リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ウエルシュ菌の分離、同定とファージによるバイオコントロールに関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ウエルシュ菌の分離、同定とファージによるバイオコントロールに関する研究

ノア, モハマディ, タヒル MOHAMMADI TAHIR, NOOR 九州大学

2022.09.22

概要

Clostridium perfringens is one of the most important foodborne pathogens in developed countries. It causes severe food poisoning outbreaks worldwide, along with mortality and economic losses. Recently, bacteriophages (phages) have been investigated as an alternative tool to control pathogenic bacteria in the food industry. In this study, C. perfringens were isolated and characterized from chicken meat samples. Fifty-three chicken meat samples were collected from retail meat shops in Fukuoka City, Japan. Nineteen (35.85%) samples were contaminated with C. perfringens. All 19 isolates were positive for only alpha-toxin (cpa) gene, which verified them as C. perfringens type A. The C. perfringens enterotoxin (cpe) gene was not detected by PCR among the isolated C. perfringens. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis also demonstrated that all isolates are C. perfringens.

Secondly, six C. perfringens phages were successfully isolated from chicken meat samples. According to the host range and stability tests, phage CPQ1 showed high thermostability and the broadest host range. The electron micrograph image of this phage suggested that it belongs to the Picovirinae subfamily of the Podoviridae family. Nucleotide sequence analysis of the genomic DNA indicated the absence of any antibiotic resistance, toxin, or virulence genes. In broth, phage CPQ1 showed strong lytic activity with a low MOI of 1, decreasing the OD600 of C. perfringens cell suspension from 0.2 to 0.02 at 37 °C in 2 h. In pasteurized milk and chicken meat, phage CPQ1 with an MOI of 10 also caused a significant decrease in viable counts of C. perfringens compared to the phageless control at both 24 °C and 37 °C. This is the first report on the application of phage to control C. perfringens in foods.

Thirdly, four more phages were isolated from chicken meat samples. Thereafter, these four phages and two phages previously isolated that display different host range patterns were morphologically and genetically characterized. Notably, the phages were stable at various pH values and in curry roux. Cocktails consisting of 6, 5, and 4 phages at the same concentration were examined to determine the most effective phage cocktail. The phage cocktail PC11, a 4-phage cocktail consisting of phages CPQ3, 7, 8, and 10, significantly decreased the viable count of C. perfringens to less than the lower detection limit up to 48 h at both 8 and 37 °C in broth and at 24 °C in curry roux. Overall, these studies suggest that all of C. perfringens isolates from chicken meat samples were positive for only alpha-toxin gene, and phage cocktail consisting of phages CPQ3, 7, 8, and 10 is a promising natural biocontrol agent against C. perfringens in vitro and in food.

この論文で使われている画像

参考文献

Abedon, S.T., 1989. Selection for bacteriophage latent period length by bacterial density: A theoretical examination. Microb. Ecol. 18, 79–88. https://doi.org/10.1007/BF02030117

Alves, D.R., Gaudion, A., Bean, J.E., Perez Esteban, P., Arnot, T.C., Harper, D.R., Kot, W., Hansen, L.H., Enright, M.C., Jenkins, A.T.A., 2014. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl. Environ. Microbiol. 80, 6694–6703. https://doi.org/10.1128/AEM.01789-14

Alzubeidi, Y.S., Udompijitkul, P., Talukdar, P.K., Sarker, M.R., 2018. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure. Int. J. Food Microbiol. 277, 26–33. https://doi.org/10.1016/j.ijfoodmicro.2018.04.016

Andersson, A., Ronner, U., Granum, P.E., 1995a. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28, 145–155. https://doi.org/10.1016/0168-1605(95)00053-4

Andersson, A., Ronner, U., Granum, P.E., 1995b. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28, 145–155.

Balogh, B., Jones, J., Iriarte, F., Momol, M., 2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11, 48–57. https://doi.org/10.2174/138920110790725302

Baums, C.G., Schotte, U., Amtsberg, G., Goethe, R., 2004. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 100, 11–16. https://doi.org/10.1016/S0378-1135(03)00126-3

Bryan, F.L., 1978. Factors that contribute to outbreaks of foodborne disease. J. Food Prot. 41, 816–827. https://doi.org/10.4315/0362-028x-41.10.816

Brynestad, S., Granum, P.E., 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74, 195–202. https://doi.org/10.1016/S0168-1605(01)00680-8

Çakmak, Ö., Bilir Ormanci, F.S., Tayfur, M., Erol, I., 2006. Presence and contamination level of Clostridium perfringens in raw frozen ground poultry and poultry burgers. Turkish J. Vet. Anim. Sci. 30, 101–105.

Carbonnelle, E., Mesquita, C., Bille, E., Day, N., Dauphin, B., Beretti, J.L., Ferroni, A., Gutmann, L., Nassif, X., 2011. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin. Biochem. 44, 104–109. https://doi.org/10.1016/j.clinbiochem.2010.06.017

Carvalho, C., Costa, A.R., Silva, F., Oliveira, A., 2017. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit. Rev. Microbiol. 43, 583–601. https://doi.org/10.1080/1040841X.2016.1271309

Chalmers, G., Martin, S.W., Hunter, D.B., Prescott, J.F., Weber, L.J., Boerlin, P., 2008. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm. Vet. Microbiol. 127, 116–127. https://doi.org/10.1016/j.vetmic.2007.08.008

Chan, B.K., Abedon, S.T., Loc-Carrillo, C., 2013. Phage cocktails and the future of phage therapy. Future Microbiol. 8, 769–783. https://doi.org/10.2217/fmb.13.47

Chaturvedi, A., Shukla, S., 2015. Occurance of Clostridium species in different dairy products and its associated health risk. Int. J. Recent Sci. Res. 6, 2827–2829.

Chen, Y., Indurthi, D.C., Jones, S.W., Papoutsakis, T.E., 2011. Small RNAs in the Genus Clostridium. MBio 2, 1–11. https://doi.org/10.1128/mBio.00340-10.Editor

Choi, C., Kuatsjah, E., Wu, E., Yuan, S., 2010. The effect of cell size on the burst size of T4 bacteriophage infections of Escherichia coli B23. J. Exp. Microbiol. Immunol. 14, 85–91.

Cooper, I.R., 2016. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J. Microbiol. Methods 130, 38–47. https://doi.org/10.1016/j.mimet.2016.07.027

Cooper, K.K., Bueschel, D.M., Songer, J.G., 2013. Presence of Clostridium perfringens in retail chicken livers. Anaerobe 21, 67–68. https://doi.org/10.1016/j.anaerobe.2013.03.013

Coppo, E., Marchese, A., 2014. Antibacterial Activity of Polyphenols. Curr. Pharm. Biotechnol. 15, 380–390. https://doi.org/10.2174/138920101504140825121142

Donnelly, L.S., Busta, F.F., 1981. Anaerobic sporeforming microorganisms in dairy products. J. Dairy Sci. 64, 161–166. https://doi.org/10.3168/jds.S0022-0302(81)82544-1

Duc, H.M., Son, H.M., Honjoh, K. ichi, Miyamoto, T., 2018. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT - Food Sci. Technol. 91, 353–360. https://doi.org/10.1016/j.lwt.2018.01.072

Duc, H.M., Son, H.M., Yi, H.P.S., Sato, J., Ngan, P.H., Masuda, Y., Honjoh, K. ichi, Miyamoto, T., 2020. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Res. Int. 131, 108977. https://doi.org/10.1016/j.foodres.2020.108977

El-Bassiony, T.A., 1980. Occurrence of Clostridium perfringens in milk and dairy products. J. Food Prot. 43, 536–537. https://doi.org/10.4315/0362-028x-43.7.536

Elbehiry, A., Marzouk, E., Hamada, M., Al-Dubaib, M., Alyamani, E., Moussa, I.M., AlRowaidhan, A., Hemeg, H.A., 2017. Application of MALDI-TOF MS fingerprinting as a quick tool for identification and clustering of foodborne pathogens isolated from food products. New Microbiol. 40, 269–278.

Endersen, L., Coffey, A., 2020. The use of bacteriophages for food safety. Curr. Opin. Food Sci. 36, 1–8. https://doi.org/10.1016/j.cofs.2020.10.006

Endersen, L., O’Mahony, J., Hill, C., Ross, R.P., McAuliffe, O., Coffey, A., 2014. Phage therapy in the food industry. Annu. Rev. Food Sci. Technol. 5, 327–349. https://doi.org/10.1146/annurev-food-030713-092415

Erol, I., Goncuoglu, M., Ayaz, N.D., Bilir Ormanci, F.S., Hildebrandt, G., 2008. Molecular typing of Clostridium perfringens isolated from turkey meat by multiplex PCR. Lett. Appl. Microbiol. 47, 31–34. https://doi.org/10.1111/j.1472-765X.2008.02379.x

Fischer, S., Kittler, S., Klein, G., Glünder, G., 2013. Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS One 8, 1–13. https://doi.org/10.1371/journal.pone.0078543

Foddai, A., Elliott, C.T., Grant, I.R., 2009. Optimization of a phage amplification assay to permit accurate enumeration of viable Mycobacterium avium subsp. paratuberculosis cells. Appl. Environ. Microbiol. 75, 3896–3902. https://doi.org/10.1128/AEM.00294-09

Freedman, J.C., Shrestha, A., McClane, B.A., 2016. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel). 8, 1–16. https://doi.org/10.3390/toxins8030073

Fujisawa, T., Aikawa, K., Takahashi, T., Yamai, S., Ueda, S., 2001. Occurrence of Clostridia in commercially available curry roux. J. Food Hyg. Soc. Japan 42, 394–397. https://doi.org/10.3358/shokueishi.42.394

Fung, F., Wang, H.S., Menon, S., 2018. Food safety in the 21st century. Biomed. J. 41, 88– 95. https://doi.org/10.1016/j.bj.2018.03.003

Gálvez, A., Abriouel, H., Benomar, N., Lucas, R., 2010. Microbial antagonists to food-borne pathogens and biocontrol. Curr. Opin. Biotechnol. 21, 142–148. https://doi.org/10.1016/j.copbio.2010.01.005

Gill, J., Hyman, P., 2010. Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol. 11, 2–14. https://doi.org/10.2174/138920110790725311

Granum, P.E., 1990. Clostridium perfringens toxins involved in food poisoning. Int. J. Food Microbiol. 10, 101–112.

Grass, E.J., Gould, L.H., Mahon, E.B., 2013a. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog. Dis. 2, 131–136. https://doi.org/10.1089/fpd.2012.1316.Epidemiology

Grass, E.J., Gould, L.H., Mahon, E.B., 2013b. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog. Dis. 10, 131–136. https://doi.org/10.1089/fpd.2012.1316.Epidemiology

Greer, G.G., 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68, 1102–1111. https://doi.org/10.4315/0362-028X-68.5.1102

Greig, J.D., Ravel, A., 2009. Analysis of foodborne outbreak data reported internationally for source attribution. Int. J. Food Microbiol. 130, 77–87. https://doi.org/10.1016/j.ijfoodmicro.2008.12.031

Guran, H.S., Oksuztepe, G., 2013. Detection and typing of Clostridium perfringens from retail chicken meat parts. Lett. Appl. Microbiol. 57, 77–82. https://doi.org/10.1111/lam.12088

Ha, E., Son, B., Ryu, S., 2018. Clostridium perfringens virulent bacteriophage CPS2 and its thermostable endolysin lysCPS2. Viruses 10, 1–10. https://doi.org/10.3390/v10050251

Hall, H.E., Angelotti, R., 1965. Clostridium perfringens in Meat and Meat Products. Appl. Microbiol. 13, 352–357. https://doi.org/10.1128/aem.13.3.352-357.1965

Hatfull, G.F., 2008. Bacteriophage genomics. Curr. Opin. Microbiol. 11, 447–453. https://doi.org/10.1016/j.mib.2008.09.004

Hatheway, C.L., 1990. Toxigenic clostridia. Clin. Microbiol. Rev. 3, 66–98. https://doi.org/10.1128/cmr.3.1.66-98.1990

Hernández, S., Vives, M.J., 2020. Phages in anaerobic systems. Viruses 12, 1–17. https://doi.org/10.3390/v12101091

Hiscox, T.J., Chakravorty, A., Choo, J.M., Ohtani, K., Shimizu, T., Cheung, J.K., Rood, J.I., 2011. Regulation of virulence by the RevR response regulator in Clostridium perfringens. Infect. Immun. 79, 2145–2153. https://doi.org/10.1128/IAI.00060-11

Hoang Minh, D., Hoang Minh, S., Honjoh, K. ichi, Miyamoto, T., 2016. Isolation and biocontrol of Extended Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli contamination in raw chicken meat by using lytic bacteriophages. LWT - Food Sci. Technol. 71, 339–346. https://doi.org/10.1016/j.lwt.2016.04.013

Housby, J.N., Mann, N.H., 2009. Phage therapy. Drug Discov. Today 14, 536–540. https://doi.org/10.1016/j.drudis.2009.03.006

Huang, C., Virk, S.M., Shi, J., Zhou, Y., Willias, S.P., Morsy, M.K., Abdelnabby, H.E., Liu, J., Wang, X., Li, J., 2018. Isolation, characterization, and application of Bacteriophage LPSE1 against Salmonella enterica in Ready to Eat (RTE) Foods. Front. Microbiol. 9, 1–11. https://doi.org/10.3389/fmicb.2018.01046

Hudson, J.A., Billington, C., Carey-Smith, G., Greening, G., 2005. Bacteriophages as biocontrol agents in aquaculture. J. Food Prot. 68, 426–437. https://doi.org/10.1071/MA19003

Islam, M.S., Zhou, Y., Liang, L., Nime, I., Liu, K., Yan, T., Wang, X., Li, J., 2019. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses 11, 1–19. https://doi.org/10.3390/v11090841

Jackson, L.S., 2009. Chemical food safety issues in the United States: past, present, and future. J. Agric. Food Chem. 57, 8161–8170. https://doi.org/10.1021/jf900628u

Kim, J.H., Kim, H.J., Jung, S.J., Mizan, M.F.R., Park, S.H., Ha, S. Do, 2020. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat. J. Food Sci. 85, 526–534. https://doi.org/10.1111/1750-3841.15042

Kortright, K.E., Chan, B.K., Koff, J.L., Turner, P.E., 2019. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232. https://doi.org/10.1016/j.chom.2019.01.014

Kosugi, S., Hirakawa, H., Tabata, S., 2015. GMcloser : closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31, 3733–3741. https://doi.org/10.1093/bioinformatics/btv465

Kumar, H., Bhardwaj, K., Cruz-Martins, N., Nepovimova, E., Oleksak, P., Dhanjal, D.S., Bhardwaj, S., Singh, R., Chopra, C., Verma, R., Chauhan, P.P., Kumar, D., Kuča, K., 2021. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: A mini review. Molecules 26, 1–19. https://doi.org/10.3390/molecules26113447

Kuznetsov, V.B., 2011. Structural studies of phage lysis proteins and their targets. Doctroal Diss.

Laguerre, O., Derens, E., Palagos, B., 2002. Study of domestic refrigerator temperature and analysis of factors affecting temperature : a French survey. Int. J. Refrig. 25, 653–659.

Lakshmanan, R.S., Guntupalli, R., Hu, J., Petrenko, V.A., Barbaree, J.M., Chin, B.A., 2007. Detection of Salmonella Typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sensors Actuators, B Chem. 126, 544–550. https://doi.org/10.1016/j.snb.2007.04.003

Lee, C.K., Durr, P., Hippe, H., Gottschalk, G., 1987. Screening for plasmids in the genus Clostridium 4, 107–114.

Lewis, R., Hill, C., 2020. Overcoming barriers to phage application in food and feed. Curr. Opin. Biotechnol. 61, 38–44. https://doi.org/10.1016/j.copbio.2019.09.018

Lindström, M., Heikinheimo, A., Lahti, P., Korkeala, H., 2011. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol. 28, 192–198. https://doi.org/10.1016/j.fm.2010.03.020

Liu, H., Niu, Y.D., Meng, R., Wang, J., Li, J., Johnson, R.P., McAllister, T.A., Stanford, K., 2015. Control of Escherichia coli O157 on beef at 37, 22 and 4°C by T5-, T1-, T4-and O1-like bacteriophages. Food Microbiol. 51, 69–73. https://doi.org/10.1016/j.fm.2015.05.001

Loponte, R., Pagnini, U., Iovane, G., Pisanelli, G., 2021. Phage therapy in veterinary medicine. Antibiotics 10. https://doi.org/10.3390/antibiotics10040421

Lynch, M., Painter, J.A., Woodruff, R., Braden, C., 2006. Morbidity and mortality weekly report surveillance for foodborne disease outbreaks — United States ,1998-2002. Morb.

Mortal. Wkly. Rep. 59, 1–42. Lyristis, M., Bryant, A.E., Sloan, J., Awad, M.M., Nisbet, I.T., Stevens, D.L., Rood, J.I., 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol. Microbiol. 12, 761–777. https://doi.org/10.1111/j.1365-2958.1994.tb01063.x

Martinović, T., Andjelković, U., Gajdošik, M.Š., Rešetar, D., Josić, D., 2016. Foodborne pathogens and their toxins. J. Proteomics 147, 226–235. https://doi.org/10.1016/j.jprot.2016.04.029

Mateus, L., Costa, L., Silva, Y.J., Pereira, C., Cunha, A., Almeida, A., 2014. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 424–425, 167–173. https://doi.org/10.1016/j.aquaculture.2014.01.001

Maura, D., Debarbieux, L., 2011. Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl. Microbiol. Biotechnol. 90, 851–859. https://doi.org/10.1007/s00253-011-3227-1

McClane, B.A., 1996. An overview of Clostridium perfringens enterotoxin. Toxicon 34, 1335–1343. https://doi.org/10.1016/S0041-0101(96)00101-8

McClane, B.A., 1994. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology 87, 43–67. https://doi.org/10.1016/0300-483X(94)90154-6

McClane, B.A., Hanna, C.P., Wnek, P.A., 1988. Clostridium perfringens enterotoxin. Compr. Sourceb. Bact. Protein Toxins 4, 317–323. https://doi.org/10.1016/B978-012088445- 2/50050-0

McClane, B.A., Robertson, S.L., Li, J., 2012. Microbiological safety of meat | Clostridium perfringens, in: Food Microbiology: Fundamentals and Frontiers. Elsevier, pp. 465–489. https://doi.org/10.1016/B978-0-12-384731-7.00037-4

McIntyre, L., Hudson, J. a., Billington, C., Withers, H., 2007. Biocontrol of foodborne bacteria : past , present and future strategies. Food New Zeal. 25–32.

Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M., Tauxe, R. V., 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625. https://doi.org/10.3201/eid0505.990502

Miki, Y., Miyamoto, K., Kaneko-Hirano, I., Fujiuchi, K., Akimoto, S., 2008. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl. Environ. Microbiol. 74, 5366–5372. https://doi.org/10.1128/AEM.00783-08

Miller, R.W., Skinner, J., Sulakvelidze, A., Mathis, G.F., Hofacre, C.L., 2010. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis. 54, 33–40.

Monk, A.B., Rees, C.D., Barrow, P., Hagens, S., Harper, D.R., 2010. Bacteriophage applications: Where are we now? Lett. Appl. Microbiol. 51, 363–369. https://doi.org/10.1111/j.1472-765X.2010.02916.x

Monma, C., Hatakeyama, K., Obata, H., Yokoyama, K., Konishi, N., Itoh, T., Kai, A., 2015. Four foodborne disease outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens. J. Clin. Microbiol. 53, 859–867. https://doi.org/10.1128/JCM.02859-14

Moye, Z.D., Woolston, J., Sulakvelidze, A., 2018. Bacteriophage applications for food production and processing. Viruses 10, 1–22. https://doi.org/10.3390/v10040205

Naghizadeh, M., Torshizi, M.A.K., Rahimi, S., Dalgaard, T.S., 2019. Synergistic effect of phage therapy using a cocktail rather than a single phage in the control of severe colibacillosis in quails. Poult. Sci. 98, 653–663. https://doi.org/10.3382/ps/pey414

Nedorostova, L., Kloucek, P., Kokoska, L., Stolcova, M., Pulkrabek, J., 2009. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control 20, 157–160. https://doi.org/10.1016/j.foodcont.2008.03.007

Nerín, C., Aznar, M., Carrizo, D., 2016. Food contamination during food process. Trends Food Sci. Technol. 48, 63–68. https://doi.org/10.1016/j.tifs.2015.12.004

Noor Mohammadi, T., Shen, C., Li, Y., Zayda, M.G., Sato, J., Masuda, Y., Honjoh, K. ichi, Miyamoto, T., 2022a. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Int. J. Food Microbiol. 361, 109446. https://doi.org/10.1016/j.ijfoodmicro.2021.109446

Noor Mohammadi, T., Shen, C., Li, Y., Zayda, M.G., Sato, J., Masuda, Y., Honjoh, K., Miyamoto, T., 2022b. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Int. J. Food Microbiol. 361, 109446. https://doi.org/10.1016/j.ijfoodmicro.2021.109446

Ong, S.P., Azam, A.H., Sasahara, T., Miyanaga, K., Tanji, Y., 2020. Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. J. Biosci. Bioeng. 129, 693–699. https://doi.org/10.1016/j.jbiosc.2020.02.001

Pahlow, S., Meisel, S., Cialla-May, D., Weber, K., Rösch, P., Popp, J., 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 89, 105–120. https://doi.org/10.1016/j.addr.2015.04.006

Pavlovic, M., Huber, I., Konrad, R., Busch, U., 2013. Application of MALDI-TOF MS for the identification of food borne bacteria. Open Microbiol. J. 7, 135–141. https://doi.org/10.2174/1874285801307010135

Petit, L., Gibert, M., Popoff, M.R., 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7, 104–110. https://doi.org/10.1016/S0966-842X(98)01430-9

Pigott, D.C., 2008. Foodborne Illness. Emerg. Med. Clin. North Am. 26, 475–497. https://doi.org/10.1016/j.emc.2008.01.009

Pires, D.P., Costa, A.R., Pinto, G., Meneses, L., Azeredo, J., 2020. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 44, 684–700. https://doi.org/10.1093/femsre/fuaa017

Priyanka, B., Patil, R.K., Dwarakanath, S., 2016. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 144, 327–338. https://doi.org/10.4103/0971-5916.198677

Rood, J.I., Cole, S.T., 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55, 621–648. https://doi.org/10.1128/mmbr.55.4.621-648.1991

Saito, M., 1990. Production of enterotoxin by Clostridium perfringens derived from humans, animals, foods, and the natural environment in Japan. J. Food Prot. 53, 115–118. https://doi.org/10.4315/0362-028X-53.2.115

Salisbury, A., Tsourkas, P.K., 2019. A method for improving the accuracy and efficiency of bacteriophage genome annotation. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20143391

Samul, D., Worsztynowicz, P., Leja, K., Grajek, W., 2013. Beneficial and harmful roles of bacteria from the Clostridium genus. Acta Biochim. Pol. 60, 515–521. https://doi.org/10.18388/abp.2013_2015

Sanders, T.A.B., 1999. Food production and food safety. Br. Med. J. 318, 1689–1693. https://doi.org/10.1136/bmj.318.7199.1689

Sarker, M.R., Shivers, R.P., Sparks, S.G., Juneja, V.K., 2000. Comparative Experiments To Examine the Effects of Heating on Vegetative Cells and Spores of. Society 66, 3234–3240. https://doi.org/10.1128/AEM.66.8.3234-3240.2000.Updated

Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R. V., Widdowson, M.A., Roy, S.L., Jones, J.L., Griffin, P.M., 2011. Foodborne illness acquired in the United States-Major pathogens. Emerg. Infect. Dis. 17, 7–15. https://doi.org/10.3201/eid1701.P11101

Schattner, P., Brooks, A.N., Lowe, T.M., 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, 686–689. https://doi.org/10.1093/nar/gki366

Seal, B.S., 2013. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult. Sci. 92, 526–533. https://doi.org/10.3382/ps.2012-02708

Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068– 2069. https://doi.org/10.1093/bioinformatics/btu153

Singh, R. V, Bhilegaonkar, K.N., Agarwal, R.K., 2005. Clostridium perfringens From select meats. J. Food Saf. 25, 146–156.

Skariyachan, S., Mahajanakatti, A.B., Biradar, U.B., Sharma, N., Abhilash, M., 2010. Isolation, identification and characterization of Clostridium perfringens from cooked meat-poultry samples and in silico biomodeling of its delta enterotoxin. Int. J. Pharm. Sci. Rev. Res. 4, 164–172.

Soni, K.A., Desai, M., Oladunjoye, A., Skrobot, F., Nannapaneni, R., 2012. Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int. J. Food Microbiol. 155, 82–88. https://doi.org/10.1016/j.ijfoodmicro.2012.01.010

Sparks, S.G., Carman, R.J., Sarker, M.R., McClane, B.A., 2001. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibioticassociated diarrhea and food poisoning in North America. J. Clin. Microbiol. 39, 883– 888. https://doi.org/10.1128/JCM.39.3.883-888.2001

Spricigo, D.A., Bardina, C., Cortés, P., Llagostera, M., 2013. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. 165, 169–174. https://doi.org/10.1016/j.ijfoodmicro.2013.05.009

Sulakvelidze, A., Alavidze, Z., Morris, J., 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001

Suzuki, H., Hosomi, K., Nasu, A., Kondoh, M., Kunisawa, J., 2018. Development of adjuvant-free bivalent food poisoning vaccine by augmenting the antigenicity of clostridium perfringens enterotoxin. Front. Immunol. 9, 1–15. https://doi.org/10.3389/fimmu.2018.02320

Svobodová, I., Steinhauserová, I., Nebola, M., 2007. Incidence of Clostridium perfringens in broiler chickens in the Czech Republic. Acta Vet. Brno 76, 25–30. https://doi.org/10.2754/avb200776S8S025

Tanji, Y., Shimada, T., Fukudomi, H., Miyanaga, K., Nakai, Y., Unno, H., 2005. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J. Biosci. Bioeng. 100, 280–287. https://doi.org/10.1263/jbb.100.280

Tauxe, R. V., 2002. Emerging foodborne pathogens. Int. J. Food Microbiol. 78, 31–41. https://doi.org/10.1016/S0168-1605(02)00232-5

Tonooka, T., Sakata, S., Kitahara, M., Hanai, M., Ishizeki, S., Takada, M., Sakamoto, M., Benno, Y., 2005. Detection and quantification of four species of the genus Clostridium in infant feces. Microbiol. Immunol. 49, 987–992. https://doi.org/10.1111/j.1348- 0421.2005.tb03694.x

Van Immerseel, F., De Buck, J., Pasmans, F., Huyghebaert, G., Haesebrouck, F., Ducatelle, R., 2004. Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol. 33, 537–549. https://doi.org/10.1080/03079450400013162

Volozhantsev, N. V., Oakley, B.B., Morales, C.A., Verevkin, V. V., Bannov, V.A., Krasilnikova, V.M., Popova, A. V., Zhilenkov, E.L., Garrish, J.K., Schegg, K.M.,

Woolsey, R., Quilici, D.R., Line, J.E., Hiett, K.L., Siragusa, G.R., Svetoch, E.A., Seal, B.S., 2012. Molecular characterization of Podoviral bacteriophages virulent for Clostridium perfringens and their comparison with members of the Picovirinae. PLoS One 7, 1–12. https://doi.org/10.1371/journal.pone.0038283

Watkins, K.L., Shryock, T.R., Dearth, R.N., Saif, Y.M., 1997. In-vitro antimicrobial susceptibility of Clostridium perfringens from commercial turkey and broiler chicken origin. Vet. Microbiol. 54, 195–200. https://doi.org/10.1016/S0378-1135(96)01276-X

Wernicki, A., Nowaczek, A., Urban-Chmiel, R., 2017. Bacteriophage therapy to combat bacterial infections in poultry. Virol. J. 14, 1–13. https://doi.org/10.1186/s12985-017- 0849-7

Wong, C.L., Sieo, C.C., Tan, W.S., Abdullah, N., Hair-Bejo, M., Abu, J., Ho, Y.W., 2014. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int. J. Food Microbiol. 172, 92–101. https://doi.org/10.1016/j.ijfoodmicro.2013.11.034

Xing, S., Zhang, X., Sun, Q., Wang, J., Mi, Z., Pei, G., Huang, Y., An, X., Fu, K., Zhou, L., Zhao, B., Tong, Y., 2017. Complete genome sequence of a novel, virulent Ahjdlikevirus bacteriophage that infects Enterococcus faecium. Arch. Virol. 162, 3843–3847. https://doi.org/10.1007/s00705-017-3503-1

Xu, Y., Liu, Yong, Liu, Yang, Pei, J., Yao, S., Cheng, C., 2015. Bacteriophage therapy against Enterobacteriaceae. Virol. Sin. 30, 11–18. https://doi.org/10.1007/s12250-014-3543-6

Yang, Y., Shen, W., Zhong, Q., Chen, Q., He, X., Baker, J.L., Xiong, K., Jin, X., Wang, J., Hu, F., Le, S., 2020. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front. Microbiol. 11, 1–12. https://doi.org/10.3389/fmicb.2020.00327

Yen, M., Cairns, L.S., Camilli, A., 2017. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat. Commun. 8, 1–7. https://doi.org/10.1038/ncomms14187

Zerbino, D.R., Birney, E., 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829. https://doi.org/10.1101/gr.074492.107

Zhang, Y., Shigemura, K., Duc, H.M., Shen, C., Huang, H.H., Sato, J., Masuda, Y., Honjoh, K. ichi, Miyamoto, T., 2020. Effects of bacteriophage on inhibition and removal of mixed biofilm of enterohemorrhagic Escherichia coli O157:H7 and O91:H-. LWT - Food Sci. Technol. 134, 1–8. https://doi.org/10.1016/j.lwt.2020.109945

Zinno, P., Devirgiliis, C., Ercolini, D., Ongeng, D., Mauriello, G., 2014. Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol. 191, 69–74. https://doi.org/10.1016/j.ijfoodmicro.2014.08.037

参考文献をもっと見る