リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Singlet fission initiating triplet generations of BODIPY derivatives through π-stacking: a theoretical study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Singlet fission initiating triplet generations of BODIPY derivatives through π-stacking: a theoretical study

Tsuneda, Takao 常田, 貴夫 ツネダ, タカオ Taketsugu, Tetsuya 神戸大学

2022.11.16

概要

The role of singlet fission (SF) in the triplet-state generation mechanism of 1,3,5,7-tetramethyl-boron-dipyrromethene derivatives is revealed by exploring the cause for the solvent dependence of the generation rate. Comparing the adsorption energy calculations of solvent molecules, i.e., cyclohexane, chloroform and acetonitrile molecules, to the derivatives with the π-stacking energies of these derivatives surprisingly show that the hierarchy of the solvation energies and π-stacking energies strongly correlates with the experimentally-suggested solvent dependence of the triplet-state generation of these derivatives for five and more adsorbing solvent molecules. Following this finding, the excitation spectra of these derivatives in acetonitrile solvent are explored using the proprietary spin-flip long-range corrected time-dependent density functional theory. It is, consequently, confirmed that the π-stacking activates the second lowest singlet excitation to trigger the spin-allowed transition to the singlet doubly-excited tetraradical (TT)1 state, which generates the long-lived quintet (TT)1 state causing the SF. However, it is also found that the π-stacking also get a slow intersystem crossing active around the intersections of the lowest singlet excitations with the lowest triplet T1 excitations in parallel with the SF due to the charge transfer characters of the lowest singlet excitations. These results suggest that SF initiates the triplet-state generations through near-degenerate low-lying singlet and (TT) excitations with a considerable singlet-triplet energy gap after the π-stacking of chromophores stronger than but not far from the solvation. Since these derivatives are organic photosensitizers, this study proposes that SF should be taken into consideration in developing novel heavy atom-free organic photosensitizers, which will contribute to a variety of research fields such as medical care, photobiology, energy science, and synthetic chemistry.

この論文で使われている画像

参考文献

1. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

2. Tayebjee, M. J. et al. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13, 182–188 (2017).

3. Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017).

4. Hanna, M. C. & Nozik, N. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

5. Ito, S., Nagami, T. & Nakano, M. Molecular design for efficient singlet fission. J. Photochem. Photobiol. C Photochem. Rev. 34, 85–120 (2018).

6. Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nat. Chem. 5, 1019–1024 (2013).

7. Tomkiewicz, Y., Groff, R. P. & Avakian, P. Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys. 54, 4504–4507 (1971).

8. Nagashima, H. et al. Singlet-fission-born quintet state: Sublevel selections and trapping by multiexciton thermodynamics. J. Phys. Chem. Lett. 9, 5855–5861 (2018).

9. Korovina, N. V. et al. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138, 617–627 (2016).

10. Merrifield, R. E. Magnetic effects on triplet exciton interactions. Pure Appl. Chem. 27, 481–498 (1971).

11. Matsuda, S., Oyama, S. & Kobori, Y. Electron spin polarization generated by transport of singlet and quintet multiexcitons to spincorrelated triplet pairs during singlet fissions. Chem. Sci. 11, 2934–2942 (2020).

12. Montero, R. et al. Viewpoint regarding singlet fission mediated photophysics of BODIPY dimers. J. Phys. Chem. Lett. 12, 7439–7441 (2021).

13. Wen, J., Han, B., Havlas, Z. & Michl, J. An MS-CASPT2 calculation of the excited electronic states of an axial difluoroborondipyr- romethene (BODIPY) dimer. J. Chem. Theory Comput. 14, 4291–4297 (2018).

14. Duman, S., Cakmak, Y., Kolemen, S., Akkaya, E. U. & Dede, Y. Heavy atom free singlet oxygen generation: Doubly substituted configurations dominate S 1 states of bis-BODIPYs. J. Org. Chem. 77, 4516–4527 (2012).

15. Montero, R. et al. Singlet fission mediated photophysics of BODIPY dimers. J. Phys. Chem. Lett. 9, 641–646 (2018).

16. Kandrashkin, Y. E. et al. Balance between triplet states in photoexcited orthogonal BODIPY dimers. J. Phys. Chem. Lett. 10, 4157–4163 (2019).

17. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

18. Tsuneda, T. Density Functional Theory in Quantum Chemistry (Springer, Tokyo, 2014).

19. Casida, M. E. Recent Developments and Applications of Modern Density Functional Theory (ed Seminario, J. J.) (Elsevier, Amsterdam, 1996).

20. Tsuneda, T. & Hirao, K. Time-dependent density functional theory. In Theoretical and Quantum Chemistry at the Dawn of the 21st Century (eds Chakraborty, T. & Carbo-Dorca, R.) 177–220 (Apple Academic Press, Florida, 2018).

21. Krylov, A. I. Size-consistent wave functions for bond-breaking: The equation-of-motion spin-flip model. Chem. Phys. Lett. 338, 375–384 (2001).

22. Shao, Y., Head-Gordon, M. & Krylov, A. I. The spin-flip approach within time-dependent density functional theory: Theory and applications to diradicals. J. Chem. Phys. 118, 4807–4818 (2003).

23. Kendall, R. A., Dunning, T. H. Jr. & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

24. Iikura, H., Tsuneda, T., Yanai, T. & Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115(8), 3540–3544 (2001).

25. Tsuneda, T. & Hirao, K. Long-range correction for density functional theory. WIREs Comput. Mol. Sci. 4, 375–390 (2014).

26. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

27. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

28. Chai, J. D. & Head-Gordon, M. Long-range corrected double-hybrid density functionals. J. Chem. Phys. 131, 174105 (2009).

29. Tsuneda, T., Singh, R. K. & Nakata, A. Relationship between orbital energy gaps and excitation energies for long-chain systems. J. Comput. Chem. 37, 1451–1462 (2016).

30. Tsuneda, T., Singh, R. K. & Nakata, A. On low-lying excited states of extended nanographenes. J. Comput. Chem. 38, 2020–2029 (2017).

31. Postils, V., Ruiperez, F. & Casanova, D. Mild open-shell character of BODIPY and its impact on singlet and triplet excitation ener- gies. J. Chem. Theory Comput. 17, 5825–5838 (2021).

32. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).

33. Frisch, M. J. et al. Gaussian 16 Revision A.03, 2016 (Gaussian Inc., Wallingford, 2018).

34. Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993).

35. Yabumoto, S., Sato, S. & Hamaguchi, H. Vibrational and electronic infrared absorption spectra of benzophenone in the lowest excited triplet state. Chem. Phys. Lett. 416, 100–103 (2005).

36. Seixas de Melo, J. S., Burrows, H. D., Serpa, C. & Arnaut, L. G. The triplet state of indigo. Angew. Chem. Int. Ed. 46, 2094–2096 (2007).

37. Ni, W., Sun, L. & Gurzadyan, G. G. Ultrafast spectroscopy reveals singlet fission, ionization and excimer formation in perylene film. Sci. Rep. 11, 1–10 (2021).

38. Musser, A. J. et al. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013).

39. Trinh, M. T. et al. Intra-to intermolecular singlet fission. J. Phys. Chem. C 119, 1312–1319 (2015).

40. Wang, L. et al. High-lying 31 Ag dark-state-mediated singlet fission. J. Am. Chem. Soc. 143, 5691–5697 (2021).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る