リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery

Yui Fujihara Hiroaki Kobayashi Shinya Takaishi Takaaki Tomai Masahiro Yamashita Itaru Honma 東北大学 DOI:10.1021/acsami.0c03642

2020.05.15

概要

In recent years, organic electrode materials have been strongly considered for use in sustainable batteries. However, most organic electrode materials have low electrical conductivity and require a lot of conductive additives, which decrease effective capacity based on the entire electrode weight/volume. In this study, we propose a novel electrical conductivity-relay system that imparts electrical conductivity to organic small molecular electrodes without any conductive additive throughout the charge/discharge cycles. It consists of the combination of the charge-transfer phenomenon in a pristine state and the formation of organic radical salts in redox states. Herein we demonstrate this electrical conductivity-relay system using a simply mixed molecular crystal couple of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) as a cathode without any conductive additive and an aqueous sodium bromide as an electrolyte. During charge/discharge, electrical conductivity of the cathode is supported by charge-transfer at the TTF/TCNQ interface and (TTF)Brn and NaTCNQ radical salts, and the cathode exhibits the specific capacity of 112 mAh g–1 and the retention rate of 80.7% at the 30th cycle. Furthermore, the molecular crystal couple electrode of TTF and TCNQ shows the better charge/discharge performance than the pure charge-transfer complex electrode, indicating that this system expands the candidate for organic electrode materials to various pairs and mixing ratio of small molecules even not forming charge-transfer complexes.

KEYWORDS organic battery, conductive additive-free cathode, charge-transfer, radical salt

参考文献

(1) Liang, Y.; Tao, Z.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2 (7), 742-769.

(2) Xie, J.; Zhang, Q. Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J. Mater. Chem. A 2016, 4 (19), 7091-7106.

(3) Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7 (8), 1601792.

(4) Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127-142.

(5) Shea, J.; Luo, C. Organic Electrode Materials for Metal Ion Batteries. ACS Appl. Mater.

Interfaces 2020, 12 (5), 5361-5380.

(6) Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 2018, 30 (11), 3874-3881.

(7) Bai, Y.; Fu, W.; Chen, W.; Chen, Z.; Pan, X.; Lv, X.; Wu, J.; Pan, X. Perylenetetracarboxylic diimide as a high-rate anode for potassium-ion batteries. J. Mater. Chem. A 2019, 7 (42), 24454-24461.

(8) Tomai, T.; Mitani, S.; Komatsu, D.; Kawaguchi, Y.; Honma, I. Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple. Sci. Rep. 2014, 4, 3591.

(9) Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16 (8), 841-848.

(10) Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjödin, M. An all-organic proton battery. J. Am. Chem. Soc. 2017, 139 (13), 4828-4834.

(11) Perticarari, S.; Sayed-Ahmad-Baraza, Y.; Ewels, C.; Moreau, P.; Guyomard, D.; Poizot, P.; Odobel, F.; Gaubicher, J. Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries. Adv. Energy Mater. 2018, 8 (8), 1701988.

(12) Mike, J. F.; Lutkenhaus, J. L. Recent advances in conjugated polymer energy storage. J. Polym. Sci. B Polym. Phys. 2013, 51 (7), 468-480.

(13) Xie, J.; Gu, P.; Zhang, Q. Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Lett. 2017, 2 (9), 1985-1996.

(14) Mukherjee, B.; Mukherjee, M. High Performance Organic Thin Film Transistors with Solution Processed TTF-TCNQ Charge Transfer Salt as Electrodes. Langmuir 2011, 27 (17), 11246-11250.

(15) Marzouk, S. A.; Cosofret, V. V.; Buck, R. P.; Yang, H.; Cascio, W. E.; Hassan, S. S. A conducting salt-based amperometric biosensor for measurement of extracellular lactate accumulation in ischemic myocardium. Anal. Chem. 1997, 69 (14), 2646-2652.

(16) Khan, G. F.; Ohwa, M.; Wernet, W. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal. Chem. 1996, 68 (17), 2939-2945.

(17) Cano, M.; Palenzuela, B.; Rodríguez-Amaro, R. A TTF–TCNQ Electrode as a Voltammetric Analogue of an Ion-Selective Electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2006, 18 (11), 1068-1074.

(18) Wooster, T. J.; Bond, A. M.; Honeychurch, M. J. An analogy of an ion-selective electrode sensor based on the voltammetry of microcrystals of tetracyanoquinodimethane or tetrathiafulvalene adhered to an electrode surface. Anal. Chem. 2003, 75 (3), 586-592.

(19) Lee, S.; Hong, J.; Jung, S.-K.; Ku, K.; Kwon, G.; Seong, W. M.; Kim, H.; Yoon, G.; Kang, I.; Hong, K. Charge-transfer complexes for high-power organic rechargeable batteries. Energy Stor. Mater. 2019, 20, 462-469.

(20) Ferraris, J.; Cowan, D.; Walatka, V.; Perlstein, J. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 1973, 95 (3), 948-949.

(21) Goto, H.; Fujinawa, T.; Asahi, H.; Inabe, T.; Ogata, H.; Miyajima, S.; Maruyama, Y. Crystal structures and physical properties of 1, 6-diaminopyrene-p-chloranil (DAP-CHL) charge-transfer complex. Two polymorphs and their unusual electrical properties. Bull. Chem. Soc. Jpn. 1996, 69 (1), 85-93.

(22) Jacobsen, C. S.; Mortensen, K.; Andersen, J. R.; Bechgaard, K. Transport properties of some derivatives of tetrathiafulvalene-tetracyano-p-quinodimethane (TTF-TCNQ). Phys. Rev. B 1978, 18 (2), 905.

(23) Alves, H.; Molinari, A. S.; Xie, H.; Morpurgo, A. F. Metallic conduction at organic chargetransfer interfaces. Nat. Mater. 2008, 7 (7), 574-580.

(24) Kirtley, J. R.; Mannhart, J. When TTF met TCNQ. Nat. Mater. 2008, 7 (7), 520-521.

(25) Adeel, S. M.; Martin, L. L.; Bond, A. M. Redox-induced solid-solid state transformation of tetrathiafulvalene (TTF) microcrystals into mixed-valence and π-dimers in the presence of nitrate anions. J. Solid State Electrochem. 2014, 18 (12), 3287-3298.

(26) Bond, A. M.; Fiedler, D. A. In situ electrochemical and electron spin resonance studies of microcrystals mechanically attached to an electrode surface. J. Electrochem. Soc. 1997, 144 (5), 1566-1574.

(27) Wooster, T. J.; Bond, A. M. Ion selectivity obtained under voltammetric conditions when a TCNQ chemically modified electrode is presented with aqueous solutions containing tetraalkylammonium cations. Analyst 2003, 128 (11), 1386-1390.

(28) Shaw, S. J.; Marken, F.; Bond, A. M. Detection of new features associated with the oxidation of microcrystalline tetrathiafulvalene attached to gold electrodes by the simultaneous application of electrochemical and quartz crystal microbalance techniques. Electroanalysis 1996, 8 (8-9), 732-741.

(29) Wooster, T. J.; Bond, A. M.; Honeychurch, M. J. Resistance transitions detected by analysis of the voltammetry of tetrathiafulvalene microparticles adhered to electrode surfaces under conditions of dynamic resistance compensation. Electrochem. Commun. 2001, 3 (12), 746-752.

(30) Scott, B.; La Placa, S.; Torrance, J.; Silverman, B.; Welber, B. The crystal chemistry of organic metals. Composition, structure, and stability in the tetrathiafulvalinium-halide systems. J. Am. Chem. Soc. 1977, 99 (20), 6631-6639.

(31) Bond, A.; Symons, P. The relationship between the electrochemistry and the crystallography of microcrystals. The case of TCNQ (7, 7, 8, 8-tetracyanoquinodimethane). Analyst 1998, 123 (10), 1891-1904.

(32) Takahashi, Y.; Hayakawa, K.; Naito, T.; Inabe, T. What Happens at the Interface between TTF and TCNQ Crystals (TTF= Tetrathiafulvalene and TCNQ= 7, 7, 8, 8- Tetracyanoquinodimethane)? J. Phys. Chem. C 2012, 116 (1), 700-703.

(33) Thomas, G.; Schafer, D.; Wudl, F.; Horn, P.; Rimai, D.; Cook, J.; Glocker, D.; Skove, M.; Chu, C.; Groff, R. Electrical conductivity of tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Phys. Rev. B 1976, 13 (11), 5105.

(34) Kobayashi, H.; Hibino, M.; Ogasawara, Y.; Yamaguchi, K.; Kudo, T.; Okuoka, S.-i.; Yonehara, K.; Ono, H.; Sumida, Y.; Oshima, M. Improved performance of Co-doped Li2O cathodes for lithium-peroxide batteries using LiCoO2 as a dopant source. J. Power Sources 2016, 306, 567-572.

(35) Sasaki, T.; Ukyo, Y.; Novák, P. Memory effect in a lithium-ion battery. Nat. Mater. 2013, 12 (6), 569-575.

(36) Netz, A.; Huggins, R. A. Amorphous silicon formed in situ as negative electrode reactant in lithium cells. Solid State Ionics 2004, 175 (1-4), 215-219.

参考文献をもっと見る