リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Imidazole Acceptor for Both Vacuum-Processable and Solution-Processable Efficient Blue Thermally Activated Delayed Fluorescence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Imidazole Acceptor for Both Vacuum-Processable and Solution-Processable Efficient Blue Thermally Activated Delayed Fluorescence

Kusakabe, Yu Wada, Yoshimasa Misono, Tomoya Suzuki, Katsuaki Shizu, Katsuyuki Kaji, Hironori 京都大学 DOI:10.1021/acsomega.2c01308

2022.05.17

概要

The members of the imidazole family have been widely used for electron transporting, host, conventional fluorescent, and phosphorescent materials. Although the imidazole core also has great potential as an acceptor segment of deep-blue thermally activated delayed fluorescence (TADF) owing to its high triplet energy, the emission color of imidazole-based TADF organic light-emitting diodes (OLEDs) has so far been limited to blue to green. In this work, four acridan-imidazole systems are theoretically designed aiming for deep- or pure-blue emitters. All four emitters exhibit deep-blue to blue emission owing to the high energy levels of the lowest excited singlet states, exhibiting y coordinates of Commission Internationale de l’Eclairage coordinates between 0.06 and 0.26. The molecule composed of a trifluoromethyl-substituted benzimidazole acceptor in combination with a tetramethyl-9, 10-dihydroacridine donor (named MAc-FBI) achieves a high maximum external quantum efficiency (EQEMAX) of 13.7% in its application to vacuum-processed OLEDs. The emitter has high solubility even in ecofriendly nonhalogenated solvents, which motivates us to fabricate solution-processed MAc-FBI-based OLEDs, resulting in an even higher EQEMAX of 16.1%.

この論文で使われている画像

参考文献

1. Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally activated delayed fluorescence from Sn(4+)- porphyrin complexes and their application to organic light emitting diodes–a novel mechanism for electroluminescence. Adv. Mater. 2009, 21, 4802.

2. Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 2015, 6, No. 8476.

3. Lin, T.-A.; Chatterjee, T.; Tsai, W.-L.; Lee, W.-K.; Wu, M.-J.; Jiao, M.; Pan, K.-C.; Yi, C.-L.; Chung, C.-L.; Wong, K.-T.; Wu, C. C. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 2016, 28, 6976.

4. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234.

5. Wong, M. Y.; Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, No. 1605444.

6. Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. Recent breakthroughs in thermally activated delayed fluorescence organic light emitting diodes containing non-doped emitting layers. J. Mater. Chem. C 2019, 7, 2172.

7. Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915.

8. Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 2017, 29, 1946.

9. Chen, W.-C.; Zhu, Z.-L.; Lee, C.-S. Organic Light-Emitting Diodes Based on Imidazole Semiconductors. Adv. Opt. Mater. 2018, 6, No. 1800258.

10. Huang, Z.; Xiang, S.; Zhang, Q.; Lv, X.; Ye, S.; Guo, R.; Wang, L. Highly efficient green organic light emitting diodes with phenanthroimidazole-based thermally activated delayed fluorescence emitters. J. Mater. Chem. C 2018, 6, 2379.

11. Lee, J.; Shizu, K.; Tanaka, H.; Nakanotani, H.; Yasuda, T.; Kaji, H.; Adachi, C. Controlled emission colors and singlet−triplet energy gaps of dihydrophenazine-based thermally activated delayed fluo- rescence emitters. J. Mater. Chem. C 2015, 3, 2175.

12. Hall, D.; Rajamalli, P.; Duda, E.; Suresh, S. M.; Rodella, F.; Bagnich, S.; Carpenter-Warren, C. L.; Cordes, D. B.; Slawin, A. M. Z.; Strohriegl, P.; et al. Substitution Effects on a New Pyridylbenzimi- dazole Acceptor for Thermally Activated Delayed Fluorescence and Their Use in Organic Light-Emitting Diodes. Adv. Opt. Mater. 2021, 9, No. 2100846.

13. Ohsawa, T.; Sasabe, H.; Watanabe, T.; Nakao, K.; Komatsu, R.; Hayashi, Y.; Hayasaka, Y.; Kido, J. A Series of Imidazo[1,2- f]phenanthridine-Based Sky-Blue TADF Emitters Realizing EQE of over 20%. Adv. Opt. Mater. 2019, 7, No. 1801282.

14. Yi, R.-H.; Liu, G.-Y.; Luo, Y.-T.; Wang, W.-Y.; Tsai, H.-Y.; Lin, C.-H.; Shen, H.-L.; Chang, C.-H.; Lu, C.-W. Dicyano-Imidazole: A Facile Generation of Pure Blue TADF Materials for OLEDs. Chem.- Eur. J. 2021, 27, 12998.

15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. B.V.; Petersson, G. A.; Nakatsuji, H.; Li, X.. et al.Gaussian 16. Rev. C.01. Gaussian, Inc.: Wallingford CT, 2016.

16. TURBOMOLE V7.4.1 2019. A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007. TURBOMOLE GmbH: http://www.turbomole.com, 2010.

17. Hättig, C.; Weigend, F. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys. 2000, 113, 5154.

18. Han, C.; Zhao, Y.; Xu, H.; Chen, J.; Deng, Z.; Ma, D.; Li, Q.; Yan, P. A Simple Phosphine−Oxide Host with a Multi-insulating Structure: High Triplet Energy Level for Efficient Blue Electro- phosphorescence. Chem.-Eur. J. 2011, 17, 5800.

19. Tsai, M.-H.; Lin, H.-W.; Su, H.-C.; Ke, T.-H.; Wu, C.-C.; Fang, F.-C.; Liao, Y.-L.; Wong, K.-T.; Wu, C.-I. Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)- carbazole as the Host Material. Adv. Mater. 2006, 18, 1216.

20. Cai, X.; Su, S.-J. Marching Toward Highly Efficient, Pure-Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light- Emitting Diodes. Adv. Funct. Mater. 2018, 28, No. 1802558.

21. Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Organic light- emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 2012, 6, 253.

22. Duan, L.; Hou, L.; Lee, T.-W.; Qiao, J.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. Solution processable small molecules for organic light-emitting diodes. J. Mater. Chem. 2010, 20, No. 6392.

23. Zhang, S.; Ye, L.; Zhang, H.; Hou, J. Green-solvent-processable organic solar cells. Mater. Today 2016, 19, 533.

24. Zheng, L.; Xu, J.; Feng, Y.; Shan, H.; Fang, G.; Xu, Z.-X. Green solvent processed tetramethyl-substituted aluminum phthalocyanine thin films as anode buffer layers in organic light-emitting diodes. J. Mater. Chem. C 2018, 6, 11471.

参考文献をもっと見る