リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electroanalysis for Quantitative Assessment of Bacterial Activity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electroanalysis for Quantitative Assessment of Bacterial Activity

石木 健吾 大阪府立大学 DOI:info:doi/10.24729/00016954

2020.07.07

概要

As mentioned above, electrochemical techniques are suitable methods for quantification of cell activity with high sensitivity and in real-time. Therefore, electrochemical analysis was performed for quantitative assessment of bacterial activity, focusing on the redox species, protein, and electron transfer in intracellular/extracellular environment.

Chapter 1 is introduction, which described about bacteria, color-based analysis of metabolic activity, and electrochemical techniques in bioanalysis.

Chapter 2 shows a usefulness of microbial platform constructed by conductive polymers for observation of bacterial activity. Conducting polymers works as a biocompatible matrix for entrapping bacterial cells on an indium-tin-oxide (ITO)-coated electrode. The cell density and viability were optically evaluated by microscopy. The conducting polymers also facilitated electrochemical evaluation of the respiratory activity of bacterial cells.

Chapter 3 demonstrates a viable bacterial detection focused on the electrochemical property of tetrazolium salts, which was converted to an insoluble and redox active formazan compound in viable microbial cells. I focused on not colorimetric but electrochemical property of MTT. The insolubility of this formazan was effectively exploited as a surface-confined redox event. Bacterial suspensions that incubated with a tetrazolium salt was applied to ITO electrode and heat to dry for the adsorption. A distinctive voltammetric oxidation peak appeared, and the magnitude was correlated to the number of viable microbes in the suspension.

Chapter 4 describes the precious metal-ion reduction by S. oneidensis. I tracked the formation of gold nanoparticles (Au NPs) on the S. oneidensis cell surfaces, and investigated the roles of membrane proteins and extracellular polysaccharides in this process. In addition, I propose a simple method for the detection of metal ions in solution, focusing on the light-scattering characteristics of the metal nanoparticles formed on the cells.

Chapter 5 denotes a quantitative evaluation of electron generation based on individual enzyme reactions in S. oneidensis. By using potentiometric measurements, I have examined intracellular electron generation in bacterial suspensions of S. oneidensis supplemented with different carbon sources or ferricyanide. Real-time measurements by potentiometry in bacterial suspensions enabled precise quantification of the number of electrons generated by S. oneidensis based on the Nernst equation, because the [ferricyanide]/[ferrocyanide] ratio immediately changed during the incubation.

Chapter 6 summarized the whole results and conclusions of the thesis.

この論文で使われている画像

参考文献

(1) Whitman, W. B.; Coleman, D. C.; Wiebe, W. J. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6578.

(2) Kato, C.; Li, L.; Nogi, Y.; Nakamura, Y.; Tamaoka, J.; Horikoshi, K. Appl. Environ. Microbiol. 1998, 64, 1510.

(3) Santillana, M. M.; Brito, E. M. S.; Duran, R.; Corona, F. G. Exermophiles, 2017, 21, 499.

(4) Segawa, T.; Ushida, K.; Narita, H.; Kanda, H.; Kohshimae, S. Polar Sci. 2010, 4, 215.

(5) Yoshida, S. Toda's New biacteriology, 34th ed.; Nanzando Co. Ltd.: Tokyo, 2013.

(6) Madigan, M. T.; Martinko, J. M.; Parker, J. Brock Biology of Microorganisms, 9th ed.; Prentice Hall, INC., 2000.

(7) Sobsey, M. D. In Identifying Future Drinking Water Contaminants, Macdonald, J. A.; Gibson, M.; Swartz, K. A. Eds.; National Academy Press: Washington, D.C., 1999.

(8) Kinoshita, T.; Nguyen, D. Q.; Le, D. Q.; Ishiki, K.; Shiigi, H.; Nagaoka, T. Anal. Chem. 2017, 89, 4680.

(9) Wildt, R. M. T.; Mundy, C. R.; Gorick, B. D.; Tomlinson I. M. Nat. Biotechnol. 2000, 18, 989.

(10) Ding, T.; Bilitewski, U.; Schmid, R. D.; Korz, D. J.; Sanders, E. A. J. Biotechnol. 1993, 27, 143.

(11) Kau, A. L.; Ahern, P. P.; Griffin, N. W.; Goodman, A. L.; Gordon, J. I. Nature, 2011, 474, 327.

(12) Montagne, L.; Pluske, J. R.; Hampson D. J. Anim. Feed Sci. Technol. 2003, 108, 95.

(13) Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Byung, K. H. Enzyme Microb. Technol. 2002, 30, 145.

(14) Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S. Electrochim. Acta 2007, 53, 186.

(15) Xu, J.; He, W.; Wang, Z.; Zhang, D.; Sun, J.; Zhou, J.; Li, Y.; Su, X. Front. Bioeng. Biotechnol. 2016, 4, 86.

(16) Simpson, A. J.; Maxwell, A. I.; Govan, J. R. W.; Haslett, C.; Sallenave, J. M. FEBS lett. 1999, 452, 309.

(17) Hattori, H. Soil Sci. Plant Nutr. 1992, 38, 93.

(18) Thomas, S.; Andrews, A. M.; Hay, N. P.; Bourgoise, S. J. Tissue Viability 1999, 9, 127.

(19) Stubberfield, L. C. F.; Shaw, P. J. A. J. Microbiol. Methods 1990, 12, 151.

(20) Hatzinger, P. B.; Palmer, P.; Smith, R. L.; Peñarrieta, C. T.; Yoshinari, T. J. Microbiol. Methods 2003, 52, 47.

(21) Roehm, N. W.; Rodgers, G. H.; Hatfield, S. M.; Glasebrook, A. L. J. Immunol. Methods 1991, 142, 257.

(22) Posch, T; Pernthaler, J.; Alfreider, A.; Psenner, R. Appl. Environ. Microbiol. 1997, 63, 867.

(23) Mosmann, T. J. Immunol. Methods, 1983, 65, 55.

(24) Roslev, P.; King, G. M. Appl. Environ. Microbiol. 1993, 59, 2891.

(25) Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. Anal. Commun. 1999, 36, 47.

(26) Buttke, T. M.; McCubrey, J. A.; Owen, T. C. J. Immunol. Methods 1993, 157, 233.

(27) Tsukatani, T.; Higuchi, T.; Suenaga, H.; Akao, T.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Anal. Biochem. 2009, 393, 117.

(28) Fischer, R.; Larose, P. J. Bacteriol. 1952, 64, 435.

(29) O'Toole, G. A. J. Bacteriol. 2016, 198, 3128.

(30) Sarma, G. K.; Gupta, S. S.; Bhattacharyyaa, K. G. J. Environ. Manage. 2016, 171, 1.

(31) Inada, N.; Fukuda, N.; Hayashi, T.; Uchiyama. S. Nat. Protoc. 2019, 14, 1293.

(32) Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.: Yang, H.; Zhang, D. Anal. Chem. 2014, 86, 7987.

(33) Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973.

(34) Mariscal, A.; Lopez-Gigosos, R. M.; Carnero-Varo, M.; Fernandez-Crehuet, J. Appl. Microbiol. Bitechnol. 2009, 82, 773.

(35) Xiao, J.; Zhang, Y.; Wang, J.; Yu, W.; Wang, W.; Ma, X. Appl. Biochem. Biotechnol. 2012, 162, 1996.

(36) Pace, R. T.; Burg, K. J. L. Cytotechnol. 2015, 67, 13.

(37) McElroy, W. D. Proc. Natl. Acad. Sci. USA, 1947, 33, 342.

(38) Selan, L.; Berlutti, F.; Passariello, C.; Thaller, M. C.; Renzini, G. J. Clin. Microbiol. 1992, 30, 1739.

(39) Turner, D. E.; Daugherity, E. K.; Altier, C.; Maurer, K. J. J. Am. Assoc. Lab. Anim. 2010, 49, 190.

(40) Strehler, B. L.; Totter, J. R. Arch. Biochem. Biophys. 1952, 40, 28.

(41) Omidbakhsh, N.; Ahmadpour, F.; Kenny, N. PloS One. 2014, 9, e99951.

(42) Ikeda, T.; Kurosaki, T.; Takamasa, K.; Kano, K. Anal. Chem. 1996, 68, 192.

(43) Gulaboski, R.; Mirčeski, V.; Bogeski, I.; Hoth, M. J. Solid State Elecrochem. 2012, 16, 2315.

(44) Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H. E. M.; Ulstrup, J.; Zhao, F. Sci. Adv. 2017, 3, e1700623.

(45) Morishita, A.; Higashimae, S.; Nomoto, A.; Shiigi, H.; Nagaoka, T. J. Electrochem. Soc. 2016, 163, G166.

(46) Le, D. Q.; Morishita, A.; Tokonami, S.; Nishino, T.; Shiigi, H.; Miyake, M.; Nagaoka, T. Anal. Chem. 2015, 87, 8416.

(47) Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L.; Saffarini, M. D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M. Nat. Rev. Microbiol. 2008, 6, 592.

(48) Okamoto, A.; Nakamura, R.; Hashimoto, K. Electrochim. Acta, 2011, 56, 5526.

(49) Carmona-Martinez, A. A.; Harnisch, F.; Fitzgerald, L. A.; Biffinger, J. C.; Ringeisen, B. R.; Schröder, U. Bioelectrochem. 2011, 81, 74.

(50) Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Proc. Natl. Acad. Sci. U. S. A. 2008, 1055, 3968.

(51) Baron, D.; LaBelle, E.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. J. Biol. Chem. 2009, 284, 28865.

(52) Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; Córdoba, A. L.; Novak, P.; Shevchuck, A. I.; Dougan, J. A.; Kazarian, S. G.; Gorelkin, P. V.; Erofeev, A. S.; Yaminsky, I. V.; Unwin, P. R.; Schuhmann, W.; Klenerman, D.; Rusakov, D. A.; Sviderskaya, E. V.; Korchev, Y. E. ACS Nano 2014, 8, 875.

(53) Huang, Y.; Cai, D.; Chem, P. Anal. Chem. 2011, 83, 4393.

(54) Matsue, Y.; Takahashi, Y.; Ino, K.; Shiku, H.; Matsue, T.; Anal. Chim. Acta 2014, 842, 20.

(55) Liu, H.; Newton, G. J.; Nakamura, R.; Hashimoto, K.; Nakanishi, S.; Angew. Chem. Int. Ed. 2010, 49, 6596.

参考文献をもっと見る