リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Wiegandパルスで駆動するバッテリーレス・モジュールの回路設計」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Wiegandパルスで駆動するバッテリーレス・モジュールの回路設計

孙 小雅 横浜国立大学 DOI:info:doi/10.18880/00014104

2021.11.24

概要

IoT(Internet of Things)とは、すべてのモノがインターネットに接続される技術、ま たはそのような情報化社会を表す概念である。モノに記録されている情報や、各種セン サから得られる情報をインターネットを経由して収集し、モノの状態や位置などを把握 することが可能になろうとしている。今後、多種多様な場所、モノにセンサが設置され ると予想され、電源の配線やメンテナンスが不要な自立型電源の活用が求められている。その解決策として身の周りに存在する微小なエネルギーを集め、発電するエネルギー・ハーベスティング(環境発電)への期待が高まっている。

本論文では、複合磁気ワイヤを用いる Wiegand センサを新たなエネルギー・ハーベスティング素子として活用することを提案し、その発電特性を明らかにした。このセンサは、外部磁界の時間変化率に依存しない、一定のパルス電圧を誘発するという特徴を有する。即ち、コイルに発生する誘導起電力は、それを貫く磁束の時間変化率に比例するというファラデーの電磁誘導に従わず、超低速の磁界変化に対してもパルス電圧を発生する。このパルス電圧を電子デバイスの駆動電源として利用したり、信号(パケット)の無線送信に必要な電力を賄うことができれば、電源配線や電池を必要としない無電源機器を実現できる。小型センサや無線モジュールと組み合わせることにより、電池交換や配線などが難しい場所でのセンシングを行うことが可能となる。メンテナンスフリーで長期間の運用が可能なため、IoT 分野での幅広い応用が期待される。

本論文の目的は、Wiegand センサが誘発するパルス電圧により電子機器を駆動する整流・平滑回路を明らかにすること、及び汎用性の高い発電素子として活用する手法を明らかにすることである。そこで、Wiegand センサの内部インダクタンス及び intrinsic なパルス電圧を算出し、発電素子としての特性を評価した。具体的には、Wiegand センサに接続した負荷回路の電圧・電流応答を実測し、電気回路モデルを構築、シミュレータ MATLAB®/Simulink®を用いてWiegand センサの内部インダクタンス及びintrinsic なパルス電圧を決定した。Wiegand センサを等価電源として記述できるようになったために、それに接続する回路を LTspice®を用いて設計することが初めて可能になった。最適なデバイスの選定及びパラメータの算出を行うことにより、自励式昇圧回路を設計し、安定な直流 5 V を出力する方法を見いだし、それを測定により実証した。

このように本論文では、Wiegand センサを発電素子として実用する指針を提示することに成功した。ここで得られた Wiegand センサ及びその接続回路に関する手法は、IoTを初めとした広範な応用が想定され、エレクトロニクス分野において意義のある研究成果である。

この論文で使われている画像

参考文献

1. S. Balakrishna, M. Thirumaran, V. K. Solanki, “A framework for IoT sensor data acquisition and analysis”, EAI Endorsed Transactions on Internet of Things, Vol. 4, pp. 1-13, 2018.

2. D. Singh, G. Tripathi, A. J. Jara, “A survey of Internet-of-Things: Future vision, architecture, challenges and services”, IEEE World Forum on Internet of Things, pp. 287-292, 2014.

3. R.J.M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks”, IEEE Sol. Sta. Cir. Mag., Vol. 2, pp. 29-38, 2010.

4. S. C. Lai, K. Yao, C. Y. Tan, “A Battery-less sensor concept outputting perceivable signal demonstrated with an accelerometer”, IEEE Sensors Journal, Vol. 16, No. 22, pp. 7841-7842, 2016.

5. T. S. Muratkar, A. Bhurane, A. Kothari, “Battery-less Internet of Things -A Survey”, Computer Networks, Vol. 180, pp. 1-20, 2020.

6. T. Armstong, “Green Buildings Get a Boost: Wireless sensor nodes as a key application for energy harvesting”, Analog Devices, Available online: https://www.analog.com/media/en/technical-documentation/tech-articles/green- buildings-get-a-boost.pdf, accessed Mar. 6, 2021.

7. H. Jayakumar, A. Raha, Y. Kim, S. Sutar, W. S. Lee, V. Raghunathan, “Energy- efficient system design for IoT devices”, Asia & South Pacific Design Automation Conference, pp. 298-301, 2016.

8. R.J.M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof, R. Mertens, “Micropower energy harvesting”, Solid-State Electronics, Vol. 53, pp. 684-693, 2009.

9. J. A. Paradiso, T. Starner, “Energy scavenging for mobile and wireless electronics”, IEEE Pervasive Computing, Vol. 4, No. 1, pp. 18-27, 2005.

10. N. Sharpes, D. Vuckovic, S. Priya, “Floor Tile Energy Harvester for Self-Powered Wireless Occupancy Sensing”, Energy Harvesting and Systems, Vol. 3, pp. 43-60, 2015.

11. A.A.A. Rahman, N. A. Rashid, A.S.A. Aziz, G. Witjaksono, “Design of autonomous micro-solar powered energy harvesting system for self-powered batteries-less wireless sensor mote”, Electronics Goes Green 2012+ (EGG), pp. 1- 4, 2012.

12. G. Kuers, H. -J. Gevatter, “Wiegand-Sensoren für Weg- und Geschwindigkeitsmessungen/ Wiegand effect position and speed sensors”, Technisches Messen 51, Vol. 4, pp. 123-129, 1984.

13. K. Takahashi, A. Takebuchi, T. Yamada, Y. Takemura, “Power supply for medical implants by Wiegand pulse generated from a magnetic wire”, J. Mag. Soc. Jpn., Vol. 42, pp. 49-54, 2018.

14. R. Zentgraf, D. Hennig, “Evaluation of self-sufficient zero speed sensors based on Large Barkhausen jumps”, 20th International Student Conference on Electrical Engineering, Prague, 2016.

15. H. Guenther, J. Holger, “Movement sensor esp. for bicycle tachometer - uses magnets on spokes generating alternating magnetic field w.r.t. fixed Wiegand element”, German Patent # DE4007653, 1991.

16. D. J. Dlugos, D. Small, D. A. Siefer, “Wiegand effect energy generator”, U.S. Patent #6,191,687,B1, 2001.

17. T. Best, “Wiegand Wire: Energy Harvesting and More”, Techbriefs, Available online: https://www.techbriefs.com/component/content/article/tb/supplements/md/features/articles/37387, accessed Jun. 25, 2021.

18. J. Taneja, J. Jeong, D. Culler, “Design, Modeling, and Capacity Planning for Micro-solar Power Sensor Networks”, 2008 International Conference on Information Processing in Sensor Networks, pp. 407-418, 2008.

19. Y. Li, L. Wu, C. Zhang, Z. Wang, “Power recovery circuit for Battery-less TPMS”, 2007 7th International Conference on ASIC, pp. 454-457, 2007.

20. J. E. Opie, J. W. Bossoli, “A new era of application for the Wiegand effect”, SAE Transactions, Vol. 97, pp. 426-431, 1988.

21. C. Luo, H. F. Hofmann, “Wideband energy harvesting for piezoelectric devices with linear resonant behavior”, IEEE Transactions on Ultrasonics, Ferroelectrics & Frequency Control, Vol. 58, No. 7, pp. 1294-1301, 2011.

22. POSITAL-FRABA. “Wiegand technology”, Available online: https://www.posital.com/en/products/wiegand-sensors/wiegand-techology.php, acessed Mar. 6, 2021.

23. C. Knight, J. Davidson, S. Behrens, “Energy Options for Wireless Sensor Nodes”, Sensors, Vol. 8, pp. 8037-8066, 2008.

24. H. Morimura, S. Oshima, K. Matsunaga, T. Shimamura, M. Harada, “Ultra-low- power circuit techniques for mm-size wireless sensor nodes with energy harvesting”, IEICE Electronics Express, Vol. 11, No. 20, pp. 1-12, 2014.

25. Y. Chen, Z. Jiao, W. Guan, Q. Sun, X. Wang, R. Zhang, H. Zhang, “A +0.66/−0.73 ℃ inaccuracy, 1.99-μw time-domain CMOS temperature sensor with second-order Δ Σ modulator and on-chip reference clock”, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No, 11, pp. 3815-3827, 2020.

26. J.M.D. Coey, “Magnetism and Magnetic Materials”, Cambridge University Press, 2010.

27. N. A. Spaldin, “Magnetic Materials: Fundamentals and Applications (2nd Edition)”, Cambridge University Press, 2010.

28. E. M. Purcell, “Electricity and Magnetism (Berkeley Physics Course)”, McGraw- Hill Science Engineering, 1984.

29. J. R. Wiegand, M. Velinsky, “Bistable magnetic device”, U.S. Patent #3,820,090, 1974.

30. J. R. Wiegand, “Switchable magnetic device”, U.S. Patent # 4,247,601, 1981.

31. N. Normann, “Magnetic field sensor comprising Wiegand wires or similar bistable magnetic elements”, U.S. Patent # 4,639,670, 1987.

32. K. Thapa, “Making switches smarter with true micropower Hall effect sensors”, Electronic Product Design, Vol. 12, pp. 14-15, 2016.

33. C. T. Horng, R. Xiao, R. Y. Tong, J. W. Chang, K. Ju, S. H. Liao, “Anisotropic magnetoresistive (MR) sensor element with enhanced magnetoresistive (MR) coefficient”, U.S. Patent # 6,590,751, 2003.

34. S. Abe, A. Matsushita, “Induced pulse voltage in twisted Vicalloy wire with compound magnetic effect”, IEEE Transactions on Magnetics, Vol. 31, No. 6, pp. 3152-3154, 1995.

35. POSITAL-FRABA, “Innovative encoders for demanding applications”, Available online: https://pr-toolbox.com/pdf/FRABA_AbsoluteEncoders.pdf, accessed Mar. 6, 2021.

36. S. Abe, A. Matsushita, “Construction of electromagnetic rotation sensor using compound magnetic wire and measurement at extremely low frequency rotations”, IEEE Transactions on Magnetics, Vol. 30, No. 6, pp. 4635-4637, 1994.

37. A. Takebuchi, T. Yamada, Y. Takemura, “Reduction of vibration amplitude in vibration-type electricity generator using magnetic wire”, Journal of the magnetics Society of Japan, Vol. 41, pp. 34-40, 2017.

38. K. J. Sixtus, L. Tonks, “Propagation of large Barkhausen discontinuities”, Phys. Rev, Vol. 37, pp. 930-959, 1931.

39. K. J. Sixtus, L. Tonks, “Propagation of large Barkhausen discontinuities II”, Phys. Rev, Vol. 42, pp. 419-435, 1932.

40. J. Chotai, M. Thakker, Y. Takemura, “Single-bit, Self-powered digital counter using a Wiegand sensor for rotary applications”, Sensors. Vol. 20, 3840, pp. 1-10, 2020.

41. M. Vazquez, C. Gomez-Polo, D. -X. Chen, A. Hernando, “Magnetic bistability of amorphous wires and sensor applications”, IEEE Transactions on Magnetics, Vol. 30, No. 2, pp. 907-912, 1994.

42. Y. Takemura, T. Aoki, H. Tanaka, T. Yamada, S. Abe, S. Kohno, H. Nakamura, “Control of demagnetizing field and magnetostatic coupling in FeCoV wires for zero-speed sensor”, IEEE Transactions on Magnetics, Vol. 42, No. 10, pp. 3300- 3302, 2006.

43. H. Tanaka, T. Yamada, Y. Takemura, S. Abe, S. Kohno, H. Nakamura, “Constant velocity of domain wall propagation independent of applied field strength in vicalloy wire”, IEEE Transactions of Magnetics, Vol. 43, No. 6, pp. 2397-2399, 2007.

44. A. Matsushita, Y. Takemura, “Power generating device using compound magnetic wire”, Journal of Applied Physics, Vol. 87, pp. 6307-6309. 2000.

45. A. Matsushita, S. Abe, S. Ishida, C. F. Jie, “Magnetization reversal and domain wall propagation characteristics of compound magnetic wire”, IEEE Translation Journal on Magnetics in Japan, Vol. 6, No. 5, pp. 415-421, 1991.

46. T. Kohara, T. Yamada, S. Abe, S. Kohno, F. Kaneko, Y. Takemura, “Effective excitation by single magnet in rotation sensor and domain wall displacement of FeCoV wire”, Journal of Applied Physics, Vol. 109, 07E531, 2011.

47. R. Gherca, R. Olaru, “Harvesting vibration energy by electromagnetic induction”, Annals of the University of Craiova, Electrical Engineering series, No. 35, pp. 1842-4805, 2011.

48. K. Makihara, J. Onoda, T. Miyakawa, “Low energy dissipation electric circuit for energy harvesting”, Smart Mater. Struct., Vol. 15, No. 5, pp. 1493-1498, 2006.

49. N. Kularatna, K. Subasinghage, K. Gunawardane, D. Jayananda, T. Ariyarathna, “Supercapacitor assisted techniques and supercapacitor assisted loss management concept: new design approaches to change the roadmap of power conversion systems”, Electronics 2021, Vol. 10, pp. 1-19, 2021.

50. K. Kankanmage, N. Kulatana, “Supercapacitor assisted LDO (SCALDO) technique an extra low frequency design approach to high efficiency DC-DC converters and how it compares with the classical switched capacitor converters”, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) IEEE, pp. 1979-1984, 2013.

51. C. Renner, S. Unterschütz, V. Turau, K. Römer, “Perpetual data collection with energy-harvesting sensor networks”, ACM Trans. Sensor Netw., Vol. 11, No. 1, Article 12, pp.1-12, 2014.

52. T. F. Valone, G. A. Robertson, “Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field”, American Institute of Physics, pp.1-12, 2010.

53. N. Khosropour, F. Krummenacher, M. Kayal, “Fully integrated ultra-low power management system for micro-power solar energy harvesting applications”, Electronics Letters, Vol. 48, pp. 338-339, 2012.

54. F. Ongaro, S. Saggini, P. Mattavelli, “Li-ion battery-supercapacitor hybrid storage system for a long lifetime, photovoltaic-based wireless sensor network”, IEEE Trans. Power Electron., Vol. 27, No. 9, pp. 3944-3952, 2012.

55. A. Khaligh, P. Zeng, C. Zheng, “Kinetic energy harvesting using piezoelectric and electromagnetic technologies-State of the art”, IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 850-860, 2010.

56. A. Shareef, W. L. Goh, S. Narasimalu, Y. Gao, “A rectifier-less AC-DC interface circuit for ambient energy harvesting from low-voltage piezoelectric transducer array”, IEEE Transactions on Power Electronics, Vol. 34, No. 2, pp. 1446-1457, 2019.

57. M. Ericka, D. Vasic, F. Costa, G. Poulin, S. Tliba, “Energy harvesting from vibration using a piezoelectric membrane”, Journal De Physique IV, Vol. 128, pp. 187-193, 2005.

58. Y. Takemura, N. Fujinaga, A. Takebuchi, T. Yamada, “Battery-less hall sensor operated by energy harvesting from a single Wiegand pulse”, IEEE Transactions on Magnetics, Vol. 53, No. 11, 4002706, 2017.

59. T. Kohara, T. Kusunoki, T. Yamada, T. Suzuki, H. Fujimoto, Y. Takemura, S. Abe, S. Kohno, H. Itoi, F. Kaneko, “Fabrication and implementation of a rotation sensor using a separated structure consisting of magnetic wire and a pick-up coil”, Journal of the Magnetics Society of Japan, Vol. 34, pp. 347-351, 2010.

60. R. Malmhall, K. Mohri, F. B. Humphrey, T. Manabe, H. Kawamura, J. Yamasaki, I. Ogasawara, “Bistable magnetization reversal in 50 μm diameter annealed cold drawn amorphous wires”, IEEE Transactions on Magnetics, Vol. 23, No. 5, pp. 3242-3244, 1987.

61. S. Abe, A. Matsushita, M. Naoe, “Annealing and torsion stress effect on magnetic anisotropy and magnetostriction of Vicalloy fine wire”, IEEE Transactions on Magnetics, Vol. 33, pp. 3916-3918, 1997.

62. C. Yang, T. Sakai, T. Yamada, Z. Song, Y. Takemura, “Improvement of pulse voltage generated by wiegand sensor through magnetic-flux guidance”, Sensors, Vol. 20, 1408, pp. 1-10, 2020.

63. A. A. Trofimov, N. S. Trifomova, S. A. Zdobnov, D. V. Popchenkov, K. I. Bastrygin, A. K. Alimuradov, “Construction of rotational speed sensors based on the Wiegand module”, 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), pp. 1-4, 2020.

64. S. Saggini, F. Ongaro, L. Corradini, A. Affanni, “Low-power energy harvesting solutions for wiegand transducers”, IEEE J. Eme. Sel. Top. Pow. Ele., Vol. 3, pp. 766-779, 2015.

65. K. Takahashi, T. Yamada, Y. Takemura, “Circuit parameters of a receiver coil using a Wiegand sensor for wireless power transmission”, Sensors, Vol. 19, 2710, pp.1-9, 2019.

66. E. Lefeuvre, D. Audigier, C. Richard, D. Guyomar, “Buck-boost converter for sensorless power optimization of piezoelectric energy harvester”, IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 2018-2025, 2007.

67. J. Liang, W. H. Liao, “Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems”, IEEE Trans. Ind. Electron., Vol. 59, No. 4, pp. 1950-1960, 2012.

68. E. Arroyo, A. Badel, F. Formosa, “Energy harvesting from ambient vibrations: Electromagnetic device and synchronous extraction circuit”, Journal of Intelligent Material Systems and Structures, Vol. 24, pp. 2023-2035, 2013.

69. V. Ostasevicius, V. Markevicius, V. Jurenas, M. Zilys, M. Cepenas, L. Kizauskiene, V. Gyliene, “Cutting tool vibration energy harvesting for wireless sensors applications”, Sensors and Actuators A: Physical, Vol. 233, pp. 310-318, 2015.

70. ROHM, “RBR3MM30x datasheet”, Available online: https://d1d2qsbl8m0m72.cloudfront.net/en/products/databook/datasheet/discrete/di ode/schottky_barrier/rbr3mm30atr-e.pdf, accessed Mar. 18, 2021.

71. P. E. Wigen, “Wiegand wire: New material for magnetic-based devices”, Electronics, Vol. 30, pp. 350-352, 1975.

72. A. D. Nath, K. Radhakrishnan, K. A. Eldhose, “Low-Voltage direct AC-DC boost converter for micro-generator based energy harvesting”, International Journal of Advanced Research in Electrical Electronics & Instrumentation Engineering , Vol. 2, pp. 2320-3765, 2013.

73. A.H.A. Dawam, M. Muhamad, “AC to DC bridgeless boost converter for ultra-low input energy harvesting”, IOP Conference Series: Materials Science and Engineering, Vol. 341, 012001, pp. 1-7, 2018.

74. S. Dwari, L. Parsa, “Efficient low voltage direct AC/DC converters for self- powered wireless sensor nodes and mobile electronics”, INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference, pp. 1-7, 2008.

75. D. Guyomar, A. Badel, E. Lefeuvre, C. Richard, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing”, IEEE Trans. Ultrason., Ferroelect., Vol. 52, No. 4, pp. 584-595, 2005.

76. J. Liang, W. Liao, “An improved self-powered switching interface for piezoelectric energy harvesting”, 2009 International Conference on Information and Automation, pp. 945-950, 2009.

77. G. K. Ottman, H. F. Hofmann, G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode”, IEEE Trans. Power Electron., Vol. 18, No. 2, pp. 696-703, 2003.

78. Texas Instruments, “Practical feedback loop analysis for voltage-mode boost converter”, Available online: https://www.ti.com/lit/an/slva633/slva633.pdf, accessed Mar. 12, 2021.

79. Linear Technology, “LTC3588-1 datasheet”, Available online: https://www.analog.com/media/en/technical-documentation/data- sheets/35881fc.pdf, accessed Mar. 18, 2021.

80. Linear Technology, “LTC3400 datasheet”, Available online: https://www.analog.com/media/en/technical-documentation/data- sheets/3400fa.pdf, accessed Jun. 25, 2021.

81. E. Rogers, “Control loop modeling of switching power supplies”, Available online: https://www.ti.com/sc/docs/msp/papers/1998/rogers.pdf, accessed Mar. 23, 2021.

82. L. Shtargot, “Micropower SOT-23 boost with integrated schottky diode provides output disconnect and short circuit protection”, Available online: https://www.analog.com/en/technical-articles/micropower-sot23-boost-integrated- schottky-diode.html, accessed Mar. 23, 2021.

83. A. I. Pressman, K. Billings, T. Morey, “Switching Power Supply Design, 3rd Ed”, McGraw-Hill Education, pp. 31-42, 2009.

84. C. Nelson, J. Williams, “LT1070 design manual”, Available online: https://www.analog.com/media/en/technical-documentation/application- notes/an19fc.pdf, accessed Mar. 6, 2021.

85. S. Subi, “ZCS-PWM converter for reducing switching losses”, IOSR Journal of Electrical and Electronics Engineering, Vol. 9, pp. 29-35, 2014.

86. E. Van Dijk, H.J.N. Spruijt, D. M. O’Sullivan, J. B. Klaassens, “PWM-switch modeling of DC–DC converters”, IEEE Transactions on Power Electronics, Vol. 10, No. 6, pp. 659-665, 1995.

87. S. Nakagawa, “A voltage step down type dc-dc converter having a coupled inductore”, European Patent Application #EP1126585A2, 2001.

88. R. W. Erickson, “DC–DC power converters”, Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1-18, 2007.

89. ROHM, “RE1C002UN datasheet”, Available online: https://www.alldatasheet.com/datasheet- pdf/pdf/1070449/ROHM/RE1C002UN.html, accessed Mar. 18, 2021.

90. C -C. Chang, J -Y. Chang, “Novel Wiegand effect based energy harvesting device for linear positioning measurement system”, Microsystem Technologies, Vol. 26, pp. 3421-3426, 2020.

91. POSITAL-FRABA, “Wiegand energy harvesting”, Available online: https://www.posital.com/en/products/wiegand-sensors/wiegand-energy- harvesting.php, accessed Mar. 6, 2021.

92. Y. Takemura, A. Matsushita, “Frequency dependence of output voltage generated from bundled compound magnetic wires”, IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 2862-2864, 2001.

93. K. Mohri, S. Takeuchi, T. Fujimoto, “Sensitive magnetic sensors using amorphous Wiegand-type ribbons”, IEEE Transactions on Magnetics, Vol. 17, No. 6, pp. 3370-3372, 1981.

94. ICNIRP: “Guidelines for limiting exposure to time varying electric and magnetic fields (1 Hz-100 kHz)”, Health Phys., Vol. 99, No. 6, pp. 818-836, 2010.

95. Texas Instruments, “Energy harvesting for wireless switch power reference design”, Available online: https://www.ti.com/lit/ug/tiduc93/tiduc93.pdf, accessed Mar. 21, 2021.

96. D. Newell, M. Duffy, “Review of power conversion and energy management for Low-Power, Low-Voltage energy harvesting powered wireless sensors”, IEEE Trans. Power Electron., Vol. 34, No. 10, pp. 9794-9805, 2019.

97. Texas Instruments, “TPS6273x datasheet”, Available online: http://www.ti.com/lit/ds/symlink/tps62730.pdf, accessed Mar. 12, 2021.

98. R1801K, Available online: https://www.mouser.co.uk/datasheet/2/792/r1801k001a_eev-1917814.pdf, accessed Mar. 26, 2021.

99. J. Drew, “Powering a Dust Mote from a Piezoelectric Transducer”, Available online: https://www.analog.com/jp/technical-articles/powering-a-dust-mote-from- a-piezoelectric-transducer.html, accessed Mar. 26, 2021.

100. Texas Instruments, “Energy Harvesting ULP meets energy harvesting: A game- changing combination for design engineers”, Available online: https://www.mouser.com/pdfDocs/TI-ULP-meets-energy-harvesting-A-game- changing-combination-for-design-engineers.pdf, accessed Jun. 25, 2021.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る