リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interaction between C1-microorganisms and plants: contribution to the global carbon cycle and microbial survival strategies in the phyllosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interaction between C1-microorganisms and plants: contribution to the global carbon cycle and microbial survival strategies in the phyllosphere

Yurimoto, Hiroya Sakai, Yasuyoshi 京都大学 DOI:10.1093/bbb/zbac176

2023.01

概要

C1-microorganisms that can utilize C1-compounds, such as methane and methanol, are ubiquitous in nature, and contribute to drive the global carbon cycle between two major greenhouse gases, CO₂ and methane. Plants emit C1-compounds from their leaves and provide habitats for C1-microorganisms. Among C1-microorganisms, Methylobacterium spp., representative of methanol-utilizing methylotrophic bacteria, predominantly colonize the phyllosphere and are known to promote plant growth. This review summarizes the interactions between C1-mircroorganisms and plants that affect not only the fixation of C1-compounds produced by plants but also CO₂ fixation by plants. We also describe our recent understanding of the survival strategy of C1-microorganisms in the phyllosphere and the application of Methylobacterium spp. to improve rice crop yield.

参考文献

Abanda-Nkpwatt D, Musch M, Tschiersch J et al. Molecular interaction between

283

Methylobacterium extorquens and seedlings: growth promotion, methanol

284

consumption, and localization of the methanol emission site. J Exp Bot

285

2006;57:4025-32. https://doi.org/10.1093/Jxb/Erl173.

286

Aronson EL, Allison SD, Helliker BR. Environmental impacts on the diversity of

287

methane-cycling microbes and their resultant function. Front Microbiol 2013;4:225.

288

https://doi.org/10.3389/fmicb.2013.00225.

289

Aulakh MS, Wassmann R, Rennenberg H et al. Pattern and amount of aerenchyma

290

relate to variable methane transport capacity of different rice cultivars. Plant Biol

291

2000;2:182-94. https://doi.org/10.1055/s-2000-9161.

292

Bruhn D, Moller IM, Mikkelsen TN et al. Terrestrial plant methane production and

293

emission. Physiol Plant 2012;144:201-9. https://doi.org/10.1111/j.1399-

294

3054.2011.01551.x.

295

296

297

Butenhoff CL, Khalil MAK. Global methane emissions from terrestrial plants. Environ

Sci Technol 2007;41:4032-47. https://doi.org/10.1021/es062404i.

Delmotte N, Knief C, Chaffron S et al. Community proteogenomics reveals insights

298

into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA

299

2009;106:16428-33. https://doi.org/10.1073/pnas.0905240106.

300

Dourado MN, Camargo Neves AA, Santos DS et al. Biotechnological and agronomic

301

potential of endophytic pink-pigmented methylotrophic Methylobacterium spp.

302

Biomed Res Int 2015;2015:909016. https://doi.org/10.1155/2015/909016.

303

Fall R, Benson AA. Leaf methanol - the simplest natural product from plants. Trends

304

Plant Sci 1996;1:296-301. https://doi.org/10.1016/S1360-1385(96)88175-0.

305

Finkel OM, Burch AY, Lindow SE et al. Geographical location determines the

12

306

population structure in phyllosphere microbial communities of a salt-excreting desert

307

tree. Appl Environ Microbiol 2011;77:7647-55. https://doi.org/10.1128/AEM.05565-

308

11.

309

Galbally IE, Kirstine W. The production of methanol by flowering plants and the global

310

cycle of methanol. J Atmos Chem 2002;43:195-229.

311

https://doi.org/10.1023/A:1020684815474.

312

Gargallo-Garriga A, Sardans J, Perez-Trujillo M et al. Shifts in plant foliar and floral

313

metabolomes in response to the suppression of the associated microbiota. BMC Plant

314

Biol 2016;16:78. https://doi.org/10.1186/s12870-016-0767-7.

315

Gourion B, Francez-Charlot A, Vorholt JA. PhyR is involved in the general stress

316

response of Methylobacterium extorquens AM1. J Bacteriol 2008;190:1027-35.

317

https://doi.org/10.1128/JB.01483-07.

318

Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium

319

extorquens reveals a response regulator essential for epiphytic growth. Proc Natl

320

Acad Sci USA 2006;103:13186-91. https://doi.org/10.1073/pnas.0603530103.

321

Gourion B, Sulser S, Frunzke J et al. The PhyR-sEcfG signalling cascade is involved in

322

stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol

323

Microbiol 2009;73:291-305. https://doi.org/10.1111/j.1365-2958.2009.06769.x.

324

Green PN, Ardley JK. Review of the genus Methylobacterium and closely related

325

organisms: a proposal that some Methylobacterium species be reclassified into a new

326

genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 2018;68:2727-48.

327

https://doi.org/10.1099/ijsem.0.002856.

328

Guenther A. The contribution of reactive carbon emissions from vegetation to the

329

carbon balance of terrestrial ecosystems. Chemosphere 2002;49:837-44.

330

https://doi.org/10.1016/s0045-6535(02)00384-3.

331

Henrot AJ, Stanelle T, Schroder S et al. Implementation of the MEGAN (v2.1) biogenic

332

emission model in the ECHAM6-HAMMOZ chemistry climate model. Geosci

333

Model Dev 2017;10:903-26. https://doi.org/10.5194/gmd-10-903-2017.

334

Iguchi H, Sato I, Sakakibara M et al. Distribution of methanotrophs in the phyllosphere.

335

Biosci Biotechnol Biochem 2012;76:1580-83. https://doi.org/10.1271/bbb.120281.

336

Iguchi H, Sato I, Yurimoto H et al. Stress resistance and C1 metabolism involved in

13

337

plant colonization of a methanotroph Methylosinus sp. B4S. Arch Microbiol

338

2013;195:717-26. https://doi.org/10.1007/s00203-013-0922-6.

339

Iguchi H, Umeda R, Taga H et al. Community composition and methane oxidation

340

activity of methanotrophs associated with duckweeds in a fresh water lake. J Biosci

341

Bioeng 2019;128:450-5. https://doi.org/10.1016/j.jbiosc.2019.04.009.

342

Iguchi H, Yoshida Y, Fujisawa K et al. KaiC family proteins integratively control

343

temperature-dependent UV resistance in Methylobacterium extorquens AM1.

344

Environ Microbiol Rep 2018;10:634-43. https://doi.org/10.1111/1758-2229.12662.

345

Ikeda S, Anda M, Inaba S et al. Autoregulation of nodulation interferes with impacts of

346

nitrogen fertilization levels on the leaf-associated bacterial community in soybeans.

347

Appl Environ Microbiol 2011;77:1973-80. https://doi.org/10.1128/AEM.02567-10.

348

349

350

351

352

Johnson CH, Mori T, Xu Y. A cyanobacterial circadian clockwork. Curr Biol

2008;18:R816-25. https://doi.org/10.1016/j.cub.2008.07.012.

Johnson CH, Zhao C, Xu Y et al. Timing the day: what makes bacterial clocks tick? Nat

Rev Microbiol 2017;15:232-42. https://doi.org/10.1038/nrmicro.2016.196.

Kawaguchi K, Yurimoto H, Oku M et al. Yeast methylotrophy and autophagy in a

353

methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS

354

One 2011;6:e25257. https://doi.org/10.1371/journal.pone.0025257.

355

Keppler F, Hamilton JTG, Brass M et al. Methane emissions from terrestrial plants

356

under aerobic conditions. Nature. 2006;439:187-91.

357

https://doi.org/10.1038/Nature04420.

358

Kirschbaum MUF, Bruhn D, Etheridge DM et al. A comment on the quantitative

359

significance of aerobic methane release by plants. Funct Plant Biol 2006;33:521-30.

360

https://doi.org/10.1071/Fp06051.

361

362

363

364

365

Kirschke S, Bousquet P, Ciais P et al. Three decades of global methane sources and

sinks. Nat Geosci 2013;6:813-23. https://doi.org/10.1038/Ngeo1955.

Knief C. Diversity of methane cycling microorganisms in soils and their relation to

oxygen. Curr Issues Mol Biol 2019;33:23-56. https://doi.org/10.21775/cimb.033.023.

Knief C, Delmotte N, Chaffron S et al. Metaproteogenomic analysis of microbial

366

communities in the phyllosphere and rhizosphere of rice. ISME J 2012;6:1378-90.

367

https://doi.org/10.1038/ismej.2011.192.

14

368

Knief C, Ramette A, Frances L et al. Site and plant species are important determinants

369

of the Methylobacterium community composition in the plant phyllosphere. ISME J

370

2010;4:719-28. https://doi.org/10.1038/ismej.2010.9.

371

Kumar M, Tomar RS, Lade H et al. Methylotrophic bacteria in sustainable agriculture.

372

World J Microbiol Biotechnol 2016;32:120. https://doi.org/10.1007/s11274-016-

373

2074-8.

374

Kumar M, Kour D, Yadav AN et al. Biodiversity of methylotrophic microbial

375

communities and their potential role in mitigation of abiotic stresses in plants.

376

Biologia 2019;74:287-308. https://doi.org/10.2478/s11756-019-00190-6.

377

378

Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol

2003;69:1875-83. https://doi.org/10.1128/aem.69.4.1875-1883.2003.

379

Madhaiyan M, Poonguzhali S, Senthilkumar M et al. Growth promotion and induction

380

of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium

381

spp. Bot Bull Acad Sinica 2004;45:315–24.

382

Madhaiyan M, Poonguzhali S, Sundaram SP et al. A new insight into foliar applied

383

methanol influencing phylloplane methylotrophic dynamics and growth promotion of

384

cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ

385

Exp Bot 2006;57:168-76. https://doi.org/10.1016/j.envexpbot.2005.05.010.

386

Meena KK, Kumar M, Kalyuzhnaya MG et al. Epiphytic pink-pigmented

387

methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum

388

aestivum) by producing phytohormone. Antonie van Leeuwenhoek 2012;101:777-86.

389

https://doi.org/10.1007/s10482-011-9692-9.

390

Mercier J, Lindow SE. Role of leaf surface sugars in colonization of plants by bacterial

391

epiphytes. Appl Environ Microbiol 2000;66:369-74.

392

https://doi.org/10.1128/AEM.66.1.369-374.2000.

393

Mizuno M, Yurimoto H, Iguchi H et al. Dominant colonization and inheritance of

394

Methylobacterium sp. strain OR01 on perilla plants. Biosci Biotechnol Biochem

395

2013;77:1533-8. https://doi.org/10.1271/bbb.130207.

396

Mizuno M, Yurimoto H, Yoshida N et al. Distribution of pink-pigmented facultative

397

methylotrophs on leaves of vegetables. Biosci Biotechnol Biochem 2012;76:578-80.

398

https://doi.org/10.1271/bbb.110737.

15

399

Nemecek-Marshall M, Macdonald RC, Franzen FJ et al. Methanol emission from

400

leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to

401

stomatal conductance and leaf development. Plant Physiol 1995;108:1359-68.

402

https://doi.org/10.1104/pp.108.4.1359.

403

Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L et al. The role of microbial

404

signals in plant growth and development. Plant Signal Behav 2009;4:701-12.

405

https://doi.org/10.4161/psb.4.8.9047

406

Parsons AJ, Newton PCD, Clark H et al. Scaling methane emissions from vegetation.

407

Trends Ecol Evol 2006;21:423-4. https://doi.org/10.1016/j.tree.2006.05.017.

408

Rodionov DA, Hebbeln P, Eudes A et al. A novel class of modular transporters for

409

vitamins in prokaryotes. J Bacteriol 2009;191:42-51.

410

https://doi.org/10.1128/JB.01208-08.

411

Ryback B, Bortfeld-Miller M, Vorholt JA. Metabolic adaptation to vitamin auxotrophy

412

by leaf-associated bacteria. ISME J 2022; 16:2712-2724.

413

https://doi.org/10.1038/s41396-022-01303-x

414

Ryu J, Madhaiyan M, Poonguzhali S et al. Plant growth substances produced by

415

Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and

416

red pepper (Capsicum annuum L.) growth. J Microbiol Biotechnol 2006;16:1622-8.

417

Saunois M, Bousquet P, Poulter B et al. The global methane budget 2000-2012. Earth

418

Syst Sci Data 2016;8:697-751. https://doi.org/10.5194/essd-8-697-2016.

419

Schmidt S, Christen P, Kiefer P et al. Functional investigation of methanol

420

dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.

421

Microbiology 2010;156:2575-86. https://doi.org/10.1099/mic.0.038570-0.

422

Schrader J, Schilling M, Holtmann D et al. Methanol-based industrial biotechnology:

423

current status and future perspectives of methylotrophic bacteria. Trends Biotechnol

424

2009;27:107-15. https://doi.org/10.1016/j.tibtech.2008.10.009.

425

Sy A, Timmers AC, Knief C et al. Methylotrophic metabolism is advantageous for

426

Methylobacterium extorquens during colonization of Medicago truncatula under

427

competitive conditions. Appli Environ Microbiol 2005;71:7245-52.

428

https://doi.org/10.1128/AEM.71.11.7245-7252.2005.

429

Yang CH, Crowley DE, Borneman J et al. Microbial phyllosphere populations are more

16

430

complex than previously realized. Proc Natl Acad Sci USA 2001;98:3889-94.

431

https://doi.org/10.1073/pnas.051633898.

432

Yoshida N, Iguchi H, Yurimoto H et al. Aquatic plant surface as a niche for

433

methanotrophs. Front Microbiol 2014;5:30.

434

https://doi.org/10.3389/Fmicb.2014.00030.

435

Yoshida Y, Iguchi H, Sakai Y et al. Pantothenate auxotrophy of Methylobacterium spp.

436

isolated from living plants. Biosci Biotechnol Biochem 2019;83:569-77.

437

https://doi.org/10.1080/09168451.2018.1549935.

438

Yurimoto H, Shiraishi K, Sakai Y. Physiology of methylotrophs living in the

439

phyllosphere. Microorganisms 2021;9:809.

440

https://doi.org/10.3390/microorganisms9040809

441

Yurimoto H, Iguchi H, Di Thien DT et al. Methanol bioeconomy: promotion of rice

442

crop yield in paddy fields with microbial cells prepared from natural gas-derived C1

443

compound. Microb Biotechnol 2021;14:1385-96. https://doi.org/10.1111/1751-

444

7915.13725.

445

17

446

Figure legends

447

Figure 1. The global carbon cycle mediated by C1-miroorganisms and plants. Methane is

448

generated from CO2 by methanogens and C1-microorganisms including methanotrophs

449

and methanol-utilizing methylotrophs oxidize methane and other C1 compounds to

450

CO2. This cycle is known as methane cycle. Recently, C1-microorganisms in the

451

phyllosphere were found to utilize methane and methanol produced by plants. Positive

452

interactions between PPFMs and plants enhance CO2 fixation and increase plant

453

biomass (yield increase).

454

455

Figure 2. Interactions between PPFMs and plants in the phyllosphere. PPFMs utilize

456

nutrients such as methanol as a carbon source and other cofactors such as vitamins.

457

PPFMs provide benefit to plants by producing plant hormones, enhancing nutrient

458

uptake of plants, and inducing resistance to pathogens. PPFMs have various cellular

459

functions for adapting to diurnally changing environmental factors in the phyllosphere.

460

461

Figure 3. Summary of the effects of PPFM treatment on rice crop yields (cultivar

462

Hakutsurunishiki). Graphs were replotted from the previously reported data (Yurimoto

463

et al. 2021). (a) The weight of brown rice in a commercial paddy field in 2017

464

following the indicated treatments. (b and c) The rate of ripening (b) and the unit yield

465

466

(c) in 2018 after the indicated treatments.

18

C1-microorganisms

Methane

cycle

CH4

CH3OH

HCHO

Emission

P la n t

b io m a s s

sio

Em

PPFMs

Plants

Yield increase

HCOOH

Methanogens

CO2

Plants

CO2 fixation

Degradation

Fig. 1

Nutrients (methanol, sugars, etc.)

Vitamins and their precursors

PPFMs

Adaptation to diurnally changing

environmental factors

Benefit

Plant hormones, Nutrient uptake,

Resistance to pathogens

Fig. 2

(a)

Cell wall polysaccharide fraction

Killed cells

Living cells

Control (spreading agent)

66

68

70

72

Weight of brown rice (Kg/a)

(b)

Killed cells after heading

Killed cells before heading

Killed cells before and after heading

Control (spreading agent)

68

(c)

72

76

80

Rate of ripening (%)

84

Killed cells after heading

Killed cells before heading

Killed cells before and after heading

Control (spreading agent)

480 520 560 600 640 680

Unit yield (g/m2)

Fig. 3

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る