, S. Sato, H. Hazama, Y. Kaneda, K. Awazu and H. Nakamura, Bioorg. Med. Chem., 2015, 23, 7578–7584.

[54] S. Cekli, R. W. Winkel, E. Alarousu, O. F. Mohammed and K. S. Schanze, Chem. Sci., 2016, 7, 3621–3631.

[55] R. Englman and J. Jortner, J. Luminescence, 1970, 1/2, 134–142.

[56] D. Peceli, H. Hu, D. A. Fishman, S. Webster, O. V. Przhonska, V. V. Kurdyukov, Y. L. Slominsky, A. I. Tolmachev, A. D. Kachkovski, A. O. Gerasov, A. E. Masunov, D. J. Hagan and E. W. Van Stryland, J. Phys. Chem. A, 2013, 117, 2333–2346.

[57] S. K. Lower and M. A. El-Sayed, Chem. Rev., 1966, 66, 199–241.

[58] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz, J. Cioslowski and D. Fox, Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford, CT, 2011.

[59] Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 2008, 120, 215–241.

[60] S. Chiodo, N. Russo and E. Sicilia, J. Chem. Phys., 2006, 125, 104107 (8 pages).

[61] R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang and Y. Cao, Macromolecules, 2005, 38, 244–253.

[62] Y. Matsui, T. Oishi, E. Ohta and H. Ikeda, J. Phys. Org. Chem., 2017, 30, e3636 (8 pages).

[63] Y. Matsui, K. Shimono, K. Takae, H. Namai, T. Sera, T. Ogaki, E. Ohta, K. Mizuno and H. Ikeda, ChemPhotoChem, 2020, 4, 168–172.

Section 2.2.

[1] J. Fabian, H. Nakazumi and M. Matsuoka, Chem. Rev., 1992, 92, 1197–1226.

[2] G. Qian and Z. Y. Wang, Chem. Asian J., 2010, 5, 1006–1029.

[3] M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke and H. Kobayashi, Nat. Med., 2011, 17, 1685–1692.

[4] Z. Guo, S. Park, J. Yoon and I. Shin, Chem. Soc. Rev., 2014, 43, 16–29.

[5] Y. Okamoto, M. Tanioka, A. Muranaka, K. Miyamoto, T. Aoyama, X. Ouyang, S. Kamino, D. Sawada and M. Uchiyama, J. Am. Chem. Soc., 2018, 140, 17857–17861.

[6] D. E. Dolmans, D. Fukumura and R. K. Jain, Nat. Rev. Cancer, 2003, 3, 380–387.

[7] T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, J. Natl. Cancer Inst., 1998, 90, 889–905.

[8] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, CA Cancer J. Clin., 2011, 61, 250–281.

[9] A. Master, M. Livingston and A. S. Gupta, J. Control. Release, 2013, 168, 88–102.

[10] T. J. Dougherty, Photochem. Photobiol., 1983, 38, 377–379.

[11] J. Akimoto, Neurol. Med. Chir. (Tokyo), 2016, 56, 151–157.

[12] M. O. Senge and J. C. Brandt, Photochem. Photobiol., 2011, 87, 1240–1296.

[13] A. B. Ormond and H. S. Freeman, Materials, 2013, 6, 817–840.

[14] F. Sieber, J. L. Spivak and A. M. Sutcliffe, Proc. Natl. Acad. Sci. USA, 1984, 81, 7584– 7587.

[15] J. Sun, X. Li, K. Du and F. Feng, Chem. Commun., 2018, 54, 9194–9197.

[16] S. Fuse, M. Takizawa, K. Matsumura, S. Sato, S. Okazaki and H. Nakamura, Eur. J. Org. Chem., 2017, 2017, 5170–5177.

[17] J. F. Lovell, T. W. B Liu, J. Chen and G. Zheng, Chem. Rev., 2010, 110, 2839–2857.

[18] X. Yan, G. Niu, J. Lin, A. J. Jin, H. Hu, Y. Tang, Y. Zhang, A. Wu, J. Lu, S. Zhang, P. Huang, B. Shen and X. Chen, Biomaterials, 2015, 42, 94–102.

[19] P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid and T. Hasan, Adv. Drug. Deliv. Rev., 2010, 62, 1094–1124.

[20] Y. Gao, Q. C. Zheng, S, Xu, Y. Yuan, X. Cheng, S. Jiang, Kenry, Q. Yu, Z. Song, B. Liu and M. Li, Theranostics, 2019, 9, 1264–1279.

[21] M. Bixon, J. Jortner, J. Cortes, H. Heitele and M. E. Michel-Beyerle, J. Phys. Chem., 1994, 98, 7289–7299.

[22] S. G. Awuah, J. Polreis, V. Biradar and Y. You, Org. Lett., 2011,13, 3884–3887.

[23] R. L. Watley, S. G. Awuah, M. Bio, R. Cantu, H. B. Gobeze, V. N. Nesterov, S. K. Das, F. D’Souza and Y. You, Chem. Asian. J., 2015, 10, 1335–1343.

[24] R. Kondo, T. Yasuda, Y. S. Yang, J. Y. Kim and C. Adachi, J. Mater. Chem., 2012, 22, 16810–16816.

[25] R. Iwai, S. Suzuki, S. Sasaki, A. S. Sairi, K. Igawa, T. Suenobu, K. Morokuma and G. Konishi, Angew. Chem. Int. Ed., 2020, 59, 10566–10573.

[26] X. Chen, H. Feng, Z. Lin, Z. Jiang, T. He, S. Yin, X. Wan, Y. Chen, Q. Zhang and H. Qiu, Dyes Pigments, 2017, 147, 183–189.

[27] J. Wu, Y. Ma, N. Wu, Y. Lin, J. Lin, L. Wang and C.-Q. Ma, Org. Electron., 2015, 23. 28–38.

[28] R. Fitzner, C. Elschner, M. Weil, C. Uhrich, C. Körner, M. Riede, K. Leo, M. Pfeiffer, E. Reinold, E. Mena-Osteritz and P. Bäuerle, Adv. Mater., 2012, 24, 675–680.

[29] A. Morimoto, Y. Hayashi, T. Maeda and S. Yagi, Dyes Pigments, 2021, 184, 108768 (7pages).

[30] R. Boch, B. Mehta, T. Connolly, T. Durst, J. T. Arnason, R. W. Redmond and J. C. Scaiano, J. Photochem. Photobiol. A, 1996, 9, 39–47.

[31] P. Gao, D. Cho, X. Yang, V. Enkelmann, M. Baumgarten and K. Müllen, Chem. Eur. J., 2010, 16, 5119–5128.

[32] K. Zong, J. J. Deininger and J. R. Reynolds, Org. Lett., 2013, 15, 1032–1035.

[33] D.-H. Kim, J. Ohshita, K.-H. Lee, Y. Kunugi and A. Kunai, Organometallics, 2006, 25, 1511–1516.

[34] T. S. Singh and S. Mitra, J. Lumin., 2007, 127, 508–514.

[35] A. Tigreros, A. Ortiz and B. Insuasty, Dyes Pigments, 2014, 111, 45–51.

[36] T. Shigehiro, S. Yagi, T. Maeda, H. Nakazumi, H. Fujiwara and Y. Sakurai, Tetrahedron Lett., 2014, 55, 5195–5198.

[37] O. A. Kucherak, L. Richert, Y. Mély and A. S. Klymchenko, Phys. Chem. Chem. Phys., 2012, 14, 2292–2300.

[38] Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu and T. Nagano, J. Am. Chem. Soc., 2003, 125, 12803–12809.

[39] A. U. Khan and M. Kasha, Proc. Natl. Acad. Sci. USA, 1979, 76, 6047–6049.

[40] L. Huang, X. Cui, B. Therrien and J. Zhao, Chem. Eur. J., 2013, 19, 17472–17482.

[41] S. Y. Takizawa, R. Aboshi and S. Murata, Photochem. Photobiol. Sci., 2011, 10, 895– 903.

[42] Y. Ooyama, T. Enoki and J. Ohshita, RSC Adv., 2016, 6, 5428–5435.

[43] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz, J. Cioslowski and D. Fox, Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford, CT, 2011.

[44] J. Zhou, W. Yu and A. E. Bragg, J. Phys. Chem. Lett., 2015, 6, 3496–3502.

[45] S. M. Sun, S. Zhang, K. Liu, Y. P. Wang and B. Zhang, Photochem. Photobiol. Sci., 2015, 14, 853–858.

[46] P. Kölle, T. Schnappinger and R. de Vivie-Riedle, Phys. Chem. Chem. Phys., 2016, 18,7903–7915.

[47] R. S. Becker, J. S. de Melo, A. L. Maçanita and F. Elisei, J. Phys. Chem., 1996, 100, 18683–18695.

[48] J. S. de Melo, L. M. Silva and L. G. Arnaut, J. Chem. Phys., 1999, 111, 5427–5433.

[49] J. S. de Melo, H. D. Burrows, M. Svensson, M. R. Andersson and S. P. Monkman, J.Chem. Phys., 2003, 118, 1550–1556.

[50] S. Dufresne, M. Bourgeaux and W. G. Skene, J. Mater. Chem., 2007, 17, 1166–1177.

Chapter3

[1] (a) J. O. Escobedo, O. Rusin, S. Lim and R. M. Strongin, Curr. Opin. Chem. Biol., 2010, 14, 64–70; (b) F. Ye, Y. Liu, J. Chen, S. H. Liu, W. Zhao and J. Yin, Org. Lett., 2019, 21, 7213–7217; (c) Z. Guo, S. Park, J. Yoon and I. Shin, Chem. Soc. Rev., 2014, 43, 16–29.

[2] (a) F. Yeasmin Khusbu, X. Zhou, H. Chen, C. Ma and K. Wang, TrAC - Trends Anal.

Chem., 2018, 109, 1–18; (b) S. S. Mati, S. Chall and S. C. Bhattacharya, Langmuir, 2015, 31, 5025–5032; (c) H. Shi, H. Sun, H. Yang, S. Liu, G. Jenkins, W. Feng, F. Li, Q. Zhao, B. Liu and W. Huang, Adv. Funct. Mater., 2013, 23, 3268–3276; (d) Z. Lei, C. Sun, P. Pei, S. Wang, D. Li, X. Zhang and F. Zhang, Angew. Chem. Int. Ed., 2019, 131, 8250–8255.

[3] (a) R. I. Khan, A. Ramu and K. Pitchumani, Sens. Actuators B Chem., 2018, 266, 429– 437; (b) W. Wu, A. Chen, L. Tong, Z. Qing, K. P. Langone, W. E. Bernier and W. E. Jones, ACS Sensors, 2017, 2, 1337–1344; (c) T. Noguchi, B. Roy, D. Yoshihara, J. Sakamoto, T. Yamamoto and S. Shinkai, Angew. Chem. Int. Ed., 2017, 129, 12692–12696; (d) Q. Zhou and T. M. Swager, J. Am. Chem. Soc., 1995, 117, 12593–12602.

[4] (a) C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913–915; (b) C. W. Tang, S. A. Vanslyke and C. H. Chen, J. Appl. Phys., 1989, 65, 3610–3616; (c) Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka and C. Adachi, Nat. Photonics, 2014, 8, 326–332.

[5] (a) P. Gautam, C. P. Yu, G. Zhang, V. E. Hillier and J. M. W. Chan, J. Org. Chem., 2017, 82, 11008–11020. (b) N. Dey, J. Kulhánek, F. Bureš and S. Bhattacharya, J. Org. Chem., 2019, 84, 1787–1796; (c) V. Maffeis, H. Dogan, E. Cassette, B. Jousselme and T. Gustavsson, J. Phys. Chem. Lett., 2019, 10, 5076–5081.

[6] (a) S. Kothavale, A. G. Jadhav and N. Sekar, Dyes Pigm., 2017, 137, 329–341; (b) Z. Ying, X. Yi, C. Shaoming and Q. Xuhong, Org. Lett., 2008, 10, 633–636.

[7] (a) Y. Niko, S. Kawauchi and G. I. Konishi, Chem. Eur. J., 2013, 19, 9760–9765; (b) J. Seo, S. Kim and S. Y. Park, J. Am. Chem. Soc., 2004, 126, 11154–11155.

[8] (a) E. Horak, M. Robić, A. Šimanović, V. Mandić, R. Vianello, M. Hranjec and I. M. Steinberg, Dyes Pigm., 2019, 162, 688–696; (b) B. Xu, Y. Mu, Z. Mao, Z. Xie, H. Wu, Y. Zhang, C. Jin, Z. Chi, S. Liu, J. Xu, Y. C. Wu, P. Y. Lu, A. Lien and M. R. Bryce, Chem. Sci., 2016, 7, 2201–2206.

[9] (a) J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu and Z. Li, Nat. Commun., 2018, 9, 1–27; (b) Y. Xie, Y. Ge, Q. Peng, C. Li, Q. Li and Z. Li, Adv. Mater., 2017, 29, 1606829.

[10] (a) X. K. Chen, D. Kim and J. L. Brédas, Acc. Chem. Res., 2018, 51, 2215–2224; (b) Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.

[11] (a) K. A. Zachariasse, M. Grobys, T. Von Der Haar, A. Hebecker, Y. V. Il’ichev, Y. B. Jiang, O. Morawski and W. Kühnle, J. Photochem. Photobiol. A, 1996, 102, 59–70; (b) C. Chen, R. Huang, A. S. Batsanov, P. Pander, Y.-T. Hsu, Z. Chi, F. B. Dias and M. R. Bryce, Angew. Chem. Int. Ed., 2018, 130, 16645–16649; (c) S. Sasaki, G. P. C. Drummen and G. I. Konishi, J. Mater. Chem. C, 2016, 4, 2731–2743.

[12] (a) S. Sasaki, G. P. C. Drummen and G. I. Konishi, J. Mater. Chem. C, 2016, 4, 2731– 2743; (b) N. I. Georgiev, N. V. Marinova and V. B. Bojinov, J. Photochem. Photobiol. A, 2020, 401, 112733; (c) J. S. Ni, X. Zhang, G. Yang, T. Kang, X. Lin, M. Zha, Y. Li, L. Wang and K. Li, Angew. Chem. Int. Ed., 2020, 59, 11298–11302.

[13] S. Umar, A. K. Jha and A. Goel, Asian J. Org. Chem., 2016, 5, 187–191.

[14] S. Yu, X. Yang, Z. Shao, Y. Feng, X. Xi, R. Shao, Q. Guo and X. Meng, Sens. Actuators B Chem., 2016, 235, 362–369.

[15] (a) C. Zhong, Phys. Chem. Chem. Phys., 2015, 17, 9248–9257; (b) Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev., 2003, 103, 3899–4031.

[16] (a) V. G. MacHado, R. I. Stock and C. Reichardt, Chem. Rev., 2014, 114, 10429–10475; (b) A. Perrier, S. Aloïse, Z. Pawlowska, M. Sliwa, F. Maurel and J. Abe, Chem. Phys. Lett., 2011, 515, 42–48; (c) S. Aloïse, Z. Pawlowska, O. Poizat, G. Buntinx, A. Perrier, F. Maurel, K. Ohkawa, A. Kimoto and J. Abe, Phys. Chem. Chem. Phys., 2014, 16, 1460– 1468; (d) A. Hassoun, A. Benchohra, O. Khaled, D. Seghouane and J. Moussa, Monatsh. Chem., 2020, 151, 799–806; (e) T. M. Kolev, D. Y. Yancheva and S. I. Stoyanov, Adv. Funct. Mater., 2004, 14, 799–805; (f) S. Nizamov, M. V. Sednev, M. L. Bossi, E. Hebisch, H. Frauendorf, S. E. Lehnart, V. N. Belov and S. W. Hell, Chem. Eur. J., 2016, 22, 11631– 11642.

[17] (a) M. A. Haidekker and E. A. Theodorakis, J. Med. Biol. Eng., 2010, 4, 11; (b) W. J. Akers and M. A. Haidekker, J. Biomech. Eng., 2005, 127, 450–454; (c) M. A. Haidekker and E. A. Theodorakis, Org. Biomol. Chem., 2007, 5, 1669–1678; (d) M. K. Kuimova, Phys. Chem. Chem. Phys., 2012, 14, 12671–12686.

[18] (a) Z. Pawlowska, A. Lietard, S. Aloïse, M. Sliwa, A. Idrissi, O. Poizat, G. Buntinx, S. Delbaere, A. Perrier, F. Maurel, P. Jacques and J. Abe, Phys. Chem. Chem. Phys., 2011, 13, 13185–13195; (b) S. Aloïse, Z. Pawlowska, C. Ruckebusch, M. Sliwa, J. Dubois, O. Poizat, G. Buntinx, A. Perrier, F. Maurel, P. Jacques, J. P. Malval, L. Poisson, G. Piani and J. Abe, Phys. Chem. Chem. Phys., 2012, 14, 1945–1956.

[19] J. Xu, B. Zhang, M. Jansen, L. Goerigk, W. W. H. Wong and C. Ritchie, Angew. Chem. Int. Ed., 2017, 56, 13882–13886.

[20] (a) A. H. Schmidt, W. Goldberger, M. Dümmler and A. Aimène, Synthesis,1988, 10, 782–785; (b) M. J. Karten, S. L. Shapiro, E. S. Isaacs and L. Freedman, J. Org. Chem.,1965,30, 2657–2660.

[21] (a) N. Mataga, H. Yao, T. Okada and W. Rettig, J. Phys. Chem., 1989, 30, 3383–3386; (b)J. Pina, J. S. De Melo, D. Breusov and U. Scherf, Phys. Chem. Chem. Phys., 2013, 15,15204–15213.

[22] The solvent orientation polarizability (Δf) was obtained from the following equation:Δf = [(ε−1)/(2ε+1)] – [(n2−1)/(2n2+1)]where ε and n are dielectric constant and refractive index, respectively.

[23] R. O. Loutfy, Pure Appl. Chem., 1986, 58, 1239–1248.

[24] O. Y. Neiland, R. B. Kampare, D. E. Prikule and E. E. Liepinsh, Chem. Heterocycl. Compd., 1979, 15, 313–315.

[25] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz, J. Cioslowski and D. Fox, Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford, CT, 2011.

[26] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3093.

[27] M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori and R. Spagna, J. Appl. Cryst., 2003, 36, 1103.

[28] (a) Crystal Structure Analysis Package, Rigaku Corporation (2000-2018). Tokyo 196-8666, Japan; (b) J.R. Carruthers, J.S. Rollett, P.W. Betteridge, D. Kinna, L. Pearce, A.Larsen and E. Gabe, Chemical Crystallography Laboratory, Oxford, UK. (1999)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る