リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of Metal Hydride Coatings at the Electrodes on Neutron Production Rate in a Discharge-Type Fusion Neutron Source」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of Metal Hydride Coatings at the Electrodes on Neutron Production Rate in a Discharge-Type Fusion Neutron Source

Sakabe, T. Kenjo, S. Ogino, Y. Mukai, K. Bakr, M. Yagi, J. Konishi, S. 京都大学 DOI:10.1109/TPS.2022.3182723

2022.11

概要

A glow discharge (GD) fusion neutron source that utilizes nuclear fusion reactions of deuterium has been upgraded. The fusion reactions in this device mainly occur by collisions between the charged or neutral particles and the hydrogen isotopes trapped at the surface of electrodes. In addition, it is known that the metal hydride coating on the electrode enhances the neutron production rate (NPR). Therefore, the elemental distribution, including deuterium, in the depth direction on the electrode is an essential factor in neutron production. However, the distribution on the electrode has not been experimentally investigated. This study aims to analyze the distribution experimentally and indicate the effect of the metal hydride coatings. To achieve this purpose, we prepared the titanium (Ti)-coated cathode and the uncoated cathode, of which the base material was stainless steel. After that, the neutron production test was performed in the range of from 5-to 40-mA currents and from 20-to 60-kV applied voltage. This test indicated that the NPR was improved by coating the cathode with Ti than the uncoated cathode. In addition, depth profiling on the cathodes by glow discharge optical emission spectroscopy (GD-OES) was performed. While the analysis indicated that the concentration of deuterium on both cathodes was increased after the test, there was no significant difference in the concentration of deuterium between both cathodes. Furthermore, the concentration of Ti on the Ti-coated cathode was vastly decreased. The cause of these changes needs to be investigated.

この論文で使われている画像

参考文献

[1] G. H. Miley, and J. Sved, “The IEC - A plasma-target-based neutron source,” Applied Radiation and Isotopes, vol. 48, no. 10-12, pp. 1557-1561, Oct- Dec, 1997, doi: 10.1016/S0969-8043(97)00257-1.

[2] K. Mukai, Y. Ogino, M. I. Kobayashi, M. Bakr, J. Yagi, K. Ogawa, M. Isobe, and S. Konishi, “Evaluation of tritium production rate in a blanket mock-up using a compact fusion neutron source,” Nuclear Fusion, vol. 61, no. 4, Apr, 2021, doi: 10.1088/1741-4326/abe4e7.

[3] G. L. Kulcinski, J. F. Santarius, K. Johnson, A. Megahed, and R. L. Bonomo, “Identification of Landmines and IEDs Using Compact Fusion Neutron Sources on Drones,” Fusion Science and Technology, vol. 72, no. 3, pp. 455-460, 2017, doi: 10.1080/15361055.2017.1333862.

[4] Y. Nakai, K. Noborio, Y. Takeuchi, R. Kasada, Y. Yamamoto, and S. Konishi, “A Feasibility Study of an Application of Fusion Neutron Beam Source Based on Cylindrical Discharge Device for Cancer Therapy,” Fusion Science and Technology, vol. 64, no. 2, pp. 379-383, Aug 2013, doi: 10.13182/FST13-A18106.

[5] M. Ohnishi, Y. Yamamoto, H. Osawa, Y. Hatano, Y. Torikai, I. Murata, K. Kamakura, M. Onishi, K. Miyamoto, H. Konda, K. Masuda, and E. Hotta, “Tritium burning in inertial electrostatic confinement fusion facility,” Fusion Engineering and Design, vol. 109, pp. 1709-1713, Nov, 2016, doi: 10.1016/j.fusengdes.2015.10.025.

[6] S. Kenjo, Y. Ogino, K. Mukai, M. Bakr, J. Yagi, and S. Konishi, “Employing of ZrCo as a fuel source in a discharge-type fusion neutron source operated in self-sufficient mode,” International Journal of Hydrogen Energy, vol. 47, no. 5, pp. 3054-3062, Jan, 2022, doi: 10.1016/j.ijhydene.2021.10.250.

[7] D. R. Boris, and G. A. Emmert, “Composition of the source region plasma in inertial electrostatic confinement devices,” Physics of Plasmas, vol. 15, no. 8, Aug 2008, doi: 10.1063/1.2965148.

[8] K. Noborio, Y. Yamamoto, Y. Ueno, and S. Konishi, “Confinement of ions in an inertial electrostatic confinement fusion (IECF) device and its influence on neutron production rate,” Fusion Engineering and Design, vol. 81, no. 8-14, pp. 1701-1705, Feb, 2006, doi: 10.1016/j.fusengdes.2005.09.013.

[9] A. L. Wehmeyer, R. F. Radel, and G. L. Kulcinski, “Optimizing neutron production rates from D-D fusion in an inertial electrostatic confinement device,” Fusion Science and Technology, vol. 47, no. 4, pp. 1260-1264, May 2005, doi: 10.13182/FST05-A861.

[10] M. Bakr, K. Masuda, and M. Yoshida, “Improvement of the Neutron Production Rate of IEC Fusion Device by the Fusion Reaction on the Inner Surface of the IEC Chamber,” Fusion Science and Technology, vol. 75, no. 6, pp. 479-486, 2019, doi: 10.1080/15361055.2019.1609821.

[11] M. Bakr, J. P. Wulfkuhler, K. Mukai, K. Masuda, M. Tajmar, and S. Konishi, “Evaluation of 3D printed buckyball-shaped cathodes of titanium and stainless-steel for IEC fusion system,” Physics of Plasmas, vol. 28, no. 1, Jan 2021, doi: 10.1063/5.0033342.

[12] R. Bowden-Reid, J. Khachan, J.-P. Wulfkuehler, and M. Tajmar, “Evidence for surface fusion in inertial electrostatic confinement devices,” Physics of Plasmas, vol. 25, no. 11, Nov, 2018, doi: 10.1063/1.5053616.

[13] K. Noborio, Y. Yamamoto, and S. Konishi, “Neutron production rate of inertial electrostatic confinement fusion device with fusion reaction on the surface of electrodes,” Fusion Science and Technology, vol. 52, no. 4, pp. 1105-1109, Nov 2007, doi: 10.13182/FST07-A1645.

[14] M. Wilke, G. Teichert, R. Gemma, A. Pundt, R. Kirchheim, H. Romanus, and P. Schaaf, “Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films,” Thin Solid Films, vol. 520, no. 5, pp. 1660-1667, Dec, 2011, doi: 10.1016/j.tsf.2011.07.058.

[15] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 268, no. 11-12, pp. 1818-1823, Jun, 2010, doi: 10.1016/j.nimb.2010.02.091.

[16] R. Bowden-Reid, and J. Khachan, “An inertial electrostatic confinement fusion system based on graphite,” Physics of Plasmas, vol. 28, no. 4, pp. 7, Apr 2021, doi: 10.1063/5.0038766.

[17] Y. Yagodzinskyy, O. Todoshchenko, S. Papula, and H. Hanninen, “Hydrogen Solubility and Diffusion in Austenitic Stainless Steels Studied with Thermal Desorption Spectroscopy,” Steel Research International, vol. 82, no. 1, pp. 20-25, Jan 2011, doi: 10.4028/www.scientific.net/DDF.258- 260.322.

[18] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations For The Metallic Elements - 298-2500-K,” Canadian Metallurgical Quarterly, vol. 23, no. 3, pp. 309-313, 1984, doi: 10.1179/cmq.1984.23.3.309.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る