リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「History and Innovation of Wireless Power Transfer via Microwaves」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

History and Innovation of Wireless Power Transfer via Microwaves

Shinohara, Naoki 京都大学 DOI:10.1109/jmw.2020.3030896

2021.01

概要

Wireless power transfer (WPT) has a long history of over 100 years since the first experiment conducted by Nicola Tesla. However, the most interesting innovation of WPT was born in the 21 st century. In this decade, near-field WPT commercialization was advanced, and we now use many near-field WPT products, such as wireless chargers for mobile phones and electric vehicles. In the next decade, we can expect the development of far-field WPT via microwaves, through which we can drive Internet of Things (IoT) sensors without batteries based on transmitted or ambient microwave power. We can charge mobile phones with microwave power. When we focus microwave power on a target by beam forming technology, we can transmit higher wireless power to fly drones or from space to the earth. In conjunction with the research & development of microwave-based WPT, radio regulations suitable for each country need to be discussed. In this paper, I review the history, innovation, and status of the radio regulations of WPT via microwaves with the classification of wide-beam WPT, including harvesting, and narrow-beam WPT.

この論文で使われている画像

参考文献

1. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacˇic´, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83–86, 2007.

2. N. Tesla, “The transmission of electric energy without wires,” in Proc. 13th Anniversary Number Elect. World Eng., Mar. 5, 1904.

3. W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microw. Theory Techn., vol. 32, no. 9, pp. 1230–1242, Sep. 1984.

4. H. Matsumoto, “Research on solar power station and microwave power transmission in Japan: Review and perspectives,” IEEE Microw. Mag., vol. 3, no. 4, pp. 36–45, Dec. 2002.

5. Wireless Identification Sensing Platform (WISP), [Online]: Available: https://sensor.cs.washington.edu/WISP.html

6. V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith, “Battery-free cell- phone,” in Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol., 2017, Art. no. 25.

7. S. Kitazawa, M. Hanazawa, S. Ano, H. Kamoda, H. Ban, and K. Kobayashi, “Field test results of RF energy harvesting from cellular base station,” in Proc. 6th Global Symp. Millimeter-Waves, 2013, Art. no. 1569736061.

8. R. Correia and N. B. Carvalho, “Backscatter solutions for SWIPT sys- tems,” in Proc. IEEE Asia-Pacific Microw. Conf., 2019.

9. N. Shinohara, “Wireless power transfer in Japan: Regulations and activ- ities,” in Proc. 14th Eur. Conf. Antenna Propag., 2020.

10. W. C. Brown, “Optimization of the efficiency and other properties of the rectenna element,” in Proc. MTT- S Int. Microw. Symp., 1976, pp. 142–144.

11. J. O. L McSpadden. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2053–2060, Dec. 1998.

12. X. Gu, E. Vandelle, G. Ardila, T. P. Vuong, K. Wu, and S. Hemour, “Environment-aware adaptive energy harvesters for IoT applications,” in Proc. IEEE Wireless Power Week School, 2019.

13. S. Hemour et al., “Towards low-power high-efficiency RF and mi- crowave energy harvesting,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 965–976, Apr. 2014.

14. V. Manev, H. Visser, P. Baltus, and H. Gao, “A comparison of tunnel diode and Schottky diode in rectifier at 2.4 GHz for low input power region,” in Proc. IEEE Wireless Power Week, 2019.

15. C. Song et al., “Matching network elimination in broadband recten- nas for high-efficiency wireless power transfer and energy harvest- ing,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3950–3961, May 2017.

16. T. Furuta, M. Ito, N. Nambo, K. Itoh, K. Noguchi, and J. Ida, “The 500 MHz band low power rectenna for DTV in the Tokyo area,” in Proc. IEEE Wireless Power Transfer Conf., 2016.

17. Y. Tanaka et al., “A study of received power in distributed wireless power transfer system,” in Proc. IEEE AP-S/URSI, 2020, Art. no. TH- A5.3P.2.

18. H. Zeine, “Method & apparatus for focused data communications,” U.S. Patent No. 9,351,281, May 24, 2016.

19. H. Zeine and A. Saghati, “Remote wireless power transmission system,” in Frontiers of Research and Development of Wireless Power Transfer (in Japanese), N. Shinohara, Ed. Tokyo, Japan: CMC Publisher, 2016, pp. 185–196.

20. T. Sasaki and N. Shinohara, “Study on multipath retrodirective for microwave power transmission,” in Proc. IEEE Wireless Power Week, 2018.

21. ITU-R Report SM.2392, “Applications of wireless power transmission via radio frequency beam,” 2016, [Online]. Available: https://www.itu. int/pub/R-REP-SM.2392

22. K. Hashimoto, “Frequency allocations of solar power satellite and in- ternational activities,” in Proc. IEEE MTT-S Int. Microw. Workshop Ser. Innov. Wireless Power Transmiss., 2011, pp. 83–86.

23. Ministry of Internal Affairs and Communications, “Technical condi- tion of in-room far-field wireless power transfer,” (in Japanese), Jul. 14, 2020, [Online]. Available: https://www.soumu.go.jp/main_content/ 000697268.pdf

24. W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microw. Theory Techn., vol. 32, no. 9, pp. 1230–1242, Sep. 1984.

25. W. C. Brown, “Status of the microwave power transmission components for solar power satellite,” IEEE Trans. Microw. Theory Techn., vol. 29, no. 12, pp. 1319–1327, Dec. 1981.

26. N. Shinohara, J. Fujiwara, and H. Matsumoto, “Development of active phased array with phase-controlled magnetrons,” in Proc. ISAP2000, pp. 713–716.

27. Z. Liu, X. Chen, M. Yang, P. Wu, K. Huang, and C. Liu, “Experimental studies on a four-way microwave power combining system based on hy- brid injection-locked 20-kW S-band magnetrons,” IEEE Trans. Plasma Sci., vol. 47, no. 1, pp. 243–250, Jan. 2019.

28. W. C. Brown, “The history of the development of the rectenna,” in Proc. SPS Microw. Syst. Workshop at JSC-NASA, 1980, pp. 271–280.

29. S. Mihara et al., “The result of ground experiment of microwave wire- less power transmission,” in Proc. 66th Int. Astronaut. Congr., 2015, Art. no. IAC-2015-C3.2.1.

30. K. Makino et al., “Development and demonstration of the high- precision beam steering controller for microwave power transmission which takes account of applying to SSPS (space solar power systems),” (in Japanese), Techn. Rep. IEICE Space Aeronaut. Navigat. Electron., vol. 115, no. 91, pp. 37–42, 2015.

31. A. K. M. Baki, K. Hashimoto, N. Shinohara, T. Mitani, and H. Mat- sumoto, “Isosceles-trapezoidal-distribution edge tapered array antenna with unequal element spacing for solar power satellite,” IEICE Trans. Commun., vol. E91-B, no. 2, pp. 527–535, 2008.

32. N. Hasegawa and N. Shinohara, “C-band active antenna design for ef- fective integration with a GaN amplifier,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 4976–4983, Dec. 2017.

33. S. Kojima and N. Shinohara, “Investigation of effective range of focused Gaussian beam compared to focused uniform beam in Fresnel region,” in Proc. 12th Eur. Conf. Antennas Propag., 2018, Art. no. CS09.3.

34. N. Takabayashi, N. Shinohara, T. Mitani, M. Furukawa, and T. Fuji- wara, “Rectification improvement with flat-topped beams on 2.45-GHz rectenna arrays,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1151–1163, Mar. 2020.

35. T. Matsumuro, Y. Ishikawa, and N. Shinohara, “Basic study of both- sides retrodirective system for minimizing the leak energy in microwave power transmission,” IEICE Trans. Electron., vol. E102–C, no. 10, pp. 659–665, 2019.

36. H. K. Chiou and I.-S. Chen, “High-efficiency dual-band on-chip rectenna for 35-and 94-GHz wireless power transmission in 0.13-µm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 3598–3606, Dec. 2010.

37. N. Weissman, S. Jameson, and E. Socher, “W-band CMOS on-chip en- ergy harvester and rectenna,” in Proc. IEEE MTT-S Int. Microw. Symp., 2014.

38. S. Hemour, C. H. Lorenz, and K. Wu, “Small-footprint wideband 94GHz rectifier for swarm micro-robotics,” in Proc. IEEE MTT-S Int. Microw. Symp., 2015.

39. S. Mizojiri et al., “GaN Schottky barrier diode for sub-terahertz rectenna,” in Proc. IEEE Wireless Power Week, 2019.

40. NRL News Releases, Oct. 2019, [Online]. Available: https://www.nrl.navy.mil/news/releases/researchers-transmit-energy-laser- power-beaming-demonstration

41. T. Hirakawa, C. Wang, and N. Shinohara, “RF-DC conversion efficiency improvement for microwave transmission with pulse modulation,” in Proc. Cambridge J. Wireless Power Transfer, Mar. 2019.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る