リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Engineered Antibodies with Dual Inhibitory Activity against Toll-like Receptor Family Members」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Engineered Antibodies with Dual Inhibitory Activity against Toll-like Receptor Family Members

佐藤, 雅人 筑波大学 DOI:10.15068/0002008182

2023.09.04

概要

1.1 Roles of antibodies in the immune system
Antibodies are a group of immunoglobulins (Ig) which recognize and eliminate pathogens for host protection.
Antibodies are major proteins in blood and are produced only by bone marrow-derived cells (B cells). In
vertebrates, the reaction between antibodies and their antigens is a key process in the immune system, so much
so that it forms the basis for the classical division of the immune system into innate and adaptive categories.
In the adaptive immune system, pathogens engulfed by dendritic cells (DC) are presented to thymusderived (T) lymphocytes, and B cells are subsequently activated to produce antibodies. The recognition of
pathogens by DC and their subsequent reaction form part of the innate immune system and will be described
later [1]. DCs are a type of antigen-presenting cell (APC). Among the three types of APCs, namely DCs,
macrophages and B cells, DCs are highly specialized to present antigens following loading onto major
histocompatibility complex (MHC) molecules. After DCs engulf an antigen, the antigen is degraded by
lysosomal proteases and antigen-derived peptide fragments are loaded on MHC to be presented to T cells
(Figure 1.1). Recognition of the peptide-MHC complex by the T cell receptor (TCR) ultimately leads to
activation of T cells. ...

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

LeBien, T.W. and T.F. Tedder, B lymphocytes: how they develop and function. Blood, 2008.

112(5): p. 1570-80 DOI: 10.1182/blood-2008-02-078071.

Embgenbroich, M. and S. Burgdorf, Current Concepts of Antigen Cross-Presentation. Front

Immunol, 2018. 9: p. 1643 DOI: 10.3389/fimmu.2018.01643.

Stebegg, M., et al., Regulation of the Germinal Center Response. Front Immunol, 2018. 9: p.

2469 DOI: 10.3389/fimmu.2018.02469.

Schroeder, H.W., Jr. and L. Cavacini, Structure and function of immunoglobulins. J Allergy

Clin Immunol, 2010. 125(2 Suppl 2): p. S41-52 DOI: 10.1016/j.jaci.2009.09.046.

Gutzeit, C., K. Chen, and A. Cerutti, The enigmatic function of IgD: some answers at last.

2018. 48(7): p. 1101-1113 DOI: 10.1002/eji.201646547.

Bakema, J.E. and M. van Egmond, Immunoglobulin A: A next generation of therapeutic

antibodies? MAbs, 2011. 3(4): p. 352-61 DOI: 10.4161/mabs.3.4.16092.

Pabst, O. and E. Slack, IgA and the intestinal microbiota: the importance of being specific.

Mucosal Immunol, 2020. 13(1): p. 12-21 DOI: 10.1038/s41385-019-0227-4.

Wu, L.C. and A.A. Zarrin, The production and regulation of IgE by the immune system. Nat

Rev Immunol, 2014. 14(4): p. 247-59 DOI: 10.1038/nri3632.

Bagatini, M.D., et al., Immune System and Chronic Diseases. 2017. 2017: p. 4284327 DOI:

10.1155/2017/4284327.

Dondelinger, M., et al., Understanding the Significance and Implications of Antibody

Numbering and Antigen-Binding Surface/Residue Definition. Front Immunol, 2018. 9: p. 2278

DOI: 10.3389/fimmu.2018.02278.

Schatz, D.G. and Y. Ji, Recombination centres and the orchestration of V(D)J recombination.

Nat Rev Immunol, 2011. 11(4): p. 251-63 DOI: 10.1038/nri2941.

Roth, D.B., V(D)J Recombination: Mechanism, Errors, and Fidelity. Microbiol Spectr, 2014.

2(6) DOI: 10.1128/microbiolspec.MDNA3-0041-2014.

Volpe, J.M. and T.B. Kepler, Large-scale analysis of human heavy chain V(D)J recombination

patterns. Immunome Res, 2008. 4: p. 3 DOI: 10.1186/1745-7580-4-3.

Vettermann, C. and M.S. Schlissel, Allelic exclusion of immunoglobulin genes: models and

mechanisms. Immunol Rev, 2010. 237(1): p. 22-42 DOI: 10.1111/j.1600-065X.2010.00935.x.

Vidarsson, G., G. Dekkers, and T. Rispens, IgG subclasses and allotypes: from structure to

effector functions. Front Immunol, 2014. 5: p. 520 DOI: 10.3389/fimmu.2014.00520.

Mankarious, S., et al., The half-lives of IgG subclasses and specific antibodies in patients with

primary immunodeficiency who are receiving intravenously administered immunoglobulin. J

Lab Clin Med, 1988. 112(5): p. 634-40.

de Taeye, S.W., T. Rispens, and G. Vidarsson, The Ligands for Human IgG and Their Effector

Functions. 2019. 8(2) DOI: 10.3390/antib8020030.

Sasaki, T., et al., Synergistic effect of IgG4 antibody and CTLs causes tissue inflammation in

IgG4-related disease. Int Immunol, 2020. 32(3): p. 163-174 DOI: 10.1093/intimm/dxz073.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Wang, W., et al., NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer

Immunotherapy. Front Immunol, 2015. 6: p. 368 DOI: 10.3389/fimmu.2015.00368.

Reis, E.S., et al., Complement in cancer: untangling an intricate relationship. Nat Rev

Immunol, 2018. 18(1): p. 5-18 DOI: 10.1038/nri.2017.97.

Song, E.S., K. Young, and D.W. Sears, Rat and human natural killers exhibit contrasting

immunoglobulin G subclass specificities in antibody-dependent cellular cytotoxicity reflecting

differences in their Fc receptors (Fc gamma R). J Leukoc Biol, 1990. 48(6): p. 524-30 DOI:

10.1002/jlb.48.6.524.

Miyatake, T., et al., Complement-fixing elicited antibodies are a major component in the

pathogenesis of xenograft rejection. J Immunol, 1998. 160(8): p. 4114-23.

Abès, R. and J.L. Teillaud, Impact of Glycosylation on Effector Functions of Therapeutic IgG.

Pharmaceuticals (Basel), 2010. 3(1): p. 146-157 DOI: 10.3390/ph3010146.

Kuhn, C. and H.L. Weiner, Therapeutic anti-CD3 monoclonal antibodies: from bench to

bedside. Immunotherapy, 2016. 8(8): p. 889-906 DOI: 10.2217/imt-2016-0049.

Lu, R.M., et al., Development of therapeutic antibodies for the treatment of diseases. J Biomed

Sci, 2020. 27(1): p. 1 DOI: 10.1186/s12929-019-0592-z.

Salfeld, J.G., Isotype selection in antibody engineering. Nat Biotechnol, 2007. 25(12): p.

1369-72 DOI: 10.1038/nbt1207-1369.

Niwa, R., et al., Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced

antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia

and lymphoma. Cancer Res, 2004. 64(6): p. 2127-33 DOI: 10.1158/0008-5472.can-03-2068.

Idusogie, E.E., et al., Mapping of the C1q binding site on rituxan, a chimeric antibody with a

human IgG1 Fc. J Immunol, 2000. 164(8): p. 4178-84 DOI: 10.4049/jimmunol.164.8.4178.

Yang, X. and A. Ambrogelly, Enlarging the repertoire of therapeutic monoclonal antibodies

platforms: domesticating half molecule exchange to produce stable IgG4 and IgG1 bispecific

antibodies. Curr Opin Biotechnol, 2014. 30: p. 225-9 DOI: 10.1016/j.copbio.2014.09.001.

Schlothauer, T., et al., Novel human IgG1 and IgG4 Fc-engineered antibodies with completely

abolished immune effector functions. Protein Eng Des Sel, 2016. 29(10): p. 457-466 DOI:

10.1093/protein/gzw040.

Kasli, I.M., O.R.T. Thomas, and T.W. Overton, Use of a design of experiments approach to

optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli:

selection of signal peptide and optimal growth conditions. AMB Express, 2019. 9(1): p. 5

DOI: 10.1186/s13568-018-0727-8.

Ahmad, Z.A., et al., scFv antibody: principles and clinical application. Clin Dev Immunol,

2012. 2012: p. 980250 DOI: 10.1155/2012/980250.

Chiu, M.L., et al., Antibody Structure and Function: The Basis for Engineering Therapeutics.

Antibodies (Basel), 2019. 8(4) DOI: 10.3390/antib8040055.

Svozil, J. and K. Baerenfaller, A Cautionary Tale on the Inclusion of Variable

Posttranslational Modifications in Database-Dependent Searches of Mass Spectrometry Data.

Methods Enzymol, 2017. 586: p. 433-452 DOI: 10.1016/bs.mie.2016.11.007.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Pavon, J.A., et al., Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative

Stress and Modeling Prediction. Anal Chem, 2019. 91(3): p. 2192-2200 DOI:

10.1021/acs.analchem.8b04768.

Gaza-Bulseco, G., et al., Effect of methionine oxidation of a recombinant monoclonal antibody

on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed

Life Sci, 2008. 870(1): p. 55-62 DOI: 10.1016/j.jchromb.2008.05.045.

Zarrineh, M., et al., Mechanism of antibodies purification by protein A. Anal Biochem, 2020.

609: p. 113909 DOI: 10.1016/j.ab.2020.113909.

Bailey, L.J., et al., Applications for an engineered Protein-G variant with a pH controllable

affinity to antibody fragments. J Immunol Methods, 2014. 415: p. 24-30 DOI:

10.1016/j.jim.2014.10.003.

Hong, P., S. Koza, and E.S. Bouvier, Size-Exclusion Chromatography for the Analysis of

Protein Biotherapeutics and their Aggregates. J Liq Chromatogr Relat Technol, 2012. 35(20):

p. 2923-2950 DOI: 10.1080/10826076.2012.743724.

Liu, H.F., et al., Recovery and purification process development for monoclonal antibody

production. MAbs, 2010. 2(5): p. 480-99 DOI: 10.4161/mabs.2.5.12645.

Li, F., et al., Cell culture processes for monoclonal antibody production. MAbs, 2010. 2(5): p.

466-79 DOI: 10.4161/mabs.2.5.12720.

Noh, S.M., S. Shin, and G.M. Lee, Comprehensive characterization of glutamine synthetasemediated selection for the establishment of recombinant CHO cells producing monoclonal

antibodies. Sci Rep, 2018. 8(1): p. 5361 DOI: 10.1038/s41598-018-23720-9.

Li, J., et al., A comparative study of different vector designs for the mammalian expression of

recombinant IgG antibodies. J Immunol Methods, 2007. 318(1-2): p. 113-24 DOI:

10.1016/j.jim.2006.10.010.

Vaisman-Mentesh, A., et al., The Molecular Mechanisms That Underlie the Immune Biology

of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Frontiers

in Immunology, 2020. 11 DOI: 10.3389/fimmu.2020.01951.

Almagro, J.C. and J. Fransson, Humanization of antibodies. Front Biosci, 2008. 13: p. 161933 DOI: 10.2741/2786.

Osborn, M.J., et al., High-affinity IgG antibodies develop naturally in Ig-knockout rats

carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region. J Immunol, 2013.

190(4): p. 1481-90 DOI: 10.4049/jimmunol.1203041.

Lee, E.C., et al., Complete humanization of the mouse immunoglobulin loci enables efficient

therapeutic antibody discovery. Nat Biotechnol, 2014. 32(4): p. 356-63 DOI:

10.1038/nbt.2825.

Bates, A. and C.A. Power, David vs. Goliath: The Structure, Function, and Clinical Prospects

of Antibody Fragments. Antibodies (Basel), 2019. 8(2) DOI: 10.3390/antib8020028.

Weatherill, E.E., et al., Towards a universal disulphide stabilised single chain Fv format:

importance of interchain disulphide bond location and vL-vH orientation. Protein Eng Des

Sel, 2012. 25(7): p. 321-9 DOI: 10.1093/protein/gzs021.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Benschop, R.J., et al., Development of tibulizumab, a tetravalent bispecific antibody targeting

BAFF and IL-17A for the treatment of autoimmune disease. MAbs, 2019. 11(6): p. 1175-1190

DOI: 10.1080/19420862.2019.1624463.

Cao, M., et al., Characterization and analysis of scFv-IgG bispecific antibody size variants.

MAbs, 2018. 10(8): p. 1236-1247 DOI: 10.1080/19420862.2018.1505398.

Croasdale, R., et al., Development of tetravalent IgG1 dual targeting IGF-1R-EGFR

antibodies with potent tumor inhibition. Arch Biochem Biophys, 2012. 526(2): p. 206-18 DOI:

10.1016/j.abb.2012.03.016.

DiGiandomenico, A., et al., A multifunctional bispecific antibody protects against

Pseudomonas aeruginosa. Sci Transl Med, 2014. 6(262): p. 262ra155 DOI:

10.1126/scitranslmed.3009655.

Santich, B.H., et al., Interdomain spacing and spatial configuration drive the potency of IgG[L]-scFv T cell bispecific antibodies. Sci Transl Med, 2020. 12(534) DOI:

10.1126/scitranslmed.aax1315.

Digiammarino, E.L., et al., Ligand association rates to the inner-variable-domain of a dualvariable-domain immunoglobulin are significantly impacted by linker design. MAbs, 2011.

3(5): p. 487-94 DOI: 10.4161/mabs.3.5.16326.

Wu, C., et al., Simultaneous targeting of multiple disease mediators by a dual-variabledomain immunoglobulin. Nat Biotechnol, 2007. 25(11): p. 1290-7 DOI: 10.1038/nbt1345.

Wu, C., et al., Molecular construction and optimization of anti-human IL-1alpha/beta dual

variable domain immunoglobulin (DVD-Ig) molecules. MAbs, 2009. 1(4): p. 339-47 DOI:

10.4161/mabs.1.4.8755.

Ma, J., et al., Bispecific Antibodies: From Research to Clinical Application. Front Immunol,

2021. 12: p. 626616 DOI: 10.3389/fimmu.2021.626616.

Krah, S., et al., Engineering IgG-Like Bispecific Antibodies-An Overview. Antibodies (Basel),

2018. 7(3) DOI: 10.3390/antib7030028.

Ridgway, J.B., L.G. Presta, and P. Carter, 'Knobs-into-holes' engineering of antibody CH3

domains for heavy chain heterodimerization. Protein Eng, 1996. 9(7): p. 617-21 DOI:

10.1093/protein/9.7.617.

Liu, H., et al., Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel

Scaffolds. Front Immunol, 2017. 8: p. 38 DOI: 10.3389/fimmu.2017.00038.

Gao, W., et al., Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for

Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front Physiol, 2017.

8: p. 508 DOI: 10.3389/fphys.2017.00508.

Farooq, M., et al., Toll-Like Receptors as a Therapeutic Target in the Era of Immunotherapies.

Front Cell Dev Biol, 2021. 9: p. 756315 DOI: 10.3389/fcell.2021.756315.

Monnet, E., et al., Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal

antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: a

phase II study. Ann Rheum Dis, 2020. 79(3): p. 316-323 DOI: 10.1136/annrheumdis-2019216487.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Uematsu, S. and S. Akira, Toll-like receptors and Type I interferons. J Biol Chem, 2007.

282(21): p. 15319-23 DOI: 10.1074/jbc.R700009200.

Kawai, T. and S. Akira, The roles of TLRs, RLRs and NLRs in pathogen recognition. Int

Immunol, 2009. 21(4): p. 317-37 DOI: 10.1093/intimm/dxp017.

Ain, Q.U., M. Batool, and S. Choi, TLR4-Targeting Therapeutics: Structural Basis and

Computer-Aided Drug Discovery Approaches. Molecules, 2020. 25(3) DOI:

10.3390/molecules25030627.

Ohnishi, H., et al., Structural basis for the multiple interactions of the MyD88 TIR domain in

TLR4 signaling. Proc Natl Acad Sci U S A, 2009. 106(25): p. 10260-5 DOI:

10.1073/pnas.0812956106.

Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex

web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45 DOI: 10.1146/annurevimmunol-032713-120231.

Parameswaran, N. and S. Patial, Tumor necrosis factor-alpha signaling in macrophages. Crit

Rev

Eukaryot

Gene

Expr,

2010.

20(2):

p.

87-103

DOI:

10.1615/critreveukargeneexpr.v20.i2.10.

Jang, D.I., et al., The Role of Tumor Necrosis Factor Alpha (TNF-alpha) in Autoimmune

Disease and Current TNF-alpha Inhibitors in Therapeutics. Int J Mol Sci, 2021. 22(5) DOI:

10.3390/ijms22052719.

Kaur, S., et al., A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors.

Bioorg Med Chem, 2020. 28(5): p. 115327 DOI: 10.1016/j.bmc.2020.115327.

Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock

(Sepsis-3). JAMA, 2016. 315(8): p. 801-10 DOI: 10.1001/jama.2016.0287.

Honda, S., et al., Marginal zone B cells exacerbate endotoxic shock via interleukin-6 secretion

induced by Fcalpha/muR-coupled TLR4 signalling. Nat Commun, 2016. 7: p. 11498 DOI:

10.1038/ncomms11498.

Leon, L.R., A.A. White, and M.J. Kluger, Role of IL-6 and TNF in thermoregulation and

survival during sepsis in mice. Am J Physiol, 1998. 275(1): p. R269-77 DOI:

10.1152/ajpregu.1998.275.1.R269.

Qiu, P., et al., The evolving experience with therapeutic TNF inhibition in sepsis: considering

the potential influence of risk of death. Expert Opin Investig Drugs, 2011. 20(11): p. 1555-64

DOI: 10.1517/13543784.2011.623125.

Chaudhry, H., et al., Role of cytokines as a double-edged sword in sepsis. In Vivo, 2013. 27(6):

p. 669-84.

Hreggvidsdottir, H.S., et al., The alarmin HMGB1 acts in synergy with endogenous and

exogenous danger signals to promote inflammation. J Leukoc Biol, 2009. 86(3): p. 655-62

DOI: 10.1189/jlb.0908548.

Jarczak, D., S. Kluge, and A. Nierhaus, Sepsis-Pathophysiology and Therapeutic Concepts.

Front Med (Lausanne), 2021. 8: p. 628302 DOI: 10.3389/fmed.2021.628302.

Hotchkiss, R.S., et al., Immune checkpoint inhibition in sepsis: a Phase 1b randomized study

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab.

Intensive Care Med, 2019. 45(10): p. 1360-1371 DOI: 10.1007/s00134-019-05704-z.

Roger, T., et al., Protection from lethal gram-negative bacterial sepsis by targeting Toll-like

receptor 4. Proc Natl Acad Sci U S A, 2009. 106(7): p. 2348-52 DOI:

10.1073/pnas.0808146106.

Alves-Filho, J.C., et al., Regulation of chemokine receptor by Toll-like receptor 2 is critical to

neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A, 2009.

106(10): p. 4018-23 DOI: 10.1073/pnas.0900196106.

Alves-Filho, J.C., et al., Toll-like receptor 4 signaling leads to neutrophil migration

impairment in polymicrobial sepsis. Crit Care Med, 2006. 34(2): p. 461-70 DOI:

10.1097/01.ccm.0000198527.71819.e1.

Casaletto, J.B., et al., MM-131, a bispecific anti-Met/EpCAM mAb, inhibits HGF-dependent

and HGF-independent Met signaling through concurrent binding to EpCAM. Proc Natl Acad

Sci U S A, 2019. 116(15): p. 7533-7542 DOI: 10.1073/pnas.1819085116.

Valanne, S., J.H. Wang, and M. Rämet, The Drosophila Toll signaling pathway. J Immunol,

2011. 186(2): p. 649-56 DOI: 10.4049/jimmunol.1002302.

Molteni, M., S. Gemma, and C. Rossetti, The Role of Toll-Like Receptor 4 in Infectious and

Noninfectious Inflammation. 2016. 2016: p. 6978936 DOI: 10.1155/2016/6978936.

Sha, T., Y. Iizawa, and M. Ii, Combination of imipenem and TAK-242, a Toll-like receptor 4

signal transduction inhibitor, improves survival in a murine model of polymicrobial sepsis.

Shock, 2011. 35(2): p. 205-9 DOI: 10.1097/SHK.0b013e3181f48942.

Rusai, K., et al., Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury. Pediatr

Nephrol, 2010. 25(5): p. 853-60 DOI: 10.1007/s00467-009-1422-4.

Jeyaseelan, S., et al., Distinct roles of pattern recognition receptors CD14 and Toll-like

receptor 4 in acute lung injury. Infect Immun, 2005. 73(3): p. 1754-63 DOI:

10.1128/iai.73.3.1754-1763.2005.

Schroder, K., et al., Conservation and divergence in Toll-like receptor 4-regulated gene

expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A, 2012.

109(16): p. E944-53 DOI: 10.1073/pnas.1110156109.

Zhang, Z., et al., Toll-like receptor 4 signaling in dysfunction of cardiac microvascular

endothelial cells under hypoxia/reoxygenation. Inflamm Res, 2011. 60(1): p. 37-45 DOI:

10.1007/s00011-010-0232-2.

Zhou, S., G. Wang, and W. Zhang, Effect of TLR4/MyD88 signaling pathway on sepsisassociated acute respiratory distress syndrome in rats, via regulation of macrophage

activation and inflammatory response. Experimental and therapeutic medicine, 2018. 15(4):

p. 3376-3384 DOI: 10.3892/etm.2018.5815.

Heuff, G., et al., Isolation of cytotoxic Kupffer cells by a modified enzymatic assay: a

methodological study. J Immunol Methods, 1993. 159(1-2): p. 115-23 DOI: 10.1016/00221759(93)90148-z.

Bachman, J., Reverse-transcription PCR (RT-PCR). Methods Enzymol, 2013. 530: p. 67-74

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

DOI: 10.1016/b978-0-12-420037-1.00002-6.

Jones, S.T. and M.M. Bendig, Rapid PCR-cloning of full-length mouse immunoglobulin

variable regions. Biotechnology (N Y), 1991. 9(1): p. 88-9 DOI: 10.1038/nbt0191-88.

Kabat, E.A., Sequences of proteins of immunological interest. 5th ed. ed. NIH publication.

Vol. no. 91-3242. 1991: National Institutes of Health. 3 v. (xcvi, 2597 p.).

Chothia, C. and A.M. Lesk, Canonical structures for the hypervariable regions of

immunoglobulins. J Mol Biol, 1987. 196(4): p. 901-17 DOI: 10.1016/0022-2836(87)90412-8.

Isaacs, J.D. and H. Waldmann, Helplessness as a strategy for avoiding antiglobulin responses

to therapeutic monoclonal antibodies. Ther Immunol, 1994. 1(6): p. 303-12.

Durrant, L.G., et al., Abrogation of antibody responses in rats to murine monoclonal antibody

791T/36 by treatment with daunomycin-cis-aconityl-791T/36 conjugates. Cancer Immunol

Immunother, 1989. 28(1): p. 37-42 DOI: 10.1007/bf00205799.

Gómez-Mantilla, J.D., et al., Review on modeling anti-antibody responses to monoclonal

antibodies. J Pharmacokinet Pharmacodyn, 2014. 41(5): p. 523-36 DOI: 10.1007/s10928014-9367-z.

Muyldermans, S., Nanobodies: natural single-domain antibodies. Annu Rev Biochem, 2013.

82: p. 775-97 DOI: 10.1146/annurev-biochem-063011-092449.

Strohl, W.R., Antibody discovery: sourcing of monoclonal antibody variable domains. Curr

Drug Discov Technol, 2014. 11(1): p. 3-19 DOI: 10.2174/1570163810666131120150043.

Bujotzek, A., et al., VH-VL orientation prediction for antibody humanization candidate

selection: A case study. MAbs, 2016. 8(2): p. 288-305 DOI: 10.1080/19420862.2015.1117720.

Yang, Y., et al., The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell

Death Dis, 2016. 7(5): p. e2234 DOI: 10.1038/cddis.2016.140.

Degryse, B., et al., The high mobility group (HMG) boxes of the nuclear protein HMG1 induce

chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol, 2001.

152(6): p. 1197-206 DOI: 10.1083/jcb.152.6.1197.

Hreggvidsdottir, H.S., et al., The alarmin HMGB1 acts in synergy with endogenous and

exogenous danger signals to promote inflammation. J Leukoc Biol, 2009. 86(3): p. 655-62

DOI: 10.1189/jlb.0908548.

Lu, Y., et al., Toll-like Receptors and Inflammatory Bowel Disease. Front Immunol, 2018. 9:

p. 72 DOI: 10.3389/fimmu.2018.00072.

Gritte, R.B., et al., Why Septic Patients Remain Sick After Hospital Discharge? Front

Immunol, 2020. 11: p. 605666 DOI: 10.3389/fimmu.2020.605666.

Evans, L., et al., Surviving sepsis campaign: international guidelines for management of

sepsis and septic shock 2021. Intensive Care Med, 2021. 47(11): p. 1181-1247 DOI:

10.1007/s00134-021-06506-y.

Castoldi, A., et al., TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil

migration in acute kidney injury induced by sepsis. PLoS One, 2012. 7(5): p. e37584 DOI:

10.1371/journal.pone.0037584.

Spiller, S., et al., TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Gram-negative sepsis in mice. J Exp Med, 2008. 205(8): p. 1747-54 DOI:

10.1084/jem.20071990.

Fudenberg, H.H., G. Drews, and A. Nisonoff, SEROLOGIC DEMONSTRATION OF DUAL

SPECIFICITY OF RABBIT BIVALENT HYBRID ANTIBODY. J Exp Med, 1964. 119(1): p.

151-66 DOI: 10.1084/jem.119.1.151.

Franquiz, M.J. and N.J. Short, Blinatumomab for the Treatment of Adult B-Cell Acute

Lymphoblastic Leukemia: Toward a New Era of Targeted Immunotherapy. Biologics, 2020.

14: p. 23-34 DOI: 10.2147/btt.s202746.

Labrijn, A.F. and M.L. Janmaat, Bispecific antibodies: a mechanistic review of the pipeline.

2019. 18(8): p. 585-608 DOI: 10.1038/s41573-019-0028-1.

Sato, M., et al., Novel TLR2xTLR4 Bispecific Antibody Inhibits Bacterial Sepsis. Monoclon

Antib Immunodiagn Immunother, 2021. 40(1): p. 6-10 DOI: 10.1089/mab.2020.0025.

Carter, P., et al., Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc

Natl Acad Sci U S A, 1992. 89(10): p. 4285-9 DOI: 10.1073/pnas.89.10.4285.

Presta, L.G., et al., Humanization of an antibody directed against IgE. J Immunol, 1993.

151(5): p. 2623-32.

Ewert, S., A. Honegger, and A. Plückthun, Stability improvement of antibodies for

extracellular and intracellular applications: CDR grafting to stable frameworks and

structure-based framework engineering. Methods, 2004. 34(2): p. 184-99 DOI:

10.1016/j.ymeth.2004.04.007.

Umemura, Y., et al., Current spectrum of causative pathogens in sepsis: A prospective

nationwide cohort study in Japan. Int J Infect Dis, 2021. 103: p. 343-351 DOI:

10.1016/j.ijid.2020.11.168.

Rappazzo, C.G. and L.V. Tse, Broad and potent activity against SARS-like viruses by an

engineered human monoclonal antibody. 2021. 371(6531): p. 823-829 DOI:

10.1126/science.abf4830.

Dunn-Siegrist, I., et al., Pivotal involvement of Fcgamma receptor IIA in the neutralization of

lipopolysaccharide signaling via a potent novel anti-TLR4 monoclonal antibody 15C1. J Biol

Chem, 2007. 282(48): p. 34817-27 DOI: 10.1074/jbc.M706440200.

Rhoden, J.J., G.L. Dyas, and V.J. Wroblewski, A Modeling and Experimental Investigation of

the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific

Antibody Binding to Cell Surface Targets. 2016. 291(21): p. 11337-47 DOI:

10.1074/jbc.M116.714287.

Bruhns, P., et al., Specificity and affinity of human Fcgamma receptors and their polymorphic

variants for human IgG subclasses. Blood, 2009. 113(16): p. 3716-25 DOI: 10.1182/blood2008-09-179754.

Boontham, P., et al., Surgical sepsis: dysregulation of immune function and therapeutic

implications. Surgeon, 2003. 1(4): p. 187-206 DOI: 10.1016/s1479-666x(03)80018-5.

Gopalakrishnan, M., et al., Ligand rebinding: self-consistent mean-field theory and numerical

simulations applied to surface plasmon resonance studies. Eur Biophys J, 2005. 34(7): p. 9438

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

58 DOI: 10.1007/s00249-005-0471-2.

Douzi, B., Protein-Protein Interactions: Surface Plasmon Resonance. Methods Mol Biol,

2017. 1615: p. 257-275 DOI: 10.1007/978-1-4939-7033-9_21.

Kamat, V. and A. Rafique, Designing binding kinetic assay on the bio-layer interferometry

(BLI) biosensor to characterize antibody-antigen interactions. Anal Biochem, 2017. 536: p.

16-31 DOI: 10.1016/j.ab.2017.08.002.

Hadzhieva, M., et al., Impact of Antigen Density on the Binding Mechanism of IgG Antibodies.

Sci Rep, 2017. 7(1): p. 3767 DOI: 10.1038/s41598-017-03942-z.

Klein, J.S. and P.J. Bjorkman, Few and far between: how HIV may be evading antibody avidity.

PLoS Pathog, 2010. 6(5): p. e1000908 DOI: 10.1371/journal.ppat.1000908.

Barbas, C.F., 3rd, et al., In vitro evolution of a neutralizing human antibody to human

immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc

Natl Acad Sci U S A, 1994. 91(9): p. 3809-13 DOI: 10.1073/pnas.91.9.3809.

Roost, H.P., et al., Early high-affinity neutralizing anti-viral IgG responses without further

overall improvements of affinity. Proc Natl Acad Sci U S A, 1995. 92(5): p. 1257-61 DOI:

10.1073/pnas.92.5.1257.

Mouquet, H., et al., Enhanced HIV-1 neutralization by antibody heteroligation. Proc Natl

Acad Sci U S A, 2012. 109(3): p. 875-80 DOI: 10.1073/pnas.1120059109.

Kim, H.S., et al., Sulfatide Inhibits HMGB1 Secretion by Hindering Toll-Like Receptor 4

Localization Within Lipid Rafts. Front Immunol, 2020. 11: p. 1305 DOI:

10.3389/fimmu.2020.01305.

Kataoka, H., et al., Naringenin suppresses Toll-like receptor 2-mediated inflammatory

responses through inhibition of receptor clustering on lipid rafts. Food Sci Nutr, 2021. 9(2):

p. 963-972 DOI: 10.1002/fsn3.2063.

Hung, A.F., et al., Lipid rafts hinder binding of antibodies to the extracellular segment of the

membrane-anchor peptide of mIgA. Mol Immunol, 2011. 48(15-16): p. 1975-82 DOI:

10.1016/j.molimm.2011.06.219.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る