リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Necessity of HuR/ELAVL1 for activation-induced cytidine deaminase-dependent decrease in topoisomerase 1 in antibody diversification」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Necessity of HuR/ELAVL1 for activation-induced cytidine deaminase-dependent decrease in topoisomerase 1 in antibody diversification

AMIN, WAJID 京都大学 DOI:10.14989/doctor.k24833

2023.07.24

概要

Immunoglobulin (Ig) gene diversification in B lymphocytes is an essential immune mechanism for
neutralization of the produced toxins. ...

参考文献

10

Ac

11

12

13

14

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

an

us

cr

ip

Honjo, T. and Kataoka, T. 1978. Organization of immunoglobulin heavy chain genes

and allelic deletion model. Proc Natl Acad Sci U S A 75:2140.

Shimizu, A., Takahashi, N., Yaoita, Y., and Honjo, T. 1982. Organization of the

constant-region gene family of the mouse immunoglobulin heavy chain. Cell 28:499.

Arakawa, H., Hauschild, J., and Buerstedde, J. M. 2002. Requirement of the

activation-induced deaminase (AID) gene for immunoglobulin gene conversion.

Science 295:1301.

Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T.

2000. Class switch recombination and hypermutation require activation-induced

cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553.

Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., Catalan, N.,

Forveille, M., Dufourcq-Labelouse, R., Gennery, A., Tezcan, I., Ersoy, F., Kayserili,

H., Ugazio, A. G., Brousse, N., Muramatsu, M., Notarangelo, L. D., Kinoshita, K.,

Honjo, T., Fischer, A., and Durandy, A. 2000. Activation-induced cytidine deaminase

(AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome

(HIGM2). Cell 102:565.

Begum, N. A., Nagaoka, H., Kobayashi, M., and Honjo, T. 2015. Chapter 18 Molecular Mechanisms of AID Function. In Alt, F. W., Honjo, T., Radbruch, A., and

Reth, M., eds., Molecular Biology of B Cells (Second Edition), p. 305. Academic

Press, London.

Begum, N. A., Kinoshita, K., Kakazu, N., Muramatsu, M., Nagaoka, H., Shinkura, R.,

Biniszkiewicz, D., Boyer, L. A., Jaenisch, R., and Honjo, T. 2004. Uracil DNA

glycosylase activity is dispensable for immunoglobulin class switch. Science

305:1160.

Begum, N. A., Izumi, N., Nishikori, M., Nagaoka, H., Shinkura, R., and Honjo, T.

2007. Requirement of non-canonical activity of uracil DNA glycosylase for class

switch recombination. J Biol Chem 282:731.

Begum, N. A., Stanlie, A., Doi, T., Sasaki, Y., Jin, H. W., Kim, Y. S., Nagaoka, H., and

Honjo, T. 2009. Further evidence for involvement of a noncanonical function of uracil

DNA glycosylase in class switch recombination. Proc Natl Acad Sci U S A 106:2752.

Yousif, A. S., Stanlie, A., Mondal, S., Honjo, T., and Begum, N. A. 2014. Differential

regulation of S-region hypermutation and class-switch recombination by noncanonical

functions of uracil DNA glycosylase. Proc Natl Acad Sci U S A 111:E1016.

Xu, J., Husain, A., Hu, W., Honjo, T., and Kobayashi, M. 2014. APE1 is dispensable

for S-region cleavage but required for its repair in class switch recombination.

Proceedings of the National Academy of Sciences 111:17242.

Islam, H., Kobayashi, M., and Honjo, T. 2019. Apurinic/apyrimidinic endonuclease 1

(APE1) is dispensable for activation-induced cytidine deaminase (AID)-dependent

somatic hypermutation in the immunoglobulin gene. Int Immunol 31:543.

Kobayashi, M., Aida, M., Nagaoka, H., Begum, N. A., Kitawaki, Y., Nakata, M.,

Stanlie, A., Doi, T., Kato, L., Okazaki, I. M., Shinkura, R., Muramatsu, M., Kinoshita,

K., and Honjo, T. 2009. AID-induced decrease in topoisomerase 1 induces DNA

structural alteration and DNA cleavage for class switch recombination. Proc Natl

Acad Sci U S A 106:22375.

Kobayashi, M., Sabouri, Z., Sabouri, S., Kitawaki, Y., Pommier, Y., Abe, T., Kiyonari,

H., and Honjo, T. 2011. Decrease in topoisomerase I is responsible for activationinduced cytidine deaminase (AID)-dependent somatic hypermutation. Proc Natl Acad

Sci U S A 108:19305.

ep

te

17

19

20

21

22

23

24

25

Ac

26

27

28

29

30

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

18

an

us

cr

ip

16

Vasudevan, S. and Peltz, S. W. 2001. Regulated ARE-mediated mRNA decay in

Saccharomyces cerevisiae. Mol Cell 7:1191.

von Roretz, C. and Gallouzi, I. E. 2008. Decoding ARE-mediated decay: is

microRNA part of the equation? J Cell Biol 181:189.

Barreau, C., Paillard, L., and Osborne, H. B. 2005. AU-rich elements and associated

factors: are there unifying principles? Nucleic Acids Res 33:7138.

Nakamura, M., Kondo, S., Sugai, M., Nazarea, M., Imamura, S., and Honjo, T. 1996.

High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+

cells. Int Immunol 8:193.

Schwarzer, A., Emmrich, S., Schmidt, F., Beck, D., Ng, M., Reimer, C., Adams, F. F.,

Grasedieck, S., Witte, D., Kabler, S., Wong, J. W. H., Shah, A., Huang, Y., Jammal,

R., Maroz, A., Jongen-Lavrencic, M., Schambach, A., Kuchenbauer, F., Pimanda, J.

E., Reinhardt, D., Heckl, D., and Klusmann, J. H. 2017. The non-coding RNA

landscape of human hematopoiesis and leukemia. Nat Commun 8:218.

Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., and

Valen, E. 2019. CHOPCHOP v3: expanding the CRISPR web toolbox beyond

genome editing. Nucleic Acids Res 47:W171.

Concordet, J. P. and Haeussler, M. 2018. CRISPOR: intuitive guide selection for

CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:W242.

Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F.,

Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., and Root,

D. E. 2016. Optimized sgRNA design to maximize activity and minimize off-target

effects of CRISPR-Cas9. Nat Biotechnol 34:184.

Sanson, K. R., Hanna, R. E., Hegde, M., Donovan, K. F., Strand, C., Sullender, M. E.,

Vaimberg, E. W., Goodale, A., Root, D. E., Piccioni, F., and Doench, J. G. 2018.

Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat

Commun 9:5416.

Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein,

L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., Guilak, F.,

Crawford, G. E., Reddy, T. E., and Gersbach, C. A. 2013. RNA-guided gene

activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973.

Al Ismail, A., Husain, A., Kobayashi, M., Honjo, T., and Begum, N. A. 2017.

Depletion of recombination-specific cofactors by the C-terminal mutant of the

activation-induced cytidine deaminase causes the dominant negative effect on class

switch recombination. Int Immunol 29:525.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X.,

Jiang, W., Marraffini, L. A., and Zhang, F. 2013. Multiplex genome engineering using

CRISPR/Cas systems. Science 339:819.

Doi, T., Kato, L., Ito, S., Shinkura, R., Wei, M., Nagaoka, H., Wang, J., and Honjo, T.

2009. The C-terminal region of activation-induced cytidine deaminase is responsible

for a recombination function other than DNA cleavage in class switch recombination.

Proc Natl Acad Sci U S A 106:2758.

Lopez de Silanes, I., Zhan, M., Lal, A., Yang, X., and Gorospe, M. 2004.

Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad

Sci U S A 101:2987.

Tenenbaum, S. A., Lager, P. J., Carson, C. C., and Keene, J. D. 2002. Ribonomics:

identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding

proteins and genomic arrays. Methods 26:191.

Gandin, V., Sikstrom, K., Alain, T., Morita, M., McLaughlan, S., Larsson, O., and

Topisirovic, I. 2014. Polysome fractionation and analysis of mammalian translatomes

ep

te

15

34

35

36

37

38

39

40

Ac

41

an

us

cr

ip

33

42

43

44

45

46

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

32

on a genome-wide scale. J Vis Exp.

Diaz-Munoz, M. D., Bell, S. E., Fairfax, K., Monzon-Casanova, E., Cunningham, A.

F., Gonzalez-Porta, M., Andrews, S. R., Bunik, V. I., Zarnack, K., Curk, T.,

Heggermont, W. A., Heymans, S., Gibson, G. E., Kontoyiannis, D. L., Ule, J., and

Turner, M. 2015. The RNA-binding protein HuR is essential for the B cell antibody

response. Nat Immunol 16:415.

Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E.

H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann,

M., and Weissman, J. S. 2014. Genome-Scale CRISPR-Mediated Control of Gene

Repression and Activation. Cell 159:647.

Cherry, J., Karschner, V., Jones, H., and Pekala, P. H. 2006. HuR, an RNA-binding

protein, involved in the control of cellular differentiation. In Vivo 20:17.

Hinman, M. N. and Lou, H. 2008. Diverse molecular functions of Hu proteins. Cell

Mol Life Sci 65:3168.

Stanlie, A., Begum, N. A., Akiyama, H., and Honjo, T. 2012. The DSIF subunits Spt4

and Spt5 have distinct roles at various phases of immunoglobulin class switch

recombination. PLoS Genet 8:e1002675.

Shockett, P. and Stavnezer, J. 1991. Effect of cytokines on switching to IgA and alpha

germline transcripts in the B lymphoma I.29 mu. Transforming growth factor-beta

activates transcription of the unrearranged C alpha gene. J Immunol 147:4374.

Wu, X. P., Feng, J. L., Komori, A., Kim, E. C., Zan, H., and Casali, P. 2003.

Immunoglobulin somatic hypermutation: Double-strand DNA breaks, AID and errorprone DNA repair. J Clin Immunol 23:235.

Schenten, D., Kracker, S., Esposito, G., Franco, S., Klein, U., Murphy, M., Alt, F. W.,

and Rajewsky, K. 2009. Pol zeta ablation in B cells impairs the germinal center

reaction, class switch recombination, DNA break repair, and genome stability. Journal

of Experimental Medicine 206:477.

Daly, J., Bebenek, K., Watt, D. L., Richter, K., Jiang, C. C., Zhao, M. L., Ray, M.,

McGregor, W. G., Kunkel, T. A., and Diaz, M. 2012. Altered Ig Hypermutation

Pattern and Frequency in Complementary Mouse Models of DNA Polymerase zeta

Activity. Journal of Immunology 188:5528.

Faili, A., Aoufouchi, S., Flatter, E., Gueranger, Q., Reynaud, C. A., and Weill, J. C.

2002. Induction of somatic hypermutation in immunoglobulin genes is dependent on

DNA polymerase iota. Nature 419:944.

Osma-Garcia, I. C., Capitan-Sobrino, D., Mouysset, M., Bell, S. E., Lebeurrier, M.,

Turner, M., and Diaz-Munoz, M. D. 2021. The RNA-binding protein HuR is required

for maintenance of the germinal centre response. Nat Commun 12:6556.

Wang, W. G., Caldwell, M. C., Lin, S. K., Furneaux, H., and Gorospe, M. 2000. HuR

regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. Embo

Journal 19:2340.

Srikantan, S., Tominaga, K., and Gorospe, M. 2012. Functional interplay between

RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci 13:372.

Ma, W. J., Cheng, S., Campbell, C., Wright, A., and Furneaux, H. 1996. Cloning and

characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem

271:8144.

Mukherjee, N., Corcoran, D. L., Nusbaum, J. D., Reid, D. W., Georgiev, S., Hafner,

M., Ascano, M., Jr., Tuschl, T., Ohler, U., and Keene, J. D. 2011. Integrative

regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA

processing and mRNA stability. Mol Cell 43:327.

Lu, Y. C., Chang, S. H., Hafner, M., Li, X., Tuschl, T., Elemento, O., and Hla, T. 2014.

ep

te

31

48

50

51

52

Ac

ep

te

53

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

49

an

us

cr

ip

47

ELAVL1 modulates transcriptome-wide miRNA binding in murine macrophages. Cell

Rep 9:2330.

Chang, N., Yi, J., Guo, G., Liu, X., Shang, Y., Tong, T., Cui, Q., Zhan, M., Gorospe,

M., and Wang, W. 2010. HuR uses AUF1 as a cofactor to promote p16INK4 mRNA

decay. Mol Cell Biol 30:3875.

Glorian, V., Maillot, G., Poles, S., Iacovoni, J. S., Favre, G., and Vagner, S. 2011.

HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related

small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death

Differ 18:1692.

Kim, H. H., Kuwano, Y., Srikantan, S., Lee, E. K., Martindale, J. L., and Gorospe, M.

2009. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743.

Latorre, E., Carelli, S., Caremoli, F., Giallongo, T., Colli, M., Canazza, A.,

Provenzani, A., Di Giulio, A. M., and Gorio, A. 2016. Human Antigen R Binding and

Regulation of SOX2 mRNA in Human Mesenchymal Stem Cells. Mol Pharmacol

89:243.

Brown, S. D., Zhang, C. X., Chen, A. D., and Hsieh, T. S. 1998. Structure of the

Drosophila DNA topoisomerase I gene and expression of messages with different

lengths in the 3' untranslated region. Gene 211:195.

Otsuka, H., Fukao, A., Funakami, Y., Duncan, K. E., and Fujiwara, T. 2019. Emerging

Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front

Genet 10:332.

Tran, T. H., Nakata, M., Suzuki, K., Begum, N. A., Shinkura, R., Fagarasan, S.,

Honjo, T., and Nagaoka, H. 2010. B cell-specific and stimulation-responsive

enhancers derepress Aicda by overcoming the effects of silencers. Nat Immunol

11:148.

Figure Legends

Fig. 1. The screening of the major AU-rich element binding proteins identified HuR/ELAVL1 as

(A) The knockdown effect of the major ARE binding factors, Brf1, Brf2, hnRNPd, Khsrp, Zfp36, and

HuR on CSR to IgA. CRISPR interference was used for knockdown except for HuR. CSR to IgA at

24 hours after the start of CIT stimulation was evaluated. The mean ± SD values calculated from three

stimulation samples.

an

us

cr

ip

independent experiments are shown. CIT, cytokine cocktail of CD40L, IL-4, and TGF#. NS, no-

(B) Expression level of each molecule after knockdown shown in (A). The q-PCR signal was

normalized by #2M while Gapdh was used for HuR and the control sample (=1).

(C) AID mRNA expression in the cells shown in (A) measured by qPCR.

(D) !- and $-germline transcripts (GLT) of the switch regions in the cells shown in (A).

Fig. 2. HuR positively contributes to IgH gene diversification by regulating the DNA cleavage

ep

te

frequency.

(A) HuR expression detected by western blot in HuR knockout (KO) cell lines #101 and #111 stably

transfected by the 3XFLAG-tagged HuR (HuR+) or empty vectors (HuR–) with or without stimulation

by CIT. AID expression is also shown. $tubulin is a loading control. Wild-type cell lysate is from the

wild-type CH12 cells. no stim., without stimulation.

Ac

(B) IgA% (the mean ± SD) at 24 (top) and 48 (bottom) hours from the start of CIT stimulation in the

#101 and #111 cell lines with or without replacement of HuR. P-values in CSR evaluation were

calculated by student t-test. *, P < 0.05; **, P < 0.01.

(C) Representative flowcytometric patterns of IgA (left) or IgG3 (right) expression of the selected

clones #22B (HuR–) and #11A (HuR+). IgA% and IgG3% were detected at 72 hours from the start of

stimulation. no stim., without stimulation. CI, stimulation with CD40L and IL-4. SSC, side scattered.

(D-E) The mean ± SD of IgA% (D) and IgG3% (E) of HuR– (22B) and HuR+ (11A) cells at the

indicated time points of the five to six independent experiments. ***, P < 0.001.

(F) The analyzed region mutated by AID-dependent hypermutation (G).

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

the factor required in CSR.

(G) Mutation frequency of HuR– and HuR+ cells. P values were calculated by Fisher’s exact test. **,

P < 0.01; ***, P < 0.001; n.s., not significant.

(H) DNA break assay using biotinylated d-UTP (Bio-dUTP) labeling by terminal deoxynucleotidyl

transferase. HuR+ and HuR– cells with or without CIT stimulation were used. CIT-stimulated AIDdescribed in Supplementary Table 1.

an

us

cr

ip

Fig. 3. Reduced efficiencies of CSR, SHM, and DNA cleavage in HuR-deficient cells are not due

to the defect of cell cycle progression or oxidative stress responses.

(A-C) Cell cycle analysis with CellTrace Violet dye (CTV) using the monoclonal #22B HuR– and

#11A HuR+ CH12 cells.

(A) Time course of the cell proliferation assay and CIT stimulation. The cells were incubated with

CTV in their culture medium following CIT stimulation while aphidicolin samples were unstimulated.

(B) IgA% in the cells used in the CTV cell proliferation assay. The mean ± SD is shown.

(C) Representative histogram of HuR– (blue) and HuR+ (red) cells labelled by CTV. Whole cells

(left) or switched (IgA+) (right) populations are shown. HuR– without stimulation was incubated with

ep

te

aphidicolin to monitor the cell division. Inset shows the result of HuR–, non-stimulated cells

incubated with (green) or without (magenta) aphidicolin. no stim., not stimulated.

(D-F) The effects of reactive oxygen species (ROS) scavenger drugs on CSR in HuR– and HuR+ cells

derived from #111 HuR-KO clones.

(D) Time course for IgA% and dead cell% analyses with two ROS scavenger drugs, N-Acetyl-L-

Ac

Cysteine (L-NAC) and chloro[[2,2'-[1,2-ethanediylbis[(nitrilo-κN)methylidyne]]bis[6methoxyphenolato-κO]]]-manganese (EUK-134).

(E-F) Analysis of CSR to IgA (top) and dead cells (bottom) exposed to the serial concentration of LNAC (E, 0 - 50 mM) or EUK-134 (F, 0 - 10 mM) in HuR– and HuR+ cells. Gray triangles show the

increment of the concentration of the drugs.

(G) Detection of the inclusion of Intron (Int) 10 of dihydrolipoamide S-succinyltransferase (Dlst)

mRNA evaluated by qPCR with the two primer sets covering exon-intron boundaries in #22B, HuR–

and #11A, HuR+ cells. The signals from the specific primers were normalized by the signals of

Gapdh mRNA. The mean ± SD of each primer set of three independent experiments. The arrows

show the primers amplifying Exon (Ex) 10- Int 10 transcripts, and the triangles show the primers

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

knockout cells and HuR+ cells without labeling were used as negative control. The primers are

amplifying Int 10-Ex 11 transcripts. *, P < 0.05; **, P < 0.01; n.s., not significant; no stim., without

stimulation.

(H) Conventional RT-PCR analysis amplifying Ex 10-Ex 11 evaluating alternative splicing in Dlst

mRNA. Exon 10b (Ex 10b) is an unusual cryptic exon described by Diaz-Muñoz et al. (31).

non-stimulated HuR– and HuR+ cells out of three experiments. GAPDH (I) and #&actin (J) are

an

us

cr

ip

loading controls.

Fig. 4. AID-dependent repression of Top1 is eliminated in HuR-deficient cells.

(A-B) Top1 protein change by CIT or CI stimulation in #22B HuR– and #11A HuR+ cells. The

proteins were extracted by PBS with TritonX-100 (A) or RIPA (B) buffer. GAPDH is the loading

control.

(C) Top1 mRNA expression in #22B HuR– and #11A HuR+ cells with or without CIT or CI

stimulation analyzed by q-PCR. The mean ± SD of Top1 mRNA signals normalized by Gapdh mRNA

is shown.

(D) Mouse Top1 mRNA structure and the position of the eight ATTTA motifs. The primer set

ep

te

position (a ~ h) used for q-PCR in RNA-IP experiments (E-H) are shown by the bars.

(E-F) RNA-IP analysis using #11A HuR+ cells and anti-HuR antibody.

(E) Western blot analysis showing the immunoprecipitation (IP) efficiency.

(F) Enrichment of Top1, Gapdh, or c-Myc mRNA to HuR protein evaluated by q-PCR. The mean ±

Ac

SD values of the three independent experiments are shown.

(G-H) RNA-IP analysis using wildtype and AID knockout mice spleen B cells and anti-HuR antibody

after stimulation with LPS and IL-4 for four days.

(G) Western blot analysis showing the immunoprecipitation (IP) efficiency.

(H) Enrichment of Top1, Gapdh, or c-Myc mRNA by HuR protein evaluated by q-PCR. The mean ±

SD values of the two independent experiments are shown.

(I-N) Polysome analysis comparing CIT-stimulated and unstimulated #22B HuR– and #11A HuR+

cells.

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

(I-J) Representative western blot images of Dlst (I) and c-Myc (J) protein expression in stimulated or

(I-J) Optical density (OD) was measured at 256 nm in the fractions (#1-#90) obtained by

ultracentrifuging of the 10-45% sucrose gradient in CIT-stimulated or unstimulated HuR– (I) or HuR+

cells (J).

(K-N) RNA analysis of the pooled samples collected from 10 serial fractions. Top1 mRNA in HuR–

of the sucrose concentration of the pooled samples.

partially in HuR-deficient cells.

an

us

cr

ip

Fig. 5. Knockdown of Top1 rescues the impairment of CSR to IgG3 completely and CSR to IgA

(A) Time course of Top1 knockdown experiments.

(B) Western blot analysis for Top1 protein expression after repeated siTop1. Actin was used as a

loading control. 1.6 or 3.2 105 cells/lane were loaded in siTop1, and 0.8 or 1.6

loaded in siControl.

105 cells/lane were

(C) Representative flowcytometric pattern of CSR to IgA (left two rows) and IgG3 (right two rows).

HuR– or HuR+ cells stimulated with CI or CIT for 72 hours transfected with or without 3 mM siTop1.

(D-E) The mean ± SD of IgA% (D) and IgG3% (E) from six and three independent experiments,

ep

te

respectively, observed from days 1 to 3. *, P < 0.05; **, P < 0.01; ***, P < 0.001; n.s., not significant.

Fig. 6. HuR is required for decrease in Top1, DNA cleavage, and CSR. When amount of Top1

protein is decreased by the repeated knockdown of Top1, HuR-deficient cells show “rescue” of CSR

efficiency to the level of HuR-proficient cells in CSR to IgG3. The reason for this rescue may be that

Ac

the equally minimized amount of Top1 protein in both HuR-deficient and -proficient cells achieved

similarly sufficient levels of altered non-B DNA structure and DNA cleavage.

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

(K) or HuR+ cells (L). b2M mRNA in HuR– (M) or HuR+ cells (N). Grey triangles show the change

Ac

ep

te

an

us

cr

ip

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

Ac

ep

te

an

us

cr

ip

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

Ac

ep

te

an

us

cr

ip

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

Ac

ep

te

an

us

cr

ip

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

Ac

ep

te

an

us

cr

ip

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

Ac

ep

te

an

us

cr

ip

Downloaded from https://academic.oup.com/intimm/advance-article/doi/10.1093/intimm/dxad011/7136247 by Kyoto University user on 24 April 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る