リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluating the severity of depressive symptoms using upper body motion captured by RGB-depth sensors and machine learning in a clinical interview setting : a preliminary study (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluating the severity of depressive symptoms using upper body motion captured by RGB-depth sensors and machine learning in a clinical interview setting : a preliminary study (本文)

堀込, 俊郎 慶應義塾大学

2020.09.21

概要

Background: Mood disorders have long been known to affect motor function. While methods to objectively assess such symptoms have been used in experiments, those same methods have not yet been applied in clinical prac- tice because the methods are time-consuming, labor-intensive, or invasive.

Methods: We videotaped the upper body of each subject using a Red-Green-Blue-Depth (RGB-D) sensor during a clinical interview setting. We then examined the relationship between depressive symptoms and body motion by comparing the head motion of patients with major depressive disorders (MDD) and bipolar disorders (BD) to the motion of healthy controls (HC). Furthermore, we attempted to predict the severity of depressive symp- toms by using machine learning.

Results: A total of 47 participants (HC, n = 16; MDD, n = 17; BD, n = 14) participated in the study, contributing to 144 data sets. It was found that patients with depression move significantly slower compared to HC in the 5th percentile and 50th percentile of motion speed. In addition, Hamilton Depression Rating Scale (HAMD)-17 scores correlated with 5th percentile, 50th percentile, and mean speed of motion. Moreover, using machine learning, the presence and/or severity of depressive symptoms based on HAMD-17 scores were distinguished by a kappa coefficient of 0.37 to 0.43.

Limitations: Limitations include the small number of subjects, especially the number of severe cases and young people.

Conclusions: The RGB-D sensor captured some differences in upper body motion between depressed patients and controls. If much larger samples are accumulated, machine learning may be useful in identifying objective mea- sures for depression in the future.

この論文で使われている画像

参考文献

[1] Bennabi D, Vandel P, Papaxanthis C, Pozzo T, Haffen E. Psychomotor retardation in depression: a systematic review of diagnostic, pathophysiologic, and therapeutic im- plications. Biomed Res Int 2013. https://doi.org/10.1155/2013/158746.

[2] Sobin C, Sackeim HA. Psychomotor symptoms of depression. Am J Psychiatry 1997; 154:4–17. https://doi.org/10.1176/ajp.154.1.4.

[3] Greden JF, Carroll BJ. Psychomotor function in affective disorders: an overview of new monitoring techniques. Am J Psychiatry 1981;138:1441–9. https://doi.org/10. 1176/ajp.138.11.1441.

[4] Lecrubier Y. Physical components of depression and psychomotor retardation. J Clin Psychiatry 2006;67:23–26. PubMed PMID: 16848673.

[5] Lemke MR, Wendorff T, Mieth B, Buhl K, Linnemann M. Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy con- trols. J Psychiatr Res 2000;34:277–83. https://doi.org/10.1016/S0022-3956(00) 00017-0.

[6] Pier MP, Hulstijn W, Sabbe BG. Differential patterns of psychomotor functioning in unmedicated melancholic and nonmelancholic depressed patients. J Psychiatr Res 2004;38:425–35. https://doi.org/10.1016/j.jpsychires.2003.11.008.

[7] Hoffstaedter F, Sarlon J, Grefkes C, Eickhoff SB. Internally vs. externally triggered movements in patients with major depression. Behav Brain Res 2012;228:125–32. https://doi.org/10.1016/j.bbr.2011.11.024.

[8] Schwarz GE. Facial expression and imagery in depression: an electromyographic study. Psychosom Med 1976;38:337–47. https://doi.org/10.1097/00006842- 197609000-00006.

[9] Winograd-Gurvich C, Georgiou-Karistianis N, Fitzgerald PB, Millist L, White OB. Oc- ular motor differences between melancholic and non-melancholic depression. J Af- fect Disord 2006;93:193–203. https://doi.org/10.1016/j.jad.2006.03.018.

[10] Fairbanks LA, McGuire MT, Harris CJ. Nonverbal interaction of patients and thera- pists during psychiatric interviews. J Abnorm Psychol 1982;91:109–19. https://doi. org/10.1037/0021-843X.91.2.109.

[11] Hall JA, Harrigan JA, Rosenthal R. Nonverbal behavior in clinician-patient interaction. Appl Prev Psychol 1995;4(1):21–37. https://doi.org/10.1016/S0962-1849(05) 80049-6.

[12] Joshi J, Dhall A, Goecke R, Cohn JF. Relative body parts movement for automatic de- pression analysis. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction; 2013 Sept 2–5. Geneva, Switzerland: IEEE; 2013. p. 492–7. https://doi.org/10.1109/ACII.2013.87.

[13] Alghowinem S, Goecke R, Wagner M, Parkerx G, Breakspear M. Head pose and movement analysis as an indicator of depression. 2013 Humaine Association Con- ference on Affective Computing and Intelligent Interaction; 2013 Sept 2–5. Geneva, Switzerland: IEEE; 2013. p. 283–8. https://doi.org/10.1109/ACII.2013.53.

[14] Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23 (1):56–62. https://doi.org/10.1136/jnnp.23.1.56.

[15] Day RK. Psychomotor agitation: poorly defined and badly measured. J Affect Disord 1999;55:89–98. https://doi.org/10.1016/S0165-0327(99)00010-5.

[16] Parker G, Hadzi-Pavlovic D, Brodaty H, Boyce P, Mitchell P, Wilhelm K, et al. Psycho- motor disturbance in depression: defining the constructs. J Affect Disord 1993;27: 255–65. https://doi.org/10.1016/0165-0327(93)90049-P.

[17] Ulrich G, Harms K. A video analysis of the non-verbal behaviour of depressed pa- tients before and after treatment. J Affect Disord 1985;9:63–7. https://doi.org/10. 1016/0165-0327(85)90011-4.

[18] Ulrich G, Harms K. Video analytic study of manual kinesics and its lateralization in the course of treatment of depressive syndromes. Acta Psychiatr Scand 1979;59: 481–92. https://doi.org/10.1111/j.1600-0447.1979.tb00247.x.

[19] Bouhuys AL, Jansen CJ, Van den Hoofdakker RH. Analysis of observed behaviors displayed by depressed patients during a clinical interview: relationships between behavioral factors and clinical concepts of activation. J Affect Disord 1991;21: 79–88. https://doi.org/10.1016/0165-0327(91)90053-U.

[20] Joshi J, Dhall A, Goecke R, Breakspear M, Parker G. Neural-net classification for spatio-temporal descriptor based depression analysis. Proceedings of the 21st Inter- national Conference on Pattern Recognition; 2012 Nov 11–15. Tsukuba, Japan: IEEE; 2012. p. 2634–8.

[21] Joshi J, Goecke R, Parker G, Breakspear M. Can body expressions contribute to auto- matic depression analysis? 2013 10th IEEE International Conference and Work- shops on Automatic Face and Gesture Recognition; 2013 April 22–26. Shanghai, China: IEEE; 2013. p. 1–7. https://doi.org/10.1109/FG.2013.6553796.

[22] Joshi J, Goecke R, Alghowinem S, Dhall A, Wagner M, Epps J, et al. Multimodal assis- tive technologies for depression diagnosis and monitoring. J Multimodal User Inter- faces 2013;7(3):217–28. https://doi.org/10.1007/s12193-013-0123-2.

[23] Scherer S, Stratou G, Morency LP. Audiovisual behavior descriptors for depression assessment. Proceedings of the 15th ACM on International conference on multi- modal interaction; 2013 December 9–13. Sydney Australia: ACM; 2013. p. 135–40.

[24] Alghowinem S, Goecke R, Cohn JF, Wagner M, Parker G, Breakspear M. Cross-cultural detection of depression from nonverbal behaviour. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition; 2015 May 4–8. Ljubljana, Slovenia: IEEE; 2015. p. 1–8. https://doi.org/10.1109/FG.2015.7163113.

[25] Kishimoto T, Takamiya A, Liang KC, Funaki K, Fujita T, Kitazawa M, et al. The project for objective measures using computational psychiatry technology (PROMPT). Ra- tion Des Methodol 2019:19013011. https://doi.org/10.1101/19013011 medRxiv.

[26] Phommahavong S, Haas D, Yu J, Krüger-Ziolek S, Möller K, Kretschmer J. Evaluating the Microsoft Kinect skeleton joint tracking as a tool for home-based physiotherapy. Curr Dir Biomed Eng 2015;1(1):184–7. https://doi.org/10.1515/cdbme-2015-0046.

[27] Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys 2017;44:1–7.

[28] Mentiplay BF, Clark RA, Mullins A, Bryant AL, Bartold S, Paterson K. Reliability and validity of the Microsoft Kinect for evaluating static foot posture. J Foot Ankle Res 2013;6(1):14. https://doi.org/10.1186/1757-1146-6-14.

[29] Pfister A, West AM, Bronner S, Noah JA. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J Med Eng Technol 2014;38(5):274–80. https://doi.org/10.3109/03091902.2014.909540.

[30] Song YS, Yang KY, Youn K, Yoon C, Yeom J, Hwang H, et al. Validation of attitude and heading reference system and Microsoft Kinect for continuous measurement of cer- vical range of motion compared to the optical motion capture system. Ann Rehabil Med 2016;40(4):568–74. https://doi.org/10.5535/arm.2016.40.4.568.

[31] Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge university press; 2000; 2000. https://doi.org/10.1017/CBO9780511801389.

[32] Wang M, Wright J, Buswell R, Brownlee A. A comparison of approaches to stepwise regression for global sensitivity analysis used with evolutionary optimization. Pro- ceedings of the BS2013, 13th Conference of International Building Performance Sim- ulation Association; 2013 August 26–28. Chambéry, France: IBPSA; 2013. p. 2551–8.

[33] Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biom 1977;33(1):159–74.

[34] Kraepelin E. Manic depressive insanity and paranoia. E. & S. Livingstone: Edinburgh; 1921.

[35] Tazawa Y, Wada M, Mitsukura Y, Takamiya A, Kitazawa M, Toshimura M, et al. Actigraphy for evaluation of mood disorders: a systematic review and meta- analysis. J Affect Disord 2019;253:257–69. https://doi.org/10.1016/j.jad.2019.04. 087.

[36] Razavi N, Horn H, Koschorke S, Hügli S, Höfle O, Müller T, et al. Measuring motor ac- tivity in major depression: the association between the Hamilton depression rating scale and actigraphy. Psychiatry Res 2011;190:212–6. https://doi.org/10.1016/j.psychres.2011.05.028.

[37] Kang GE, Mickey BJ, McInnis MG, Krembs BS, Gross MM. Motor behavior character- istics in various phases of bipolar disorder revealed through biomechanical analysis: quantitative measures of activity and energy variables during gait and sit-to-walk. Psychiatry Res 2018;269:93–101. https://doi.org/10.1016/j.psychres.2018.08.062.

[38] Bench CJ, Friston KJ, Brown RG, Frackowiak RS, Dolan RJ. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 1993;23:579–90. https://doi.org/10.1017/s0033291700025368.

[39] Mayberg HS, Lewis PJ, Regenold W, Wagner HN. Paralimbic hypoperfusion in unipo- lar depression. J Nucl Med 1994;35:929–34 (PMID:8195877).

[40] Narita H, Odawara T, Iseki E, Kosaka K, Hirayasu Y. Psychomotor retardation corre- lates with frontal hypoperfusion and the modified Stroop test in patients with major depression under 60-years-old. Psychiatry Clin Neurosci 2004;58:389–95. https://doi.org/10.1111/j.1440-1819.2004.01273.x.

[41] Videbech P, Ravnkilde B, Pedersen TH, Hartvig H, Egander A, Clemmensen K, et al. The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis. Acta Psychiatr Scand 2002;106:35–44. https://doi.org/ 10.1034/j.1600-0447.2002.02245.x.

[42] Hickie I, Mason C, Parker G, Brodaty H. Prediction of ECT response: validation of a re- fined sign-based (CORE) system for defining melancholia. Br J Psychiatry 1996;169: 68–74. https://doi.org/10.1192/bjp.169.1.68.

[43] Hickie I, Naismith SL, Ward PB, Little CL, Pearson M, Scott EM, et al. Psychomotor slowing in older patients with major depression: relationships with blood flow in the caudate nucleus and white matter lesions. Psychiatry Res Neuroimaging 2007; 155:211–20. https://doi.org/10.1016/j.pscychresns.2007.01.006.

[44] Naismith S, Hickie I, Ward PB, Turner K, Scott E, Little C, et al. Caudate nucleus vol- umes and genetic determinants of homocysteine metabolism in the prediction of psychomotor speed in older persons with depression. Am J Psychiatry 2002;159: 2096–8. https://doi.org/10.1176/appi.ajp.159.12.2096.

[45] Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting- state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 2017;23(1):28. https://doi.org/10.1038/nm.4246.

[46] Caligiuri MP, Gentili V, Eberson S, Kelsoe J, Rapaport M, Gillin JC. A quantitative neuromotor predictor of antidepressant non-response in patients with major de- pression. J Affect Disord 2003;77:135–41. https://doi.org/10.1016/S0165-0327(02) 00107-6.

[47] Herrera-Guzmán I, Gudayol-Ferré E, Lira-Mandujano J, Herrera-Abarca J, Herrera- Guzmán D, Montoya-Pérez K, et al. Cognitive predictors of treatment response to bupropion and cognitive effects of bupropion in patients with major depressive dis- order. Psychiatry Res 2008;160:72–82. https://doi.org/10.1016/j.psychres.2007.04. 012.

[48] Diermen L, Vanmarcke S, Walther S, Moens H, Veltman E, Fransen E, et al. Can psy- chomotor disturbance predict ECT outcome in depression? J Psychiatr Res 2019; 117:122–8. https://doi.org/10.1016/j.jpsychires.2019.07.009.

[49] Ramseyer F, Tschacher W. Nonverbal synchrony in psychotherapy: coordinated body movement reflects relationship quality and outcome. J Consult Clin Psychol 2011;79(3):284–95. https://doi.org/10.1037/a0023419.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る