リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Broadband absorption and light-energy transfer in a phenyl-core thiophene dendrimer with multiple π-conjugations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Broadband absorption and light-energy transfer in a phenyl-core thiophene dendrimer with multiple π-conjugations

Yamagishi, Mizuho Horike, Shohei Koshiba, Yasuko Mori, Atsunori Ishida, Kenji 神戸大学

2023.02.01

概要

π-Conjugated dendrimers, with unique optical properties, have the potential to be used as light-harvesting antenna in organic solar cells and photodetectors. Here, the broadband absorption and light-energy transfer in a phenyl-core thiophene dendrimer, Ph-(7T)₃, have been investigated using quantum calculations and absorption, photoluminescence, and excitation spectroscopy. The broadband absorption of the highly branched Ph-(7T)₃ macromolecule could be attributed to multiple π-conjugations in Ph-(7T)₃ (due to phenylthiophene and thiophene oligomers with different numbers of thiophene units). The divergency of the wavelengths between photoluminescence and excitation light indicated that the multiple π-conjugating system exhibited various modes of excited-state relaxation, which could explain the light-energy transfer from the core to the thiophene dendrons. The fluorescent quantum yield and lifetime of this molecular system are also presented.

この論文で使われている画像

参考文献

1 G. M. Dykes, J. Chem. Technol. Biotechnol., 2001, 76, 903.

2 J. Hu, K. Hu and Y. Cheng, Acta Biomater., 2016, 35, 1.

3 M. L. Mansfield, Polymer, 1994, 35, 1827.

4 Y. Cheng, L. Zhao, Y. Li and T. Xu, Chem. Soc. Rev., 2011, 40, 2673.

5 X. Ma, J. Tang, Y. Shen, M. Fan, H. Tang and M. Radosz, J. Am. Chem. Soc., 2009, 131, 14795.

6 S. Svenson and D. A. Tomalia, Adv. Drug Delivery Rev., 2005, 57, 2106.

7 M. E. Köse, W. J. Mitchell, N. Kopidakis, C. H. Chang, S. E. Shaheen, K. Kim and G. Rumbles, J. Am. Chem. Soc., 2007, 129, 14257.

8 W. J. Mitchell, N. Kopidakis, G. Rumbles, D. S. Ginley and S. E. Shaheen, J. Mater. Chem., 2005, 15, 4518.

9 E. R. Gillies and J. M. J. Fréchet, Drug Discovery Today, 2005, 10, 35.

10 R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K. Yeung, Acc. Chem. Res., 2001, 34, 181.

11 R. Duncan and L. Izzo, Adv. Drug Delivery Rev., 2005, 57, 2215.

12 D. Q. McNerny, P. R. Leroueil and J. R. Baker, WIREs Nanomed. Nanobiotechnol., 2010, 2, 249.

13 O. F. Khan, E. W. Zaia, S. Jhunjhunwala, W. Xue, W. Cai, D. S. Yun, C. M. Barnes, J. E. Dahlman, Y. Dong, J. M. Pelet, M. J. Webber, J. K. Tsosie, T. E. Jacks, R. Langer and D. G. Anderson, Nano Lett., 2015, 15, 3008.

14 M. Á. Ortega, A. G. Merino, O. F. Martínez, J. R. Ruiz, L. Pekarek, L. G. Guijarro, N. G. Honduvilla, M. Á. Mon, J. Buján and S. G. Gallego, Pharmaceutics, 2020, 12, 874.

15 M. R. Carvalho, R. L. Reis and J. M. Oliveira, J. Mater. Chem. B, 2020, 8, 1128.

16 A. Sharma and A. Kakkar, Molecules, 2015, 20, 16987.

17 J. Li, H. Liang, J. Liu and Z. Wang, Int. J. Pharm., 2018, 546, 215.

18 Y. Jin, G. Huang, D. Han, P. Song, W. Tang, J. Bao, R. Li and Y. Liu, Composites, Part A, 2016, 86, 9.

19 S. Chandra, M. D. Patel, H. Lang and D. Bahadur, J. Power Sources, 2015, 280, 217.

20 S. Hata, Y. Yamaguchi, R. Nakata, K. Kametani, Y. Du, Y. Shiraishi and N. Toshima, Diamond Relat. Mater., 2021, 120, 108656.

21 A. K. Ilunga and R. Meijboom, Catal. Lett., 2019, 149, 84.

22 K. R. Raghupathi, J. Guo, O. Munkhbat, P. Rangadurai and S. Thayumanavan, Acc. Chem. Res., 2014, 47, 2200.

23 C. Devadoss, P. Bharathi and J. S. Moore, J. Am. Chem. Soc., 1996, 118, 9635.

24 D. L. Jiang and T. Aida, Nature, 1997, 388, 454.

25 M. I. Ranasinghe, M. W. Hager, C. B. Gorman and T. Goodson III, J. Phys. Chem. B, 2004, 108, 8543.

26 K. Shinbo, Y. Ikeda, C. Xia, K. Kato, F. Kaneko and R. C. Advincula, Curr. Appl. Phys., 2005, 5, 314.

27 G. Ramakrishna, A. Bhaskar, P. Bauerle and T. Goodson III, J. Phys. Chem. A, 2008, 112, 2018.

28 K. Oki, S. Horike, M. Yamaguchi, C. Takechi, Y. Koshiba, T. Fukushima, A. Mori and K. Ishida, Mol. Syst. Des. Eng., 2020, 5, 809.

29 Y. Karpov, T. Erdmann, M. Stamm, U. Lappan, O. Guskova, M. Malanin, I. Raguzin, T. Beryozkina, V. Bakulev, F. Günther, S. Gemming, G. Seifert, M. Hambsch, S. Mannsfeld, B. Voit and A. Kiriy, Macromolecules, 2017, 50, 914.

30 R. Kroon, D. Kiefer, D. Stegerer, L. Yu, M. Sommer and C. Müller, Adv. Mater., 2017, 29, 1700930.

31 O. Usluer, S. Demic, D. A. M. Egbe, E. Birckner, C. Tozlu, A. Pivrikas, A. M. Ramil and N. S. Sariciftci, Adv. Funct. Mater., 2010, 20, 4152.

32 W. W. H. Wong, C. Q. Ma, W. Pisula, C. Yan, X. Feng, D. J. Jones, K. Müllen, R. A. J. Janssen, P. Bäuerle and A. B. Holmes, Chem. Mater., 2010, 22, 457.

33 S. Tanaka, D. Tanaka, G. Tatsuta, K. Murakami, S. Tamba, A. Sugie and A. Mori, Chem. – Eur. J., 2013, 19, 1658.

34 R. A. Eittah and R. Hilal, Bull. Chem. Soc. Jpn., 1976, 49, 2158.

35 H. Chosrovian, S. Rentsch, D. Grebner, D. U. Dahm and E. Brickner, Synth. Met., 1993, 60, 23.

36 R. Colditz, D. Grebner, M. Helbig and S. Rentsch, Chem. Phys., 1995, 201, 309.

37 S. Bonardd, D. D. Díaz, A. Leiva and C. Saldías, Polymers, 2021, 13, 4404.

38 O. Varnavski, I. D. W. Samuel, L.-O. Pålsson, R. Beavington, P. L. Burn and T. Goodson III, J. Chem. Phys., 2002, 116, 8893.

39 M. Cotlet, T. Vosch, S. Habuchi, T. Weil, K. Müllen, J. Hofkens and F. D. Schryver, J. Am. Chem. Soc., 2005, 127, 9760.

40 P. Ceroni, G. Bergamini, F. Marchioni and V. Balzani, Prog. Polym. Sci., 2005, 30, 453.

41 J. F. Galindo, E. Atas, A. Altan, D. G. Kuroda, S. F. Alberti, S. Tretiak, A. E. Roitberg and V. D. Kleiman, J. Am. Chem. Soc., 2015, 137, 11637.

参考文献をもっと見る