リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Niobium-added titanium oxides powders as non-noble metal cathodes for polymer electrolyte fuel cells – Electrochemical evaluation and effect of added amount of niobium」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Niobium-added titanium oxides powders as non-noble metal cathodes for polymer electrolyte fuel cells – Electrochemical evaluation and effect of added amount of niobium

Ishihara Akimitsu Arao Masazumi Matsumoto Masashi Tokai Tsubasa Nagai Takaaki Kuroda Yoshiyuki 50638640 Matsuzawa Koichi 80500743 Imai Hideto Mitsushima Shigenori 70323938 Ota Ken-ichiro 30011216 横浜国立大学

2020.02.14

概要

An appropriate evaluation of oxide-based compound powders as non-platinum cathodes for polymer electrolyte fuel cells is required to investigate the active sites of oxide-based cathodes for the oxygen reduction reaction. A mixture of carbon black powder as an electro-conductive material with oxide catalysts that had low electrical conductivity was attempted to evaluate the oxygen reduction reaction (ORR) activity. An appropriate mixture of carbon black and the oxide catalysts let to the electrochemical activation of the oxide surface by the formation of electron conduction networks. Using the carbon black mixture, the niobium-added titanium oxides heat-treated at 700 °C for 10 min under Ar containing 4% hydrogen without carbon materials were focused on to reveal the dependence of ORR activity on the added amount of niobium. The ORR activity of the niobium-added titanium oxides increased the Nb mole percentage from 0 to 20. This was due to the increase in the ratio of the Ti3+/(Ti4++Ti3+), and suggests that the active sites were Ti3+ and/or oxygen vacancies in the anatase phase. On the other hand, although the ratio of the Ti3+/(Ti4++Ti3+) of the oxide with an Nb mole percentage of 30 was almost twice as that with an Nb mole percentage of 20, the ORR activities were almost the same. This might be responsible for the deposition of the amorphous phase composed of Nb2O5, which consisted of a thin layer on the surface of the oxide particles and had low ORR activity.

参考文献

[1] Sasaki K. Part I General Introduction. In: Sasaki K, Li H.-W., Hayashi A, Yamabe J, Ogura T, M. Lyth S, editors. Hydrogen Energy Engineering A Japanese Perspective, Springer Japan; 2016, p.15-35. DOI 10.1007/978-4-431-56042-5

[2] Martinez U, Babu S, K, Holby, E. F, Chung H. T, Yin Xi, Zelenay P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2019;1806545. https://doi.org/10.1002/adma.201806545

[3] Ishihara A, Chisaka M, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K. Synthesis of nanoTaOx oxygen reduction reaction catalysts on multi-walled carbon nanotubes connected via a decomposition of oxy-tantalum phthalocyanine. Phys. Chem. Chem. Phys. 2015;17; 7643- 7647. DOI: 10.1039/C5CP00317B

[4] Chisaka M, Ishihara A, Morioka H, Nagai T, Yin S, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K. Zirconium Oxynitride-Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes. ACS Omega 2017;2;678-684. DOI: 10.1021/acsomega.6b00555

[5] Tominaka S, Ishihara A, Nagai T, Ota K. Non-crystalline Titanium Oxide Catalysts for Electrochemical Oxygen Reduction Reactions. ACS Omega 2017;2;5209−5214. DOI: 10.1021/acsomega.7b00811

[6] Ishihara A. Nagai T. Ukita K. Arao M. Matsumoto M. Yu L. Nakamura T. Sekizawa O. Takagi Y. Matsuzawa K. Napporn W. T. Mitsushima S. Uruga T. Yokoyama T. Iwasawa Y. Imai H. Ota K. J. Phys. Chem. C, in press, https://pubs.acs.org/doi/10.1021/acs.jpcc.9b02393

[7] Okada Y. Ishihara A. Matsumoto M. Imai H. Kohno Y. Matsuzawa K. Mitsushima S. Ota K. Effect of Reheating Treatment on Oxygen-Reduction Activity and Stability of Zirconium Oxide-Based Electrocatalysts Prepared from Oxy-Zirconium Phthalocyanine for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2015;162;F959-F964. doi: 10.1149/2.0201509jes

[8] Ishihara A. Tamura Y. Kohno Y. Matsuzawa K. Mitsushima S. Ota K. Titanium-niobium oxides as non-precious metal cathodes for polymer electrolyte fuel cells. Catalysts 2015;5(3);1289-1303. https://doi.org/10.3390/catal5031289

[9] Ishihara A. Wu C. Nagai T. Ohara K. Nakada K. Matsuzawa K. Napporn W. T. Arao M. Kuroda Y. Tominaka S. Mitsushima S. Imai H. Ota K. Factors affecting oxygen reduction activity of Nb2O5-doped TiO2 using carbon nanotubes as support in acidic solution. Electrochim. Acta 2018;283;1779-1788. https://doi.org/10.1016/j.electacta.2018.07.082

[10] Matsuda H. Mizushima T. Kuwabara M. Low-Temperature Synthesis and Electrical Properties of Semiconducting BaTiO3 Ceramics by the Sol-Gel Method with High Concentration Alkoxide Solutions. J. Ceram. Soc. Jpn. 1999;107;290-292. https://doi.org/10.2109/jcersj.107.290

[11] Matsuda H. Kobayashi N. Kobayashi T. Miyazawa K. Kuwabara M. Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method. J. Non-cryst. Solids 2000;271;162-166. https://doi.org/10.1016/S0022-3093(00)00101-0

[12] Ohgi Y. Ishihara A. Matsuzawa K. Mitsushima S. Matsumoto M. Imai H. Ota K. Oxygen reduction reaction on tantalum oxide-based catalysts prepared from TaC and TaN. Electrochim. Acta 2012;68;192-197. https://doi.org/10.1016/j.electacta.2012.02.059

[13] Arbiol J. Cerdà J. Dezanneau G. Cirera A. Peiró F. Cornet A. Morante J. R. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 2002;92;853-861. https://doi.org/10.1063/1.1487915

[14] Guidi V. Carotta M. C. Ferroni M. Martinelli G. Effect of Dopants on Grain Coalescence and Oxygen Mobility in Nanostructured Titania Anatase and Rutile. J. Phys. Chem. B 2003;107;120–124. DOI: 10.1021/jp013572u

[15] Dy E. Hui R. Zhang J. Liu Z.-S. Shi Z. Electronic Conductivity and Stability of Doped Titania (Ti1−XMXO2, M=Nb, Ru, and Ta)—A Density Functional Theory-Based Comparison. J. Phys. Chem. C 2010;11413162–13167. DOI: 10.1021/jp100826g

[16] Morris D. Dou Y. Rebane J. Mitchell C. E. J. Egdell R. G. Law D. S. L. Vittadini A. Casarin M. Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys. Rev. B 2000;61;13445. https://doi.org/10.1103

[17] Song K. Han X. Shao G. Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study. J. Alloys Compd. 2013;551;118-124. https://doi.org/10.1016/j.jallcom.2012.09.077

[18] Shannon R.D. Revised effective ionic radii and systematic studies of inter-atomie distances in halides and chaleogenides. Acta Crystallogr. 1976;A32;751. https://doi.org/10.1107/S0567739476001551

[19] Furubayashi Y. Yamada N. Hirose Y. Yamamoto Y. Otani M. Hitosugi T. Shimada T. Hasegawa T. Transport properties of d-electron-based transparent conducting oxide: Anatase Ti1−xNbxO2. J. Appl. Phys. 2007;101;093705. https://doi.org/10.1063/1.2721748

[20] Furubayashi Y. Hitosugi T. Yamamoto Y. Inaba K. Kinoda G. Hirose Y. Shimada T. Hasegawa T. A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 2005;86;252101. https://doi.org/10.1063/1.1949728

[21] Haukka S. Lakomaa E.-L. Jylha O. Vilhunen J. Hornytzkyj S. Dispersion and Distribution of Titanium Species Bound to Silica from TiCl4. Langmuir 1993;9;3497-3506. https://pubs.acs.org/doi/pdf/10.1021/la00036a026

[22] González-Elipe A.R. Munuera G. Espinos J.P. Sanz J.M. Compositional changes induced by 3.5 keV Ar+ ion bombardment in Ni-Ti oxide systems: A comparative study. Surf. Sci. 1989;220;368-380. https://doi.org/10.1016/0039-6028(89)90239-2

[23] Khoviv D. A. Zaytsev S. V. Ievlev V.M. Thin Solid Films 2012;520;4797-4799. https://doi.org/10.1016/j.tsf.2011.10.130

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る