リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on epidemiology, development of chemotherapy and genetic modification of piroplasmosis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on epidemiology, development of chemotherapy and genetic modification of piroplasmosis

NUGRAHA ARIFIN BUDIMAN 帯広畜産大学

2020.06.23

概要

Piroplasmosis is a disease caused by infection with apicomplexan intraerythrocyticparasites of the genera Babesia and Theileria. These are the most common parasites found in the bloodstream of mammals. Therefore, piroplasmosis is considered to be of significant economic, veterinary, and medical importance. This study investigated the prevalence of equine piroplasmosis in West Java, Indonesia, using serological and molecular diagnostic methods. To support the challenges of inadequate chemotherapeutic agents against piroplasm parasites, I evaluated novel therapeutic agents with high efficacy against piroplasm parasites by screening 400 compounds obtained from the MMV Pathogen Box against Babesia and Theileria parasites in vitro and in vivo. Furthermore, establishment of a gene modified T. equi was studied to study biology of parasites.

In chapter 1,I conducted surveillance of T. equi and 8. caballi in horses reared in parts of West Java, Indonesia. Blood samples were collected randomly from 235 horses in four different districts (Bandung, Depok, Tangerang, and Bogor) in West Java. Of 235 surveyed animals, 5 (2.1%) and 15 (6.4%) were seropositive for T. equi and B. caballi, respectively, whereas 1 and 4 horses were nPCR-positive for T. equi and B. caballi, respectively. The T. equi EMA-2 and B. caballi BC48 gene fragments amplified by the nPCR assays were confirmed via bioinformatic and phylogenetic analyses. The T. equi EMA-2 gene sequence from an Indonesian horse was identical to sequences from Florida and Washington strains and clustered together with these sequences in phylogeny. On the other hand, four Indonesian BC48 gene sequences shared 99.8-100% identity scores. The present study is the first to report T. equi and 8. caballi in horses in Indonesia. My findings highlight the need to monitor horses in Indonesia for clinical piroplasmosis caused by T. equi and 8. caballi.

In chapter 2, I evaluated novel therapeutic agents with high efficacy against piroplasm parasites. In this study, the 400 compounds in the Pathogen Box provided by the Medicines for Malaria Venture foundation were screened against Babesia bo vis, Babesia bigemina, Babesia caballi, and Theileria equi. The initial in v/Yro screening performed using a 1)iM concentration as baseline revealed nine effective compounds against four tested parasites. Two hit compounds, namely MMVO21057 and MMV675968, that showed an IC50 <0.3 |iM and a selectivity index >100 were selected. The IC50S of MMVO21057 and MMV675968 against B. bovis, B. bigemina, B. caballi, and T. equi were 23, 39, 229, and 146 nM and 2.9, 3, 25.7, and 2.9 nM, respectively. In addition, a combination of MMVO21057 and DA showed additive or synergistic effects against four tested parasites, while combinations of MMVO21057 with MMV675968 and of MMV675968 with DA showed antagonistic effects. In mice, treatment with 50 mg/kg MMVO21057 and 25 mg/kg MMV675968 inhibited the growth of Babesia microti by 54 and 64%, respectively, as compared to the untreated group on day 8. Interestingly, a combination treatment with 6.25 mg/kg DA and 25 mg/kg MMVO21057 inhibited 8. microti by 91.6%, which was a stronger inhibition than that by single treatments with 50 mg/kg MMVO21057 and 25 mg/kg DA, which showed 54 and 83% inhibition, respectively. My findings indicated that MMV021057, MMV675968, and combination treatment with MMVO21057 and DA are prospects for the further development of antipiroplasm drugs.

In chapter 3, I established a stable expression of GFP in T. equi. I selected an effective promoter of the elongation factor-1 alpha (ef-1α) gene. In this regard, I sequenced and identified the open reading frame of the ef-1α gene in T. equi (USDA strain) using RACE analysis. The mRNA sequence of the ef-1a gene in T. equi shared 98.3% identity with the sequence of T. equi (WA strain) retrieved from the GenBank and revealed the presence of two ef-1a orfs using a BLAST. Based on sequencing analysis, an intergenic region (IG) between the ef-1a orfs and the terminator from gDNA were amplified and sequenced. I designed a plasmid containing the IG of the ef-1a gene, a GFP-blasticidin (BSD) fusion gene, and a terminator fragment of the ef-1a gene. The designed plasmid was linearized and then transfected into the ef-1a gene locus of the T. equi genome using an Amaxa Nucleofector 2b device. Twenty-four hours after transfection, the cultures were treated with 10 x IC50 blasticidin for transgenic parasite selection. Expression of the green fluorescence parasite was observed within 24 h post transfection under a fluorescence microscope, and the GFP was consistently expressed for at least 2 months without drug pressure. PCR analysis revealed that the transfected plasmid integrated with the ef-1a genome, particularly in the B-direction gene of ef-1a. Moreover, the transfected T. equi grew normally and comparably with the wild-type parasite. This result is the first time a stable GFP-expressing T. equ/has been established as a useful tool for understanding the biology of parasites and parasite-host interactions.

この論文で使われている画像

参考文献

Adamson, R., Lyons, K., Sharrard, M., Kinnaird, J., Swan, D., Graham, S., Shiels, B., Hall, R., 2001. Transient transfection of Theileria annulata. Mol. Biochem. Parasitol. 114, 53–61.

Ahmed, J.S., 2002. The role of cytokines in immunity and immune-pathogenesis of piroplasmoses.Parasitol. Res. 88: 48-50.

Alhassan, A., Govind, Y., Tam, N.T., 2007. Comparative evaluation of the sensitivity of LAMP, PCR and in vitro culture methods for the diagnosis of equine piroplasmosis. Parasitol. Res. 1165–1168.

Alhassan, A., Pumidonming, W., Okamura, M., Hirata, H., Battsetseg, B., Fujisaki, K., Yokoyama, N., Igarashi, I., 2005. Development of a single-round and multiplex PCR method for the simultaneous detection of Babesia caballi and Babesia equi in horse blood. Vet. Parasitol. 129, 43–49.

Allsopp, M.T.E.P., Lewis, B.D., Penzhorn, B.L., 2007. Molecular evidence for transplacental transmission of Theileria equi from carrier mares to their apparently healthy foals. Vet. Parasitol. 148, 130–136.

Ambawat, H.K., Malhotra, D.V., Kumar, S., Dhar., 1999. Erythrocyte associated haemato- biochemical changes in Babesia equi infection experimentally produced in donkeys. Vet. Parasitol. 85, 319-324.

Anderson, A.C., 2005. Targeting DHFR in parasitic protozoa. Drug Discov. Today 10, 121–128. Animal and Plant Health Inspection Service. Equine piroplasmosis and the 2010 World Equestrian Games. Washington, DC: Veterinary Services APHIS US Department of Agriculture, 2008.

Baptista, C., Lopes, M.S., Tavares, A.C., Rojer, H., Kappmeyer, L., 2013. Diagnosis of Theileria equi infections in horses in the Azores using cELISA and nested PCR. Ticks Tick Borne Dis. 4, 242–245.

Bartlett, D., Clough, J., Godwin, J., Hall, A., Hamer, M., Parr-Dobrzanski, B., 2004. Review: The strobilurin fungicides. Pest. Manag. Sci. 60, 309.

Battsetseg, B., Xuan, X., Ikadai, H., Bautista, J.L., Byambaa, B., Boldbaatar, D., Battur, B., Battsetseg, G., Batsukh, Z., Igarashi, I., Nagasawa, H., Mikami, T., Fujisaki, K., 2001. Detection of Babesia caballi and Babesia equi in Dermacentor nuttalli adult ticks. Int. J. Parasitol. 31, 384–386.

Beckley, C.S.K., 2013. Susceptibility of Indigenous Cattle Breeds to Co-Infection with Multiple Tick-Borne Pathogens, Master Thesis, University of Ghana), pp: 85.

Begley, D.W., Edwards, T.E., Raymond, A.C., Smith, E.R., Hartley, R.C., Abendroth, J., Sankaran, B., Lorimer, D.D., Myler, P.J., Staker, B.L., Stewart, L.J., 2011. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 1070–1077.

Belloli, C., Crescenzo, G., Lai, O., Carofiglio, V., Marang, O., Ormas, P., 2007. Pharmacokinetics of imidocarb dipropionate in horses after intramuscular administration. Equine Vet. J. 34, 625–629.

Böse, R., Jorgensen, W.K., Dalgliesh, R.J., Friedhoff, K.T., de Vos, A., 1995. Current state and future trends in the diagnosis of babesiosis. Vet. Parasitol. 57, 61–74.

Brüning, A. 1996. Equine piroplasmosis an update on diagnosis, treatment and prevention. Br. Vet.J. 152, 139-151.

Carrique, J.J., Morales, G.J., Edelsten, M., 2000. Endemic instability for babesiosis and anaplasmosis in cattle in the Bolivian Chaco. Vet. J. 160, 162–164.

Chhabra, S., Ranjan, R., Uppal, S.K., Singla, L.D., 2012. Transplacental transmission of Babesia equi (Theileria equi) from carrier mares to foal. J. Parasit. Dis. 36, 31-33.

Chou, T.C., 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681.

Costa, S.C.L., de Magalhaes, V.C.S., de Oliviera, U.V., Carvalho, F.S., de Almeida, C.P., Machado, R.Z., Munhoz, AD., 2016. Transplacental transmission of bovine tick-borne pathogens:Frequency, co-infections and fatal neonatal anaplasmosis in a region of enzootic stability in the northeast of Brazil. Ticks Tick Borne Dis. 7, 270-275.

de Waal, D.T., 1992. Equine piroplasmosis: A review. Br. Vet. J. 148, 6–14.

de Waal, D.T., Potgieter, F.T., Combrink, M.P., Mason, T.E., 1990. The isolation and transmission of an unidentified Babesia sp. to cattle by Hyalomma truncatum Koch 1844. Onderstepoort J. Vet. Res. 57, 229–232.

Duffy, S., Sykes, M.L., Jones, A.J., Shelper, T.B., Simpson, M., Lang, R., Poulsen, S.A., Sleebs, B.E., Avery, V.M., 2017. Screening the Medicines for Malaria Venture Pathogen Box across multiple pathogens reclassifies starting points for open-source drug discovery. Antimicrob. Agents Chemother. 61, 1–22.

Durden, L.A., Merker, S., Beati, L., 2008. The tick fauna of Sulawesi, Indonesia (Acari: Ixodoidea: Argasidae and Ixodidae). Exp. Appl. Acarol. 45, 85.

El-Sayed, S.A.E.S., Rizk, M.A., Yokoyama, N., Igarashi, I., 2019. Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites. Parasites and Vectors. 12, 1–10.

Enigk, K., 1944. Further experiments in the transmission of equine piroplasmosis. Arch. Wiss.Prakt. Tierheilk. 79, 58–80.

FAO, 2005. FAO specifications and evaluations for azoxystrobin. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/A zoxystrobin_2017_05_16.pdf . Accessed April 24, 2019.

Ferreira, E.P., Vidotto, O., Almeida, J.C., Ribeiro, L.P.S., Borges, M.V., Pequeno, W.H.C., Stipp,D.T., de Oliveira, C.J.B., Biondo, A.W., Vieira, T.S.W.J., Vieira, R.F.C., 2016. Serological and molecular detection of Theileria equi in sport horses of northeastern Brazil. Comp. Immunol. Microb. 47, 72–76.

Friedhoff, K.T., Soulé, C., 1996. An account on equine babesioses. Rev. Sci. Tech. 15, 1191–1201.

George, J.E., Pound, J.M., Davey, R.B., 2004. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology. 129: pp.S353-S366.

Goeyse, I. De Jansen, F., Madder, M., Hayashida, K., Berkvens, D., Dobbelaere, D., Geysen, D., 2015. Transfection of live, tick derived sporozoites of the protozoan Apicomplexan parasite Theileria parva. Vet. Parasitol. 208, 238–241.

Grandi, G., Molinari, G., Tittarelli, M., Sasser, D., Kramer, L.H., 2011. Prevalence of Theileria equi and Babesia caballi infection in horses from Northern Italy. Vector Borne Zoonot. 11, 207–213.

Guswanto, A., Allamanda, P., Mariamah, E.S., Munkjargal, T., Tuvshintulga, B., Takemae, H., Sivakumar, T., Aboulaila, M., Terkawi, M. A., Seki, M.I., Nishikawa, Y., Yokoyama, N., Igarashi, I., 2017. Evaluation of immunochromaographic test (ICT) strips for the serological detection of Babesia bovis and Babesia bigemina infection in cattle from Western Java, Indonesia. Vet. Parasitol. 236, 76-79.

Guswanto, A., Nugraha, A.B., Tuvshintulga, B., Tayebwa, D.S., Rizk, M.A., Batiha, G.E.S., Gantuya, S., Sivakumar, T., Yokoyama, N., Igarashi, I., 2018. 17-DMAG inhibits the multiplication of several Babesia species and Theileria equi on in vitro cultures, and Babesia microti in mice. Int. J. Parasitol. Drugs Drug Resist. 8, 104-111.

Guswanto, A., Sivakumar, T., Rizk, M.A., El-Sayed, S.A.E.S., Youssef, A.M., Elsaid, E.S.E.S., Yokoyama, N., Igarashi, I., 2014. Evaluation of fluorescence-based method for anti- Babesial drug screening. Antimicrob. Agents Chemother. 58, 4713–4717.

Hakimi, H., Yamagishi, J., Kegawa, Y., Kaneko, O., Kawazu, S., Asada, M., 2016. Establishment of transient and stable transfection systems for Babesia ovata. Parasit. Vectors 9, 1–9.

Hennessey, K.M., Rogiers, I.C., Shih, H.W., Hulverson, M.A., Choi, R., McCloskey, M.C., Whitman, G.R., Barrett, L.K., Merritt, E.A., Paredez, A.R., Ojo, K.K., 2018. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Negl. Trop. Dis. 12, 1–16.

Hidayat, R., Alhadi, F., 2012. Identification of Streptococcus equi from horses suspected of having strangles. JIPI. 17, 199–203.

Homer, M.J., Delfin, I.A., Telford, S.R, Krause, P.J., Persing, D.H., 2000. Babesiosis. Clin.Microbiol. Rev. 13, 451-469.

Huang, X., Xuan, X., Yokoyama, N., Xu, L., Suzuki, H., Sugimoto, C., Nagasawa, H., Fujisaki, K., Igarashi, I., 2003. High-level expression and purification of a truncated merozoite antigen-2 of Babesia equi in Escherichia coli and its potential for immunodiagnosis. J. Clin. Microbiol. 41, 1147–1151.

Hwang, S.J., Yamasaki, M., Nakamura, K., Sasaki, N., Murakami, M., Wickramasekara R. B.K., Ohta, H., Maede, Y., Takiguchi, M., 2010. Development and characterization of a strain of Babesia gibsoni resistant to diminazene aceturate in vitro. J. Vet. Med. Sci. 72, 765– 771.

Ikadai, H., Xuan, X., Igarashi, I., Tanaka, S., Kanemaru, T., Nagasawa, H., Fujisaki, K., Suzuki, N., Mikami, T., 1999. Cloning and expression of a 48-kilodalton Babesia caballi merozoite rhoptry protein and potential use of the recombinant antigen in an enzyme- linked immunosorbent assay. J. Clin. Microbiol. 37, 3475–3480.

Jaffer, O., Abdishakur, F., Hakimuddin, F., Riya, A., Werney, U., Schuster, R.K., 2010. A comparative study of serological tests and PCR for the diagnosis of equine piroplasmosis. Parasitol. Res. 106, 709–713.

Jalovecka, M., Hajdusek, O., Sojka, D., Kopacek, P., Malandrin, L., 2018. The complexity of piroplasms life cycles. Front. Cell. Infect. Microbiol. 8, 248.

Jalovecka, M., Sojka, D., Ascencio, M., Schnittger, L., 2019. Babesia life cycle- When phylogeny meets biology. Trends Parasitol. 35, 356-368.

Kamyingkird, K., Yangtara, S., Desquesnes, M., Cao, S., Adjou Moumouni, P.K., Jittapalapong, S., Nimsupan, B., Terkawi, M.A., Masatani, T., Nishikawa, Y., Igarashi, I., Xuan, X., 2014. Seroprevalence of Babesia caballi and Theileria equi in horses and mules from Northern Thailand. J. Protozool. Res. 17, 11–17.

Kizilarslan, F., Yildirim, A., Duzlu, O., Inci, A., Onder, Z., Ciloglu, A., 2015. Detection and characterization of Theileria equi and Babesia caballi in horses (Equus ferus caballus) in Turkey. J. Equine Vet. Sci. 35, 830–835.

Knowles D.P., Kappmeyer, L.S., Stiller D., Hennager S.G., Perryman L.E., 1992. Antibody to a recombinant merozoite protein epitope identifies horses infected with Babesia equi. J. Clin. Microbiol., 30, 3122–3126.

Knowles, D., 1996. Equine babesiosis (piroplasmosis): A problem in the international movement of horses. Br. Vet. J. 152, 123–126.

Kuttler, K.L., 1988. Worldwide impact of babesiosis. In: Ristic, M. (Ed.), Babesiosis of Domestic Animals and Man. CRC Press, Inc, Boca Raton, Florida, pp.1–22.

Li, W., Zhang, N., Liang, X., Li, J., Gong, P., Yu, X., Ma, G., Ryan, U.M., Zhang, X., 2009.Transient transfection of Cryptosporidium parvum using green fluorescent protein (GFP) as a marker. Mol. Biochem. Parasitol. 168, 143–148.

Li, Y., Luo, Y., Cao, S., Terkawi, M.A., Bich Lan, D.T., Long, P.T., Yu, L., Zhou, M., Gong, H., Zhang, H., Zhou, J., Yokoyama, N., Suzuki, H., Xuan, X., 2014. Molecular and seroepidemiological survey of Babesia bovis and Babesia bigemina infections in cattle and water buffaloes in the central region of Vietnam. Trop. Biomed. 31, 406–413.

Liu, M., Adjou Moumouni, P.F., Asada, M., Hakimi, H., Masatani, T., Vudriko., Lee, S.H., Kawazu, S., Yamagishi, J., Xuan, X., 2018. Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni. Parasite. Vector. 11, 260.

Mahmoud, M.S., El-Ezz, N.T.A., Abdel-Shafy, S., Nassar, S.A., El Namaky, A.H., Khalil, W.B.H., Knowles, D., Kappmeyer, L., Silva, M.G., Suarez, C.E., 2016. Assessment of Theileria equi and Babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches. Parasite. Vector. 9, 260.

Mateyak, M.K., Kinzy, T.G., 2011. eEF1A : Thinking outside the ribosome. J. Biol. Chem. 285, 21209–21213.

Mdachi, R.E., Murilla, G.A., Omukuba, J.N., Cagnolati, V., 1995. Disposition of diminazene aceturate (Berenil®) in trypanosome-infected pregnant and lactating cows. Vet. Parasitol. 58, 215–225.

Molloy, J.B., Bowles, P.M., Bock, R.E., Turton, J.A., Katsande, T.C., Katende, J.M., et al., 1998. Evaluation of an ELISA for detection of antibodies to Babesia bovis in cattle in Australia and Zimbabwe. Prev. Vet. Med. 33, 59-67

Mosqueda, J., Olvera-Ramirez, A., Aguilar-Tipacamu, G., Canto, G.J., 2012. Current advances in detection and treatment of babesiosis. Curr. Med. Chem. 19, 1504 –1518.

Motloang, M.Y., Thekisoe, O.M.M., Alhassan, A., Bakheit, M., Motheo, M.P., Masangane, F.E.S., Thibedi, M.L., Inoue, N., Igarashi, I., Sugimoto, C., Mbati, P.A., 2008. Prevalence of Theileria equi and Babesia caballi infections in horses belonging to resource-poor farmers in the north-eastern Free State Province, South Africa. Onderstepoort J. Vet. Res. 75, 141–146.

Müller, J., Aguado, A., Laleu, B., Balmer, V., Ritler, D., Hemphill, A., 2017. In vitro screening of the open source Pathogen Box identifies novel compounds with profound activities against Neospora caninum. Int. J. Parasitol. 47, 801–809.

Munkhjargal, T., Sivakumar, T., Battsetseg, B., Nyamjargal, T., Aboulaila, M., Purevtseren, B., Bayarsaikhan, D., Byambaa, B., Terkawi, M.A., Yokoyama, N., Igarashi, I., 2013. Prevalence and genetic diversity of equine piroplasms in Tov province, Mongolia. Infect. Genet. Evol. 16, 178–185.

Neitz, W.O., 1956. Classification, transmission, and biology of piroplasms of domestic animals.Ann. N.Y. Acad. Sci. 64, 56–111.

Nicolaiewsky, T.B., Richter, M.F., Lunge, V.R., Cunha, C.W., Delagostin, O., Ikuta, N., Fonseca, A.S., da Silva, S.S., Ozaki, L.S., 2001. Detection of Babesia equi (Laveran, 1901) by nested polymerase chain reaction. Vet. Parasitol. 101, 9–21.

Nishikawa, Y., Zhang, H., Ibrahim, H.M., Ui, F., Ogiso, A., Xuan, X., 2008. Construction of Toxoplasma gondii bradyzoite expressing the green fluorescent protein. Parasitol. Int. 57, 219–222.

OIE, 2014. Equine Piroplasmosis, in: The OIE Terrestrial Manual 2014, pp. 1–10. OIE, 2018. Bovine babesiosis , in: The OIE Terrestrial Manual 2018, pp. 1014-1025.

Payne, R.C., Sukanto, I.P., Djauhari, D., Partoutomo, S., Wilson, A.J., Jones, T.W., Boid, R., Luckins, A.G., 1991. Trypanosoma evansi infection in cattle, buffaloes and horses in Indonesia. Vet. Parasitol. 38, 109–119.

Popov, V.M., Chan, D.C.M., Fillingham, Y.A., Atom Yee, W., Wright, D.L., Anderson, A.C., 2006. Analysis of complexes of inhibitors with Cryptosporidium hominis DHFR leads to a new trimethoprim derivative. Bioorganic Med. Chem. Lett. 16, 4366–4370.

Posada-Guzmán, M.F., Dolz, G., Romero-Zúñiga, J.J., Jiménez-Rocha, A.E., 2015. Detection of Babesia caballi and Theileria equi in blood from equines from four indigenous communities in Costa Rica. Vet. Med. Int. 2015, 236–278.

Ribeiro, I.B., Câmara, A.C.L., Bittencourt, M.V., Marcola, T.G., Paludo, G.R., Blanco, B.S., 2013. Detection of Theileria equi in spleen and blood of asymptomatic piroplasm carrier horses. Acta Parasitol. 58, 218–222.

Rizk, M.A., El-Sayed, S.A.E.S., Terkawi, M.A., Youssef, M.A., El Said, E.S.E.S., Elsayed, G., El- Khodery, S., El-Ashker, M., Elsify, A., Omar, M., Salama, A., Yokoyama, N., Igarashi, I., 2015. Optimization of a fluorescence-based assay for large-scale drug screening against Babesia and Theileria parasites. PLoS One. 10, 1–15.

Rosales, R., Rangel-Rivas, A., Escalona, A., Segundo, L., Isabel, M., Maria, P., Perrone, T., Silva- Iturriza, A., Mijares, A., 2013. Detection of Theileria equi and Babesia caballi infections in Venezuelan horses using Competitive-Inhibition ELISA and PCR. Vet. Parasitol. 196, 37–43.

Rosario-Cruz, R., Almazan, C., Miller, R.J., Dominguez-Garcia, D.I., Hernandez-Ortiz, R., de la Fuente. J., 2009. Genetic basis and impact of tick acaricide resistance. Front. Biosci. 14, 2657-2665.

Rothschild, C., Knowles, D., 2007. Equine piroplasmosis. In: Equine Infectious Diseases, Sellon, D.C., and Long, M.T. (Eds.), Saunders, Elsevier, St Louis. 465–473.

Rothschild, C.M., 2013. Equine piroplasmosis. J. Equine Vet. Sci. 33, 497–508.

Salama, A.A., AbouLaila, M., Terkawi, M.A., Mousa, A., El-Sify, A., Allaam, M., Zaghawa, A., Yokoyama, N., Igarashi, I., 2014. Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites. Parasitol. Res. 113, 275–283.

Salas, D.R., Mira, A., Mosqueda, J., Vazquez, Z.G., Ruiz, M.H., Ortiz Vela, N.A., de Leon, A.P., Christensen, M.F., Schnittger, L., 2016. Molecular and serological detection of Babesia bovis and Babesia bigemina infection in bovines and water buffaloes raised jointly in an endemic field. Vet. Parasitol. 217, 101–107.

Schnittger, L., Rodriguez, A.E., Florin-Christensen, M., Morrison, D.A., 2012. Babesia: A world emerging. Infect. Genet. Evol. 12, 1788–1809.

Schwint, O.N., Knowles, D.P., Ueti, M.W., Kappmeyer, L.S., Scoles, G.A., 2008. Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) restricted to one generation in the absence of alimentary reinfection on a susceptible equine host. J. Med. Entomol. 45, 1152–1155.

Schwint, O.N., Ueti, M.W., Palmer, G.H., Kappmeyer, L.S., Hines, M.T., Corde, R.T., Knowles, D.P., Scoles, G.A., 2009. Imidocarb dipropionate clears persistent Babesia caballi infection with elimination of transmission potential. Antimicrob. Agents Chemother. 53, 4327–4332.

Seo, M., Yun, S., Choi, S., Cho, G., Park, Y., Kwon, O., Cho, K., Kim, T., Jeong, K., Park, S., Sam, Y., Kwak, D., 2011. Seroprevalence of equine piroplasms in the Republic of Korea. Vet. Parasitol. 179, 224–226.

Short, M.A., Clark, C.K., Harvey, J.W., Wenzlow, N., Hawkins, I.K., Allred, D.R., Knowles, D.P.,Corn, J.L., Grause, J.F., Hennager, S.G., Kitchen, D.L., Traub-Dargatz, J.L,. 2012. Outbreak of equine piroplasmosis in Florida. J. Am. Vet. Med. Assoc. 240, 588-95.

Sigg, L., Gerber, V., Gottstein, B., Doherr, M.G., Frey, C.F., 2010. Seroprevalence of Babesia caballi and Theileria equi in the Swiss horse population. Parasitol. Int. 59, 313–317.

Silva, M.G., Knowles, D.P., Suarez, C.E., 2016. Identification of interchangeable cross- species function of elongation factor-1 alpha promoters in Babesia bigemina and Babesia bovis. Parasite. Vectors. 576, 1–9.

Soulsby EJL. Helmints, arthropods and protozoa of domesticated animals. 7th ed. London, UK: Bailliere & Tindall ; 1982. pp. 719–723.

Spalenka, J., Escotte-Binet, S., Bakiri, A., Hubert, J., Hugues, R.J., Velard, F., Duchateau, S., Aubert, D., Huguenin, A., Villenaa, I., 2018. Discovery of new inhibitors of Toxoplasma gondii via the Pathogen Box. Antimicrob. Agents Chemother. 62, 1–10.

Suarez, C.E., Mcelwain, T.F., 2009. Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites q. Int. J. Parasitol. 39, 289–297.

Suarez, C.E., Norimine, J., Lacy, P., Mcelwain, T.F., 2006. Characterization and gene expression of Babesia bovis elongation factor-1 alpha. Int. J. Parasitol. 36, 965–973.

Talman, A.M., Blagborough, A.M., Sinden, R.E., 2010. A Plasmodium falciparum Strain Expressing GFP throughout the Parasite’s Life-Cycle. PLos One. 5, 3–7.

Tedla, MG., Every, AL., Scheerlinck, JPY. 2019. Investigating immune responses to parasites using transgenesis. Parasite Vectors. 12, 303.

Tenter, A.M., 1986. Serodiagnosis of experimental and natural Babesia equi and Babesia caballi infection. Vet. Parasitol. 20, 49-61.

Tuntasuvan, D., Jarabrum, W., Viseshakul, N., Mohkaew, K., Borisutsuwan, S., Theeraphan, A., Kongkanjana, N., 2003. Chemotherapy of surra in horses and mules with diminazene aceturate. Vet. Parasitol. 110, 227–233.

Tuvshintulga, B., AbouLaila, M., Davaasuren, B., Ishiyama, A., Sivakumar, T., Yokoyama, N., Iwatsuki, M., Otoguro, K., Omura, S., Igarashi, I., 2016. Clofazimine inhibits the growth of Babesia and Theileria parasites in vitro and in vivo. Antimicrob. Agents Chemother. 60, 2739–2746.

Tuvshintulga, B., AbouLaila, M., Sivakumar, T., Tayebwa, D.S., Gantuya, S., Naranbaatar, K., Ishiyama, A., Iwatsuki, M., Otoguro, K., Omura, S., Terkawi, M.A., Guswanto, A., Rizk, M.A., Yokoyama, N., Igarashi, I., 2017. Chemotherapeutic efficacies of a clofazimine and diminazene aceturate combination against piroplasm parasites and their AT-rich DNA-binding activity on Babesia bovis. Sci. Rep. 7, 1–10.

Vallie`res, C., Fisher, N., Meunir, B., 2013. Reconstructing the Qo site of Plasmodium falciparum bc1 complex in the yeast enzyme. PLos One. 8, 1-7.

Van Voorhis, W.C., Adams, J.H., Adelfio, R., Ahyong, V., Akabas, M.H., Alano, P., Alday, A., Alemán Resto, Y., Alsibaee, A., Alzualde, A., Andrews, K.T., Avery, S.V., Avery, V.M., Ayong, L., Baker, M., Baker, S., Ben Mamoun, C., Bhatia, S., Bickle, Q., Bounaadja, L., Bowling, T., Bosch, J., Boucher, L.E., Boyom, F.F., Brea, J., Brennan, M., Burton, A., Caffrey, C.R., Camarda, G., Carrasquilla, M., Carter, D., Belen Cassera, M., Chih-Chien Cheng, K., Chindaudomsate, W., Chubb, A., Colon, B.L., Colón-López, D.D., Corbett, Y., Crowther, G.J., Cowan, N., D’Alessandro, S., Le Dang, N., Delves, M., DeRisi, J.L., Du, A.Y., Duffy, S., Abd El-Salam El-Sayed, S., Ferdig, M.T., Fernández Robledo, J.A., Fidock, D.A., Florent, I., Fokou, P.V.T., Galstian, A., Gamo, F.J., Gokool, S., Gold, B.,Golub, T., Goldgof, G.M., Guha, R., Guiguemde, W.A., Gural, N., Guy, R.K., Hansen, M.A.E., Hanson, K.K., Hemphill, A., Hooft van Huijsduijnen, R., Horii, T., Horrocks, P., Hughes, T.B., Huston, C., Igarashi, I., Ingram-Sieber, K., Itoe, M.A., Jadhav, A., Naranuntarat Jensen, A., Jensen, L.T., Jiang, R.H.Y., Kaiser, A., Keiser, J., Ketas, T., Kicka, S., Kim, S., Kirk, K., Kumar, V.P., Kyle, D.E., Lafuente, M.J., Landfear, S., Lee,N., Lee, S., Lehane, A.M., Li, F., Little, D., Liu, L., Llinás, M., Loza, M.I., Lubar, A., Lucantoni, L., Lucet, I., Maes, L., Mancama, D., Mansour, N.R., March, S., McGowan,S., Medina Vera, I., Meister, S., Mercer, L., Mestres, J., Mfopa, A.N., Misra, R.N., Moon, S., Moore, J.P., Morais Rodrigues da Costa, F., Müller, J., Muriana, A., Nakazawa Hewitt, S., Nare, B., Nathan, C., Narraidoo, N., Nawaratna, S., Ojo, K.K., Ortiz, D.,Panic, G., Papadatos, G., Parapini, S., Patra, K., Pham, N., Prats, S., Plouffe, D.M.,Poulsen, S.A., Pradhan, A., Quevedo, C., Quinn, R.J., Rice, C.A., Abdo Rizk, M., Ruecker, A., St. Onge, R., Salgado Ferreira, R., Samra, J., Robinett, N.G., Schlecht, U., Schmitt, M., Silva Villela, F., Silvestrini, F., Sinden, R., Smith, D.A., Soldati, T., Spitzmüller, A., Stamm, S.M., Sullivan, D.J., Sullivan, W., Suresh, S., Suzuki, B.M., Suzuki, Y., Swamidass, S.J., Taramelli, D., Tchokouaha, L.R.Y., Theron, A., Thomas, D., Tonissen, K.F., Townson, S., Tripathi, A.K., Trofimov, V., Udenze, K.O., Ullah, I., Vallieres, C., Vigil, E., Vinetz, J.M., Voong Vinh, P., Vu, H., Watanabe, N.A., Weatherby, K., White, P.M., Wilks, A.F., Winzeler, E.A., Wojcik, E., Wree, M., Wu,W., Yokoyama, N., Zollo, P.H.A., Abla, N., Blasco, B., Burrows, J., Laleu, B., Leroy, D., Spangenberg, T., Wells, T., Willis, P.A., 2016. Open source drug discovery with the Malaria Box compound collection for neglected diseases and beyond. PLoS Pathog. 12, 1–23.

Vieira, M.I.B., Costa, M.M., de Oliveira, M.T., Goncalves, L.R., Andre, M.R., Machado, R.Z., 2018. Serological detection and molecular characterization of piroplasmids in equids in Brazil. Acta Trop. 179, 81–87.

Vinkenoog, R., Sperança M.A., van Breemen, O., Ramesar, J., Williamson, D.H., Ross- MacDonald, P.B., Thomas, A.W., Janse, C.J., del Portillo, H.A., Waters, A.P., 1998. Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. Mol. Biochem. Parasitol. 94, 1-12.

Wang, X., Xu, Z., Tian, Z., Zhang, X., Xu, D., Li, Q., 2017. The EF-1 a promoter maintains high- level transgene expression from episomal vectors in transfected CHO-K1 cells. J. Cell Mol. Med. 21, 3044–3054.

Wise, L.N., Kappmeyer, L.S., Mealey, R.H., Knowles, D.P., 2013. Review of equine piroplasmosis.J. Vet. Intern. Med. 27, 1334–1346.

Witschel, M., Rottmann, M., Kaiser, M., Brun, R., 2012. Agrochemicals against malaria, sleeping sickness, leishmaniasis and chagas disease. PLoS Negl. Trop. Dis. 6, 1-10.

Xuan, X., Nagai, A., Battsetseg, B., Fukumoto, S., Makala, L.H., Inoue, N., Igarashi, I., Mikami, T., Fujisaki, K., 2001. Diagnosis of equine piroplasmosis in Brazil by serodiagnostic methods with recombinant antigens. J. Vet. Med. Sci. 63, 1159–1160.

Yusuf, J.J., 2017. Review on bovine babesiosis and its economical importance. J. Vet. Med. Res. 4, 1090.

Zaugg, J.L., Lane, V., 1992. Efficacy of buparvaquone as a therapeutic and clearing agent of Babesia equi of European origin in horses. Am. J. Vet. Research. 53, 1396–1399.

Zobba, R., Ardu, M., Niccolini, S., Chessa, B., Manna, L., Cocco, R., Luisa, M., Parpaglia, P., 2008. Clinical and laboratory findings in equine piroplasmosis. J. Equine Vet. Sci. 28, 301– 308.

Zweygarth, E., Just, M.C., de Waal, D.T., 1996. In vitro cultivation of Babesia equi: Detection of carrier animals and isolation of parasites. Onderstepoort J. Vet. Res. 56, 51–56.

参考文献をもっと見る