リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「次世代リチウムイオン蓄電池用リチウム過剰型バナジウム系カチオン不規則配列岩塩型酸化物の研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

次世代リチウムイオン蓄電池用リチウム過剰型バナジウム系カチオン不規則配列岩塩型酸化物の研究

綦 锐杰 横浜国立大学 DOI:info:doi/10.18880/00014603

2022.05.26

概要

Rechargeable lithium-ion batteries (LIBs) have been widely used as energy storage devices for renewable energies and power sources for electric vehicles (EVs) to reduce dependence on fossil fuels. Nevertheless, further improvements in the energy density of Li-ion batteries are still needed to meet an ever-increasing demand for the electrification of transportation. Electrochemical properties of LIBs are mainly restricted by positive electrode materials, and thus advanced positive electrode materials with higher energy and power density are desired. Increasing attention has been focused on Li-excess cation-disordered rocksalt (DRS) oxides over the last couple of years due to their higher capacity and wider variety of compositions than conventional layered oxides, which creates a beneficial effect on the long-term development of LIBs. To balance the charge of feasible excess delithiation in Li-excess DRS oxides, an anionic redox of O2- is usually adopted. Another strategy consists in multielectron cationic redox transition metal, among candidates, vanadium ions present a two electron cationic redox of V3+/V5+, have superior reversibility, and can achieve longer cyclability without releasing oxygen. Currently, Vanadium-based Li-excess DRS oxides still possess hindrances including inferior rate capability and structure degradation associated with the dissolution of vanadium ions, which limits its use for practical applications.

 In this thesis, several approaches, which are presented in the following chapters, have been investigated moving forward the understanding and methodology of vanadium- based Li-excess DRS oxides.

 Chapter 1 introduces the fundamental knowledge and recent discoveries in the field of LIBs, a particular interest is given to vanadium-based Li-excess DRS oxides.

 Chapter 2 presents research conducted on nanosized Li1.25Nb0.25V0.5O2 coated by highly graphitic carbon. Indeed, Li-excess V-based DRS oxide, Li1.25Nb0.25V0.5O2 (LNVO), has a high theoretical specific capacity of 300 mA h g–1 based on two-electron cationic redox of V3+/V5+. However, the inferior kinetics of DRS structure restricts its application at high rates. To achieve its high-power battery applications, it is important to reduce the Li migration path and electron transfer resistance. To that end, carbon- coated nano-sized Li1.25Nb0.25V0.5O2/C is synthesized through a top-down approach. As a carbon source, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) is selected due to the similar conjugated carbon configuration between its perylene core and graphite, which eases its conversion into highly graphitic carbon with superior electronic conductivity during the heat-treating. In this study, nanosized Li1.25Nb0.25V0.5O2 coated by highly graphitic carbon is synthesized and the sample enables a high reversible capacity of >250 mA h g−1 which corresponds to 80% of the theoretical capacity with excellent rate capability. Additionally, an elevated temperature condition is adopted to further lower the Li ion migration barrier and activate more Li ions, which is thermodynamically inactive at lower temperature. The lower Li ions migration barrier coupled with higher Li ion conductivity for electrolyte results in full utilization of V3+/V5+ redox and unlocks theoretical specific capacity of 300 mA h g−1. Moreover, excellent rate capability, 185 mA h g−1 at 5120 mA g–1, is achieved with the oxide possessing the DRS structure.

 In chapter 3, as for Li-excess oxides without anionic redox, it is important to find the optimum chemistry to balance Li and cationic redox capacities to achieve the highest energy density. However, in the binary system of x Li3NbO4 − (1 − x) LiVO2, the optimum chemistry is found in Li1.2Nb0.2V0.6O2 (x = 0.25), which is a thermodynamically metastable phase and cannot be obtained by conventional solid- state calcination. Therefore, a high energy ball milling method which can produce higher reaction energy is adopted and successfully synthesized nano-sized single phase Li1.2Nb0.2V0.6O2 with a DRS structure. Compared to the sample synthesized by solid state reaction, which delivered a limited specific capacity of 290 mA h g−1 due to the phase segregation, a higher reversible specific capacity of around 320 mA h g−1 is achieved in the sample synthesized by high-energy ball milling. To further eliminate the adverse effects (low initial Coulombic efficiency and crystallinity) caused by ball milling, a heat treatment is conducted to reduce the oxidized surface of particles and relieve the strain. Thus, a nearly 100 % initial Coulombic efficiency (ICE) is obtained, and the rate capability is also much improved, over 200 mA h g−1 can be delivered at 2560 mA g−1.

 In chapter 4, to overcome the non-uniform carbon coating layer, a soluble carbon source PTC(Li+) is obtained through converting PTCDA in alkaline LiOH ethanol solution. The important perylene core is well preserved in PTC(Li+). Due to the more complete conductive network and better surface protection from more uniform carbon layer, nanosized Li1.25Nb0.25V0.5O2/C shows better rate capability and longer cyclability. The specific capacity is increased from 176 to 206 mA h g−1 at 2560 mA g−1. Capacity retention is also prolonged from 68 to 88% after 100 cycles. Besides, Li-excess enables reversible Li insertion/deinsertion in DRS oxides through percolating network, which is based on 0-transition metal (0-TM) tetrahedral site with lower diffusion barrier. Generally, as for Li-excess DRS oxides, after full discharge, nearly all octahedral sites are occupied by Li and TM ions, there is no space to accommodate more Li ions. However, the tetrahedral occupation of Li ions has been proved possible via similar 0- TM tetrahedral site with minimized repulsive electrostatic. Thus, DRS oxides Li1.25Nb0.25V0.5O2/C can also be discharged to a lower potential and act as negative electrode to assemble symmetric cell. The nano-sized carbon-coated LNVO/C with DRS structure delivers a capacity of 250 mA h g−1 between 0.01 – 2.0 V at 40 mA g–1. And then, symmetric LNVO ‖ LNVO cells based on similar solid-solution mechanism are assembled. The symmetric cells show much improved rate capability than full cell with graphite negative electrode. A high specific capacity of 135 mA h g−1 is obtained even at 2560 mA g–1 for the symmetric cell, while only 60 mA h g−1 can be delivered in cell with graphite negative electrode.

 In chapter 5, the conclusions in this thesis is given.

 In chapter 6, acknowledgements are provided.

この論文で使われている画像

参考文献

Chapter 1

1. Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; Lun, Z.; Rong, Z.; Persson, K.; Ceder, G., Chem. Rev. 2020, 121, 1623-1669.

2. Manthiram, A., Nat. Commun. 2020, 11, 1550.

3. Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y. M.; Yoon, W. S., Angew. Chem., Int. Ed. 2020, 59, 2578-2605.

4. Dunn, B.; Kamath, H.; Tarascon, J.-M., Science 2011, 334, 928-935.

5. Expansion application scenarios of LIBs [online]. [2022-02-28]. Available at: <www.dreamstime.com>; <www.pngitem.com>; <www.dejurka.ru>; <www.alison.com >.

6. Goodenough, J. B.; Park, K.-S., J. Am. Chem. Soc. 2013, 135, 1167-1176.

7. Goodenough, J. B.; Kim, Y., Chem. Mater. 2010, 22, 587-603.

8. Winter, M.; Barnett, B.; Xu, K., Chem. Rev. 2018.

9. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L., Carbon 2016, 105, 52-76.

10. Xue, W.; Gao, R.; Shi, Z.; Xiao, X.; Zhang, W.; Zhang, Y.; Zhu, Y. G.; Waluyo, I.; Li, Y.; Hill, M. R., Energy Environ. Sci. . 2021, 14, 6030-6040.

11. Van der Ven, A.; Bhattacharya, J.; Belak, A. A., Acc. Chem. Res 2013, 46, 1216-1225.

12. Clément, R. J.; Lun, Z.; Ceder, G., Energy Environ. Sci. 2020, 13, 345.

13. Oh, S. W.; Myung, S. T.; Oh, S. M.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K., Adv. Mater 2010, 22, 4842-5.

14. Wang, R.; Chen, X.; Huang, Z.; Yang, J.; Liu, F.; Chu, M.; Liu, T.; Wang, C.; Zhu, W.; Li, S.; Li, S.; Zheng, J.; Chen, J.; He, L.; Jin, L.; Pan, F.; Xiao, Y., Nat. Commun. 2021, 12, 3085.

15. Liu, C.; Neale, Z. G.; Cao, G., Mater. Today 2016, 19, 109-123.

16. Saubanère, M.; McCalla, E.; Tarascon, J.-M.; Doublet, M.-L., Energy Environ. Sci. . 2016, 9, 984- 991.

17. Xie, Y.; Saubanère, M.; Doublet, M.-L., Energy Environ. Sci. . 2017, 10, 266-274.

18. Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G., Nat. Chem. 2016, 8, 692-697.

19. Yamamoto, K.; Zhou, Y.; Yabuuchi, N.; Nakanishi, K.; Yoshinari, T.; Kobayashi, T.; Kobayashi, Y.; Yamamoto, R.; Watanabe, A.; Orikasa, Y.; Tsuruta, K.; Park, J.; Byon, H. R.; Tamenori, Y.; Ohta, T.; Uchimoto, Y., Chem. Mater. 2019, 32, 139-147.

20. Delattre, B.; Amin, R.; Sander, J.; De Coninck, J.; Tomsia, A. P.; Chiang, Y.-M., J. Electrochem. Soc. 2018, 165, A388.

21. Zhu, G.; Tian, X.; Tai, H.-C.; Li, Y.-Y.; Li, J.; Sun, H.; Liang, P.; Angell, M.; Huang, C.-L.; Ku, C.- S., Nature 2021, 596, 525-530.

22. Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S., Chem. Rec 2018, 18, 459-479.

23. Umezawa, R.; Tsuchiya, Y.; Ishigaki, T.; Rajendra, H. B.; Yabuuchi, N., Chem. Commun. 2021, 57, 2756-2759.

24. Melot, B. C.; Tarascon, J.-M., Acc. Chem. Res 2013, 46, 1226-1238.

25. Yoo, H. D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D., Mater. Today 2014, 17, 110-121.

26. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., Mater. Res 1980, 15, 783-789.

27. Wang, L.; Wu, Z.; Zou, J.; Gao, P.; Niu, X.; Li, H.; Chen, L., Joule 2019, 3, 2086-2102.

28. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R., Adv. Mater. 2010, 22, E170-E192.

29. Nakajima, T., J. Fluorine Chem. 2013, 149, 104-111.

30. Amatucci, G. G.; Pereira, N., J. Fluorine Chem. 2007, 128, 243-262.

31. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Angew. Chem. Int. Ed. 2008, 47, 2930-2946.

32. Zhang, W.-J., Journal of Power Sources 2011, 196, 13-24.

33. Zhang, W.-J., J. Power Sources 2011, 196, 13-24.

34. Zamfir, M. R.; Nguyen, H. T.; Moyen, E.; Lee, Y. H.; Pribat, D., Journal of Materials Chemistry A 2013, 1, 9566-9586.

35. Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J., Adv. Energy Mater. 2014, 4, 1300882.

36. Zamfir, M. R.; Nguyen, H. T.; Moyen, E.; Lee, Y. H.; Pribat, D., J. Mater. Chem. A 2013, 1, 9566- 9586.

37. Obrovac, M.; Chevrier, V., Chem. Rev. 2014, 114, 11444-11502.

38. Wu, X. L.; Guo, Y. G.; Wan, L. J., Chem. Asian J. 2013, 8, 1948-1958.

39. Yang, C.-P.; Yin, Y.-X.; Guo, Y.-G., J. Phys. Chem. Lett. 2015, 6, 256-266.

40. Li, X.; Gu, M.; Hu, S.; Kennard, R.; Yan, P.; Chen, X.; Wang, C.; Sailor, M. J.; Zhang, J.-G.; Liu, J., Nat. Commun. 2014, 5, 1-7.

41. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Langmuir 2012, 28, 965-976.

42. Markevich, E.; Fridman, K.; Sharabi, R.; Elazari, R.; Salitra, G.; Gottlieb, H.; Gershinsky, G.; Garsuch, A.; Semrau, G.; Schmidt, M., J. Electrochem. Soc. 2013, 160, A1824.

43. Momma, K.; Izumi, F., J. Appl. Crystallogr. 2011, 44, 1272-1276.

44. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Journal of the electrochemical society 1997, 144, 1188.

45. Zhang, W.-J., J. Power Sources 2011, 196, 2962-2970.

46. Yabuuchi, N.; Kubota, K.; Aoki, Y.; Komaba, S., J. Phys. Chem. C 2016, 120, 875-885.

47. Yamada, A.; Chung, S.-C.; Hinokuma, K., J. Electrochem. Soc. 2001, 148, A224.

48. Chen, Z.; Dahn, J., J. Electrochem. Soc. 2002, 149, A1184.

49. Wang, Y.; He, P.; Zhou, H., Energy Environ. Sci. . 2011, 4, 805-817.

50. Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M., Nat. Mater. 2002, 1, 123-128.

51. Wang, G.; Bewlay, S.; Konstantinov, K.; Liu, H.; Dou, S.; Ahn, J.-H., Electrochim. Acta 2004, 50, 443-447.

52. Teng, T.-H.; Yang, M.-R.; Wu, S.-h.; Chiang, Y.-P., Solid State Commun. 2007, 142, 389-392.

53. Wang, J.; Sun, X., Energy Environ. Sci. 2012, 5, 5163-5185.

54. Dominko, R.; Gaberscek, M.; Drofenik, J.; Bele, M.; Pejovnik, S.; Jamnik, J., J. Power Sources 2003, 119, 770-773.

55. Mi, C.; Zhang, X.; Zhao, X.; Li, H., J. Alloys Compd. 2006, 424, 327-333.

56. Higuchi, M.; Katayama, K.; Azuma, Y.; Yukawa, M.; Suhara, M., J. Power Sources 2003, 119, 258- 261.

57. Barker, J.; Saidi, M.; Swoyer, J., Electrochem. Solid-State Lett. 2003, 6, A53.

58. Campéon, B. D. L.; Yabuuchi, N., Chem. Phys. Rev. 2021, 2, 041306.

59. Ikeda, N.; Konuma, I.; Rajendra, H. B.; Aida, T.; Yabuuchi, N., J. Mater. Chem. A . 2021, 9, 15963- 15967.

60. Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W.; Seong, W. M.; Ku, K.; Tamwattana, O.; Park, S. K.; Hwang, I.; Kang, K., Nat. Mater. 2020, 19, 419- 427.

61. Yoon, C. S.; Jun, D.-W.; Myung, S.-T.; Sun, Y.-K., ACS Energy Lett. 2017, 2, 1150-1155.

62. Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H., Electrochim. Acta 1993, 38, 1159- 1167.

63. Yabuuchi, N.; Ohzuku, T., J. Power Sources 2003, 119-121, 171-174.

64. Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S., Adv. Energy Mater. 2014, 4, 1301453.

65. Paulsen, J.; Thomas, C.; Dahn, J., J. Electrochem. Soc. 1999, 146, 3560.

66. Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G., Nat. Chem. 2016, 8, 692-7.

67. Campéon, B. D. L.; Yabuuchi, N., Chemical Physics Reviews 2021, 2, 041306.

68. Robertson, A. D.; Bruce, P. G., Chem. Mater. 2003, 15, 1984-1992.

69. House, R. A.; Maitra, U.; Pérez-Osorio, M. A.; Lozano, J. G.; Jin, L.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K.; Roberts, M. R.; Bruce, P. G., Nature 2019.

70. Muhammad, S.; Kim, H.; Kim, Y.; Kim, D.; Song, J. H.; Yoon, J.; Park, J.-H.; Ahn, S.-J.; Kang, S.- H.; Thackeray, M. M., Nano Energy 2016, 21, 172-184.

71. Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S.; Ryou, J. H.; Yoon, W. S., Adv. Energy Mater. 2018, 8, 1701788.

72. Numata, K.; Sakaki, C.; Yamanaka, S., Solid State Ion. 1999, 117, 257-263.

73. Radin, M. D.; Hy, S.; Sina, M.; Fang, C.; Liu, H.; Vinckeviciute, J.; Zhang, M.; Whittingham, M. S.; Meng, Y. S.; Van der Ven, A., Adv. Energy Mater. 2017, 7, 1602888.

74. Huang, Y.; Dong, Y.; Li, S.; Lee, J.; Wang, C.; Zhu, Z.; Xue, W.; Li, Y.; Li, J., Adv. Energy Mater. 2021, 11, 2000997.

75. Ji, H.; Wu, J.; Cai, Z.; Liu, J.; Kwon, D.-H.; Kim, H.; Urban, A.; Papp, J. K.; Foley, E.; Tian, Y.; Balasubramanian, M.; Kim, H.; Clément, R. J.; McCloskey, B. D.; Yang, W.; Ceder, G., Nat. Energy 2020, 5, 213-221.

76. Ferg, E.; Gummow, R. d.; De Kock, A.; Thackeray, M., J. Electrochem. Soc. 1994, 141, L147.

77. Ohzuku, T.; Ueda, A.; Yamamoto, N.; Iwakoshi, Y., J. Power Sources 1995, 54, 99-102.

78. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G., Science 2014, 343, 519-522.

79. Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G., Science 2006, 311, 977-980.

80. Ozawa, K.; Nakao, Y.; Wang, L.; Cheng, Z.; Fujii, H.; Hase, M.; Eguchi, M., J. Power Sources 2007, 174, 469-472.

81. Ji, H.; Urban, A.; Kitchaev, D. A.; Kwon, D. H.; Artrith, N.; Ophus, C.; Huang, W.; Cai, Z.; Shi, T.; Kim, J. C.; Kim, H.; Ceder, G., Nat. Commun. 2019, 10, 592.

82. Nakajima, M.; Yabuuchi, N., Chem. Mater. 2017, 29, 6927-6935.

83. Yabuuchi, N.; Takeuchi, M.; Komaba, S.; Ichikawa, S.; Ozaki, T.; Inamasu, T., Chem. Commun. 2016, 52, 2051-2054.

84. Lee, J.; Seo, D.-H.; Balasubramanian, M.; Twu, N.; Li, X.; Ceder, G., Energy Environ. Sci. . 2015, 8, 3255-3265.

85. Ji, H.; Kitchaev, D. A.; Lun, Z.; Kim, H.; Foley, E.; Kwon, D.-H.; Tian, Y.; Balasubramanian, M.; Bianchini, M.; Cai, Z., Chem. Mater. 2019, 31, 2431-2442.

86. Lee, J.; Kitchaev, D. A.; Kwon, D. H.; Lee, C. W.; Papp, J. K.; Liu, Y. S.; Lun, Z.; Clement, R. J.; Shi, T.; McCloskey, B. D.; Guo, J.; Balasubramanian, M.; Ceder, G., Nature 2018, 556, 185-190.

87. Kobayashi, Y.; Sawamura, M.; Kondo, S.; Harada, M.; Noda, Y.; Nakayama, M.; Kobayakawa, S.; Zhao, W.; Nakao, A.; Yasui, A.; Rajendra, H. B.; Yamanaka, K.; Ohta, T.; Yabuuchi, N., Mater. Today 2020, 37, 43-55.

88. Wu, E. J.; Tepesch, P. D.; Ceder, G., Philos. Mag. B 2009, 77, 1039-1047.

89. Cai, Z.; Ji, H.; Ha, Y.; Liu, J.; Kwon, D.-H.; Zhang, Y.; Urban, A.; Foley, E. E.; Giovine, R.; Kim, H., Matter 2021.

90. De Picciotto, L.; Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Mater. Res. Bull. 1984, 19, 1497-1506.

91. De Picciotto, L.; Thackeray, M., Solid State Ion. 1986, 18, 773-777.

92. Urban, A.; Lee, J.; Ceder, G., Adv. Energy Mater. 2014, 4, 1400478.

93. Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J.; Ménétrier, M.; Doumerc, J., Solid State Ion. 1994, 69, 257-264.

94. Pralong, V.; Gopal, V.; Caignaert, V.; Duffort, V.; Raveau, B., Chem. Mater. 2012, 24, 12-14.

95. Baur, C.; Chable, J.; Klein, F.; Chakravadhanula, V. S. K.; Fichtner, M., ChemElectroChem 2018, 5, 1484-1490.

96. Huang, J.; Zhong, P.; Ha, Y.; Kwon, D.-H.; Crafton, M. J.; Tian, Y.; Balasubramanian, M.; McCloskey, B. D.; Yang, W.; Ceder, G., Nat. Energy 2021, 6, 706-714.

97. Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S., Adv. Energy Mater. 2014, 4, 1301453

98. Bréger, J.; Jiang, M.; Dupré, N.; Meng, Y. S.; Shao-Horn, Y.; Ceder, G.; Grey, C. P., J. Solid State Chem. 2005, 178, 2575-2585.

Chapter 2

1. Whittingham, M. S., Chem. Rev. 2014, 114, 11414-11443.

2. Manthiram, A., Nat. Commun. 2020, 11, 1550.

3. Ikeda, N.; Konuma, I.; Rajendra, H. B.; Aida, T.; Yabuuchi, N., J. Mater. Chem. A . 2021, 9, 15963- 15967.

4. Kubota, K., Electrochemistry 2020, 88, 507-514.

5. Clément, R. J.; Lun, Z.; Ceder, G., Energy Environ. Sci. 2020, 13, 345.

6. Campéon, B. D. L.; Yabuuchi, N., Chem. Phys. Rev. 2021, 2, 041306.

7. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., Mater. Res. Bull. 1980, 15, 783-789.

8. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G., Science 2014, 343, 519-522.

9. Chen, Z.; Dahn, J., J. Electrochem. Soc. 2002, 149, A1184.

10. Malik, R.; Burch, D.; Bazant, M.; Ceder, G., Nano Lett. 2010, 10, 4123-4127.

11. Yoon, M.; Dong, Y.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y.; Kang, S. J.; Li, J.; Cho, J., Nat. Energy 2021, 6, 846.

12. Kobayashi, Y.; Sawamura, M.; Kondo, S.; Harada, M.; Noda, Y.; Nakayama, M.; Kobayakawa, S.; Zhao, W.; Nakao, A.; Yasui, A.; Rajendra, H. B.; Yamanaka, K.; Ohta, T.; Yabuuchi, N., Mater. Today 2020, 37, 43-55.

13. Sawamura, M.; Kobayakawa, S.; Kikkawa, J.; Sharma, N.; Goonetilleke, D.; Rawal, A.; Shimada, N.; Yamamoto, K.; Yamamoto, R.; Zhou, Y.; Uchimoto, Y.; Nakanishi, K.; Mitsuhara, K.; Ohara, K.; Park, J.; Byon, H. R.; Koga, H.; Okoshi, M.; Ohta, T.; Yabuuchi, N., ACS Cent. Sci. 2020, 6, 2326-2338.

14. Nakajima, M.; Yabuuchi, N., Chem. Mater. 2017, 29, 6927-6935.

15. Song, J.; Sun, B.; Liu, H.; Ma, Z.; Chen, Z.; Shao, G.; Wang, G., Acs Appl. Mater. Interfaces 2016, 8, 15225-31.

16. Holtstiege, F.; Schmuch, R.; Winter, M.; Brunklaus, G.; Placke, T., J. Power Sources 2018, 378, 522-526.

17. Campéon, B. D. L.; Yoshikawa, Y.; Teranishi, T.; Nishina, Y., Electrochim. Acta 2020, 363, 137257.

18. Toby, B. H., J. Appl. Crystallogr. 2001, 34, 210-213.

19. Larson, A.; Von Dreele, R., Alamos National Laboratory Report LAUR 2004, 96, 748.

20. Newville, M., J. Synchrotron Radiat. 2001, 8, 322-324.

21. Yabuuchi, N.; Takeuchi, M.; Komaba, S.; Ichikawa, S.; Ozaki, T.; Inamasu, T., Chem. Commun. 2016, 52, 2051-2054.

22. Yabuuchi, N.; Kim, Y.-T.; Li, H. H.; Shao-Horn, Y., Chem. Mater. 2008, 20, 4936-4951.

23. De Picciotto, L.; Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Materials research bulletin 1984, 19, 1497-1506.

24. Sato, T.; Sato, K.; Zhao, W.; Kajiya, Y.; Yabuuchi, N., J. Mater. Chem. A 2018, 6, 13943-13951.

25. Wang, J.; Sun, X., Energy Environ. Sci. 2012, 5, 5163-5185.

26. Ji, H.; Urban, A.; Kitchaev, D. A.; Kwon, D.-H.; Artrith, N.; Ophus, C.; Huang, W.; Cai, Z.; Shi, T.; Kim, J. C.; Kim, H.; Ceder, G., Nat. Commun. 2019, 10, 592.

27. Nien, Y.-H.; Carey, J. R.; Chen, J.-S., J. Power Sources 2009, 193, 822-827.

28. Tanaka, S.; Narutomi, T.; Suzuki, S.; Nakao, A.; Oji, H.; Yabuuchi, N., J. Power Sources 2017, 358, 121-127.

29. Shimizu, S.; Rajendra, H. B.; Watanuki, R.; Yabuuchi, N., Electrochemistry 2019, 87, 276-280.

30. De Picciotto, L.; Thackeray, M.; Pistoia, G., Solid State Ion. 1988, 28, 1364-1370.

31. De Picciotto, L.; Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Mater. Res. Bull. 1984, 19, 1497-1506.

32. Yamamoto, T., X-Ray Spectrom. 2008, 37, 572-584.

33. Dahn, J.; Fuller, E.; Obrovac, M.; Von Sacken, U., Solid State Ion. 1994, 69, 265-270.

34. Ji, H.; Urban, A.; Kitchaev, D. A.; Kwon, D. H.; Artrith, N.; Ophus, C.; Huang, W.; Cai, Z.; Shi, T.; Kim, J. C.; Kim, H.; Ceder, G., Nat. Commun. 2019, 10, 592.

35. Lee, J.; Kitchaev, D. A.; Kwon, D. H.; Lee, C. W.; Papp, J. K.; Liu, Y. S.; Lun, Z.; Clement, R. J.; Shi, T.; McCloskey, B. D.; Guo, J.; Balasubramanian, M.; Ceder, G., Nature 2018, 556, 185-190.

36. Fan, X.; Ou, X.; Zhao, W.; Liu, Y.; Zhang, B.; Zhang, J.; Zou, L.; Seidl, L.; Li, Y.; Hu, G.; Battaglia, C.; Yang, Y., Nat. Commun. 2021, 12, 5320.

37. Wang, R.; Chen, X.; Huang, Z.; Yang, J.; Liu, F.; Chu, M.; Liu, T.; Wang, C.; Zhu, W.; Li, S.; Li, S.; Zheng, J.; Chen, J.; He, L.; Jin, L.; Pan, F.; Xiao, Y., Nat. Commun. 2021, 12, 3085.

38. Cai, Z.; Ji, H.; Ha, Y.; Liu, J.; Kwon, D.-H.; Zhang, Y.; Urban, A.; Foley, E. E.; Giovine, R.; Kim, H., Matter 2021, 4, 3897-3916.

39. Kong, W.; Zhang, J.; Wong, D.; Yang, W.; Yang, J.; Schulz, C.; Liu, X., Angew. Chem., Int. Ed. 2021, 133, 2-13.

Chapter 3

1. Dunn, B.; Kamath, H.; Tarascon, J.-M., Science 2011, 334, 928-935.

2. Whittingham, M. S., Chem. Rev. 2014, 114, 11414-11443.

3. Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S., Adv. Energy Mater. 2014, 4, 1301453

4. Ji, H.; Wu, J.; Cai, Z.; Liu, J.; Kwon, D.-H.; Kim, H.; Urban, A.; Papp, J. K.; Foley, E.; Tian, Y.; Balasubramanian, M.; Kim, H.; Clément, R. J.; McCloskey, B. D.; Yang, W.; Ceder, G., Nat. Energy 2020, 5, 213-221.

5. Robertson, A. D.; Bruce, P. G., Chem. Mater. 2003, 15, 1984-1992.

6. Bréger, J.; Jiang, M.; Dupré, N.; Meng, Y. S.; Shao-Horn, Y.; Ceder, G.; Grey, C. P., J. Solid State Chem. 2005, 178, 2575-2585.

7. Yabuuchi, N.; Kubota, K.; Aoki, Y.; Komaba, S., J. Phys. Chem. C 2016, 120, 875-885.

8. Yabuuchi, N., Chem. Lett. 2017, 46, 412-422.

9. Assat, G.; Delacourt, C.; Dalla Corte, D. A.; Tarascon, J.-M., J. Electrochem. Soc. 2016, 163, A2965.

10. Yabuuchi, N.; Takeuchi, M.; Komaba, S.; Ichikawa, S.; Ozaki, T.; Inamasu, T., Chem. Commun. 2016, 52, 2051-2054.

11. Nakajima, M.; Yabuuchi, N., Chem. Mater. 2017, 29, 6927-6935.

12. Clément, R. J.; Lun, Z.; Ceder, G., Energy Environ. Sci. 2020, 13, 345.

13. Ohzuku, T.; Ueda, A., Solid State Ion. 1994, 69, 201-211.

14. House, R. A.; Jin, L.; Maitra, U.; Tsuruta, K.; Somerville, J. W.; Förstermann, D. P.; Massel, F.; Duda, L.; Roberts, M. R.; Bruce, P. G., Energy Environ. Sci. 2018, 11, 926-932.

15. Takeda, N.; Hoshino, S.; Xie, L.; Chen, S.; Ikeuchi, I.; Natsui, R.; Nakura, K.; Yabuuchi, N., J. Power Sources 2017, 367, 122-129.

16. Kitchaev, D. A.; Lun, Z.; Richards, W. D.; Ji, H.; Clément, R. J.; Balasubramanian, M.; Kwon, D.- H.; Dai, K.; Papp, J. K.; Lei, T.; McCloskey, B. D.; Yang, W.; Lee, J.; Ceder, G., Energy Environ. Sci. . 2018, 11, 2159-2171.

17. Toby, B. H., J. Appl. Crystallogr. 2001, 34, 210-213.

18. Larson, A.; Von Dreele, R., Alamos National Laboratory Report LAUR 2004, 96, 748.

19. Newville, M., J. Synchrotron Radiat. 2001, 8, 322-324.

20. Momma, K.; Izumi, F., J. Appl. Crystallogr. 2011, 44, 1272-1276.

21. Yamamoto, T., X-Ray Spectrometry 2008, 37, 572-584.

22. Oswald, S.; Thoss, F.; Zier, M.; Hoffmann, M.; Jaumann, T.; Herklotz, M.; Nikolowski, K.; Scheiba, F.; Kohl, M.; Giebeler, L.; Mikhailova, D.; Ehrenberg, H., Batteries 2018, 4, 36.

23. Takeda, N.; Ikeuchi, I.; Natsui, R.; Nakura, K.; Yabuuchi, N., ACS Appl. Energy Mater. 2019, 2, 1629-1633.

Chapter 4

1. Yabuuchi, N., Chem. Rec. 2019, 19, 690-707.

2. Manthiram, A., Nat. Commun. 2020, 11, 1550.

3. Dunn, B.; Kamath, H.; Tarascon, J.-M., Science 2011, 334, 928-935.

4. Eberle, U.; Von Helmolt, R., Energy Environ. Sci. . 2010, 3, 689-699.

5. Liu, C.; Neale, Z. G.; Cao, G., Mater. Today 2016, 19, 109-123.

6. Nakajima, M.; Yabuuchi, N., Chem. Mater. 2017, 29, 6927-6935.

7. Liu, H.; Zhu, Z.; Yan, Q.; Yu, S.; He, X.; Chen, Y.; Zhang, R.; Ma, L.; Liu, T.; Li, M.; Lin, R.; Chen, Y.; Li, Y.; Xing, X.; Choi, Y.; Gao, L.; Cho, H. S.; An, K.; Feng, J.; Kostecki, R.; Amine, K.; Wu, T.; Lu, J.; Xin, H. L.; Ong, S. P.; Liu, P., Nature 2020, 585, 63-67.

8. Pralong, V.; Gopal, V.; Caignaert, V.; Duffort, V.; Raveau, B., Chem. Mater. 2012, 24, 12-14.

9. De Picciotto, L.; Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Mater. Res. Bull. 1984, 19, 1497-1506.

10. Yabuuchi, N.; Takeuchi, M.; Komaba, S.; Ichikawa, S.; Ozaki, T.; Inamasu, T., Chem. Commun. 2016, 52, 2051-2054.

11. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G., Science 2014, 343, 519-522.

12. Ji, H.; Urban, A.; Kitchaev, D. A.; Kwon, D. H.; Artrith, N.; Ophus, C.; Huang, W.; Cai, Z.; Shi, T.; Kim, J. C.; Kim, H.; Ceder, G., Nat. Commun. 2019, 10, 592.

13. Song, J.; Sun, B.; Liu, H.; Ma, Z.; Chen, Z.; Shao, G.; Wang, G., Acs Appl. Mater. Interfaces 2016, 8, 15225-31.

14. Yoon, M.; Dong, Y.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y.; Kang, S. J.; Li, J.; Cho, J., Nat. Energy 2021, 6, 846.

15. Wu, X.; Song, B.; Chien, P. H.; Everett, S. M.; Zhao, K.; Liu, J.; Du, Z., Adv. Sci. 2021, 8, 2102318.

16. Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J., J. Am. Chem. Soc. 2012, 134, 7874-7879.

17. Clément, R. J.; Lun, Z.; Ceder, G., Energy Environ. Sci. 2020, 13, 345.

18. Newville, M., J. Synchrotron Radiat. 2001, 8, 322-324.

19. Narayan, R.; Lim, J.; Jeon, T.; Li, D. J.; Kim, S. O., Carbon 2017, 119, 555-568.

20. Baur, C.; Lacatusu, M. E.; Fichtner, M.; Johnsen, R. E., Acs Appl. Mater. Interfaces 2020, 12, 27010- 27016.

21. Cambaz, M. A.; Vinayan, B. P.; Pervez, S. A.; Johnsen, R. E.; Geßwein, H.; Guda, A. A.; Rusalev, Y. V.; Kinyanjui, M. K.; Kaiser, U.; Fichtner, M., Chem. Mater. 2019, 31, 7941-7950.

22. Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J.; Ménétrier, M.; Doumerc, J., Solid State Ion. 1994, 69, 257-264.

23. Dees, D. W.; Rodrigues, M.-T. F.; Kalaga, K.; Trask, S. E.; Shkrob, I. A.; Abraham, D. P.; Jansen, A. N., J. Electrochem. Soc. 2020, 167, 120528.

24. Yamamoto, T., X-Ray Spectrom. 2008, 37, 572-584.

25. Baur, C.; Lacatusu, M.-E.; Fichtner, M.; Johnsen, R. E., Acs Appl. Mater. Interfaces 2020, 12, 27010-27016.

26. Schweidler, S.; de Biasi, L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. r., J. Phys. Chem. C 2018, 122, 8829-8835.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る