リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Synthesis of Polycyclic Aromatic Hydrocarbons Based on Difluorocarbocation Generation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Synthesis of Polycyclic Aromatic Hydrocarbons Based on Difluorocarbocation Generation

髙尾, 豪 筑波大学 DOI:10.15068/00160439

2020.07.21

概要

Polycyclic aromatic hydrocarbons (PAHs) consist of fused benzene rings in various configurations.1 For example, acenes, phenacenes, and helicenes exhibit linear, zig-zag, and helical arrangements of the benzene rings, respectively. It is noteworthy that [n]helicenes (n ≥ 5) have helical chirality (Figure 1-1).

Figure 1-1. Major Families of Polycyclic Aromatic Hydrocarbons (n Represents the Number of Benzene Rings).

During the past decades, PAHs have attracted considerable attention, mainly because of their viability as materials for organic electronic devices.2 Acenes are already known as one of the most representative organic semiconducting materials (Figure 1-2).3 Moreover, phenacenes are emerging as a new semiconducting PAH subfamily, partly due to their oxidation resistance and O2 sensing behavior; thus, the synthesis and physical properties such as solubility in organic solvents of higher- order phenacenes have been extensively investigated (Figures 1-3).4,5 Helicenes also appeared quite recently as organic chiral inducers with unique chirality-derived characteristics (eq. 1-1, 1-2).6,7 Therefore, efficient method for the synthesis of PAHs have been developed to date. In the next section, general PAH syntheses using C−C bond formations are described.

参考文献

1-4. References

1. (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity, Cambridge University Press, Cambridge, 1991. (b) Harvey, R. G. Polycyclic Aromatic Hydrocarbons, Wiley–VCH, New York, 1997. (c) Fetzer, J. C. Large (C>=24) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis, Wiley, New York, 2000.

2. (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (b) Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452. (c) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313. (d) Kubozono, Y.; He, X.; Hamao, S.; Teranishi, K.; Goto, H.; Eguchi, R.; Kambe, T.; Gohda, S.; Nishihara, Y. Eur. J. Inorg. Chem. 2014, 2014, 3806. See also: Shen, Y.; Chen, C. F. Chem. Rev. 2012, 112, 1463.

3. (a) Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. IEEE Elect. Device Lett. 1997, 18, 87. (b) Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Elect. Device Lett. 1997, 18, 606. (c) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482. (d) Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Sci. 2004, 303, 1644. (e) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. J. Am. Chem. Soc. 2004, 126, 12740.

4. (a) Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. J. Am. Chem. Soc. 2008, 130, 10470. (b) Kawasaki, N.; Kubozono, Y.; Okamoto, H.; Fujiwara, A.; Yamaji, M. App. Phys. Lett. 2009, 94, 043310. (c)Wang, Y.; Motta, S. D.; Negri, F.; Friedlein, R. J. Am. Chem. Soc. 2011, 133, 10054.

5. (a) Murai, M.; Maekawa, H.; Hamao, S.; Kubozono, Y.; Roy, D.; Takai, K. Org. Lett. 2015, 17, 708. (b) Shimo, Y.; Mikami, T.; Murakami, H. T.; Hamao, S.; Goto, H. Okamoto, H.; Gohda, S. Sato, K.; Cassinese, A.; Hayashi, Y.; Kubozono, Y. J. Mater. Chem. C 2015, 3, 7370. (c) Nguyen, T. P.; Shim, J. H.; Lee, J. Y. J. Phys. Chem. C 2015, 119, 11301. (d) Okamoto, H.; Hamao, S.; Eguchi, R.; Goto, H.; Takabayashi, Y. Yen, P. Y. H.; Liang, L. U.; Chou, C. W.; Hoffmann, G.; Gohda, S.; Sugino, H.; Liao, Y. F.; Ishii, H.; Kubozono, Y. Sci. Rep. 2019, 9, 1.

6. (a) Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.; Kamtonwong, S.; Sooksimuang, T. Synth. Mater. 2010, 160, 1148. (b) Storch, J.; Zadny, J.; Strasak, T.; Kubala, M.; Sykora, J.; Dusek, M.; Cirkva, V.; Matejka, P.; Krbal, M.; Vacek, J. Chem. Eur. J. 2015, 21, 2343.

7. (a) Yang, Y.; Correa da Costa, R.; Fuchter, M. J.; Campbell, A. J. Nat. Photonics 2013, 7, 634. (b) Yang, Y.; Rice, B.; Shi, X.; Brandt, J. R.; Correa da Costa, R.; Hedley, G. J.; Smilgies, D.-M.; Frost, J. M.; Samuel, I. D. W.; Otero-de-la-Roza, A.; Johnson, E. R.; Jelfs, K. E.; Nelson, J.; Campbell, A. J.; Fuchter, M. J. ACS Nano 2017, 11, 8329. (c) Rice, B.; Nelson, J.; LeBlanc, L. M.; Johnson, E. R.; Otero-de-la-Roza, A.; Fuchter, M. J.; Jelfs, K. E. Nanoscale 2018, 10, 1865.

8. (a) Balley, W.; Liao, C.-W. J. Am. Chem. Soc. 1955, 77, 992. (b) Hart, H.; Lai, C.; Nwokogu, G. C.; Shamouilian, S. Tetrahedron 1987, 43, 5203. (c) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc., Chem. Commun. 1995, 361. (d) Takahashi, T.; Xi, Z.; Yamazaki, A.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1998, 120, 1672. (e) Takahashi, T.; Tsai,F. Y.; Li, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999, 121, 11093. d) Swartz, C. R.; Parkin, S. R.; Bullock, J. E.; Anthony, J. E.; Mayer, A. C.; Malliaras, G. G. Org. Lett. 2005, 7, 3163. (f) Tang, M. L.; Okamoto, T.; Bao, Z. J. Am. Chem. Soc. 2006, 128, 16002. f) Willmore, N. D.; Hoic, D. A.; Katz, T. J. J. Org. Chem. 1994, 59, 1889. g) Minuti, L.; Taticchi, A.; Baitz, E. G.; Marrocchi, A. Tetrahedron 1998, 54, 10891.

9. (a) Goodings, E. P.; Mitchard, D. A.; Owen, G. J. Chem. Soc., Perkin Trans. 1 1972, 1310. (b) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482. (c) Anthony, J. E.; Eaton, D. L.; Parkin, L. S. Org. Lett. 2002 4, 15.

10. (a) Payne, M. M.; Parkin, S. R.; Anthony, J. E. J. Am. Chem.Soc. 2005, 127, 8028. (b) Kuninobu, Y.; Tatsuzaki, T.; Matsuki, T.; Takai, K. J. Org. Chem. 2011, 76, 7005.

11. (a) Parker, C. O.; Spoerri, P. E. Nature 1950, 166, 603. (b) Mallory, F. B.; Wood, C. S.; Gordon, J. T.; Lindquist, L. C.; Savitz, M. L. J. Am. Chem. Soc. 1962, 84, 4361. (c) Mallory, F. B.; Mallory, C. W. Org. React., Vol. 30, John Wiley & Sons, Inc., 2004, pp. 1–456. (d) Jørgensen, K. B. Molecules 2010, 15, 4334. (e) Okamoto, H.; Yamaji, M. Org. Lett. 2011, 13, 2758. For a review on Schöll reaction, see: Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem. Int. Ed. 2013, 52, 9900.

12. (a) Collins, S. K.; Grandbois, A.; Vachon, M. P.; Côté, J. Angew. Chem. Int. Ed. 2006, 45, 2923. (b) Grandbois, A.;Collins, S. K. Chem. Eur. J. 2008, 14, 9323.

13. Shen, H. C.; Tang, J. M.; Chang, H. K.; Yang, C. W.; Liu, R. S. J. Org. Chem. 2005, 70, 10113.

14. (a) Takahashi, T.; Li, S.; Huang, W.; Kong,F.; Nakajima, K.; Shen, B.; Ohe, T.; Kanno, K. J. Org. Chem. 2006, 71, 7967. (b) Takahashi, T.; Kitamura, M.; Shen, B.; Nakajima, K. J. Am. Chem. Soc. 2000, 122, 12876. Our publications on the repetition of single construction, see also: Fuchibe, K.; Imaoka, H.; Ichikawa, J. Chem. Asian J. 2017, 12, 2359.

15. Teplý, F.; Stará, I. G.; Starý, I.; Kollárovič, A.; Šaman, D.; Vysko

16. il, S.; Fiedler, P. J. Org. Chem. 2003, 68, 5193. See also: Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi, K.; Hirano, M. J. Am. Chem. Soc. 2007, 129, 12078.

17. For our publications on the synthesis based on stabilized CF2 cations, see: (a) Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 2005, 39. (b) Ichikawa, J.; Kaneko, M.; Yokota, M.; Itonaga, M.; Yokoyama, T. Org. Lett. 2006, 8, 3167. (c) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639. (d) Fuchibe, K.; Takayama, R.; Yokoyama, T.; Ichikawa, J. Chem. Eur. J. 2017, 23, 2831. (e) Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem. Int. Ed. 2017, 56, 5890. (f) Fuchibe, K.; Oki, R.; Hatta, H.; Ichikawa, J. Chem. Eur. J. 2018, 24, 17932.

18. (a) Smart, B. E. Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York, 1994. (b) Uneyama, K. Methods for Introduction of Fluorine-Functionality into Molecules, Blackwell Publishing, Oxford, 2006. (c) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.

19. Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem. Int. Ed. 2008, 47, 4870.

2-4. References

1. (a) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem. Int. Ed. 2008, 47, 4870. (b) Isobe, H.; Hitosugi, S.; Matsuno, T.; Iwamoto, T.; Ichikawa, J Org. Lett. 2009, 11, 4026. (c) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem. Eur. J. 2011, 17, 12175.

2. (a) Smart, B. E. Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York, 1994. (b) Uneyama, K. Methods for Introduction of Fluorine-Functionality into Molecules, Blackwell Publishing, Oxford, 2006. (c) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.

3. (a) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320. (b) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 2004, 18. (c) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2007, 2925. (d) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Nat. Rev. Chem. 2017, 1, 0088.

4. For our publications on the synthesis based on stabilized CF2 cations, see: (a) Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 2005, 39. (b) Ichikawa, J.; Kaneko, M.; Yokota, M.; Itonaga, M.; Yokoyama, T. Org. Lett. 2006, 8, 3167. (c) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639. (d) Fuchibe, K.; Takayama, R.; Yokoyama, T.; Ichikawa, J. Chem. Eur. J. 2017, 23, 2831. (e) Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem. Int. Ed. 2017, 56, 5890. (f) Fuchibe, K.; Oki, R.; Hatta, H.; Ichikawa, J. Chem. Eur. J. 2018, 24, 17932. See also ref 1.

5. For our dehydrative PAH synthesis conducted in HFIP via fluorine-free carbocations, see: (a) Takahashi, I.; Hayashi, M.; Fujita, T.; Ichikawa, J. Chem. Lett. 2017, 46, 392. (b) Fujita, T.; Takahashi, I.; Hayashi, M.; Wang, J.; Fuchibe, K. Ichikawa, J. Eur. J. Org. Chem. 2017, 2017, 262.

6. Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1989, 31, 6379.

7. (a) Bégué, J.-P.; Bonnet-Delpon, D. Rock, M. H. J. Chem. Soc., Perkin Trans. 1 1996, 1409. (b) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800.

8. Yamazaki, T.; Ishikawa, N. Chem. Lett. 1984, 13, 521.

9. Kita, Y.; Sano, A.; Yamaguchi, T.; Oka, M.; Gotanda, K.; Matsugi M., Tetrahedron Lett. 1997, 38, 3549.

10. When the yields of benzylation were moderate, benzyl fluoride and benzyl formate were observed as byproducts in the crude mixtures.

11. Azizian, H.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1981, 215, 49.

12. Throughout the studeis of Table 2-4, sideproducts such as regioisomers and overreaction products were not isolated.

13. The use of DDQ as a dehydrogenating agent resulted in low product yields.

14. The structures of PAHs 3g and 9h were confirmed by single crystal X-ray analysis.

3-8. References

1. (a) Harvey, R. G., 1. Nomenclature, 5. Molecular Properties of Polyarenes, 6. Chemical Reactivity. In Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity, Cambridge University Press: Cambridge, 1991; pp 1–10, 96–116, 117–134. (b) Harvey, R. G., Introduction. In Polycyclic Aromatic Hydrocarbons, Wiley–VCH: New York, 1997; pp 1–87. (c) Fetzer, J. C., Large (C> = 24) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis. Wiley– Interscience: New York, 2000.

2. (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (b) Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452. (c) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10 024313. (d) Kubozono, Y.; He, X.; Hamao, S.; Teranishi, K.; Goto, H.; Eguchi, R.; Kambe, T.; Gohda, S.; Nishihara, Y. Eur. J. Inorg. Chem. 2014, 3806. See also: Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112 1463.

3. (a) Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. IEEE Electron Device Lett.1997, 18, 87. (b) Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Electron Device Lett. 1997, 18, 606. (c) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482. (d) Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644. (e) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. J. Am. Chem. Soc. 2004, 126, 12740.

4. Lin, Y. Y.; Gundlach, D. J.; Nelson, S.; Jackson, T. N. IEEE Trans. Electron Dev. 1997, 44, 1325.

5. Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644.

6. Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem. Int. Ed. 2017, 56, 5890.

7. (a) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem. Int. Ed. 2008, 47, 4870. (b) Isobe, H.; Hitosugi, S.; Matsuno, T.; Iwamoto, T.; Ichikawa, J. Org. Lett. 2009, 11, 4026. (c) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem.– Eur. J. 2011, 17, 12175.

8. Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 39. See also ref 7c.

9. Fuchibe, K.; Oki, R.; Hatta, H.; Ichikawa, J. Chem. –Eur. J. 2018, 24, 17932.

10. Knebelkamp, A.; Heitz, W. Macromol. Rapid Commun. 1991, 12, 69.

11. Ichikawa, J.; Nadano, R.; Ito, N. Chem. Commun. 2006, 4425.

12. (a) Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256. (b) Takachi, M; Kita, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49, 8717.

13. For reviews, see: (a) Hamel, J.-D.; Paquin, J.-F. Chem. Commun. 2018, 54, 10224. (b) Jaroschik, F. Chem. –Eur. J. 2018, 24, 14572.

14. For our selected publications on synthetic reactions via fluorine-stabilized carbocations, see: (a) Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem. Int. Ed. 2013, 52, 7825. (b) Fuchibe, K.; Morikawa, T.; Shigeno, K.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 1126. See also ref 7.

15. For single activations of CF3-alkenes by anionic reactions, see: (a) Feiring, A. E. J. Org. Chem. 1980, 45, 1962. (b) Hiyama, T.; Obayashi, M.; Sawahata, M. Tetrahedron Lett. 1983, 24 4113. (c) Bégué, J.-P.; Bonnet-Delpon, D.; Rock, M. H. Synlett 1995, 659. (d) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800. (e) Jiang, B.; Zhang, F.; Xiong, W. Chem. Commun. 2003, 536. (f) Hirotaki, K.; Hanamoto, T. Org. Lett. 2013, 15, 1226. (g) Zeng, H.; Zhu, C.; Jiang, H. Org. Lett. 2019, 21, 1130.

16. For single activations of CF3-alkenes by metal_catalyzed reactions, see: (a) Miura, T.; Ito, Y.; Murakami, M. Chem. Lett. 2008, 37 1006. (b) Huang, Y.; Hayashi, T. J. Am. Chem. Soc. 2016, 138, 12340.

17. For single activations of CF3-alkenes by photoreactions: (a) Xiao, T.; Li, L.; Zhou, L. J. Org. Chem. 2016, 81, 7908. (b) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56 15073. (c) Wu, L.-H.; Cheng, J.-K.; Shen, L.; Shen, Z.-L.; Loh, T.-P. Adv. Synth. Catal. 2018, 360 3894.

18. Kethe, A.; Tracy, F. A.; Klumpp, A. D. Org. Biomol. Chem. 2011, 9, 4545.

19. House, O. H.; Bashe, W. R. J. Org. Chem. 1967, 32, 784.

20. (a) Jung, H. H.; Floreancig, P. E. Tetrahedron 2009, 65, 10830. (b) Tu, W.; Floreancig, P. E. Angew. Chem., Int. Ed. 2009, 48, 4567. (c) Muramatsu, W.; Nakano, K.; Li, C.-J. Org. Lett. 2013, 15, 3650.

21. (a) Rathore, R.; Kochi, J. K. Acta Chem. Scand. 1998, 52, 114. (b) Rathore, R.; Zhu, C.-J.; Lindeman, S. V.; Kochi, J. K. J. Chem. Soc. Perkin Trans. 2 2000, 1837. (c) Handoo, K. L.; Gadru, K. Curr. Sci. 1986, 55, 920. (d) Eberson, L.; Hartshorn, M. P.; Persson, O. J. Chem. Soc. Perkin Trans. 2 1997, 195. (e) For Schöll reaction, also see: Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474.

22. Harvey, G., R.; Nazareno, L.; Cho, H. J. Am. Chem. Soc. 1973, 95, 2376.

23. Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.

24. (a) Shen, T. Y.; Lucas, S.;and L. Sarett, L. H. Tetrahedron Lett. 1961, 2, 43. (b) Lloyd, A. E.; Coe, P. L.; Walker, R. T.; Howarth, O. W. J. Fluorine Chem. 1993, 62, 145. (c) Houlton, J. S.; Motherwell, W. B.; Ross, B. C.; Tozer, M. J.; Williams, D. J. Slawin, A. M. Z. Tetrahedron 1993, 49, 8087. (d) O'Hagan, D.; J. Fluorine Chem. 2010, 131, 1071. (e) Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh M. R.; Knaus, E. E. J. Med. Chem. 2009, 52, 1525. (f) Knust, H.; Achermann, G.; Ballard, T.; Buettelmann, B.; Gasser, R.; Fischer, H.; Hernandez, M.-C.; Knoflach, F.; Koblet, A.; Stadler, H.; Thomas, A. W.; Trube G.; Waldmeier, P. Bioorg. Med. Chem. Lett. 2009, 19, 5940.

25. For a review on bioisosteres in drug design, see: Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.

26. For reviews, see: (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (b) Xua, P.; Guo, S.; Wang, L. Tang, P. Synlett 2015, 26, 36. (c) Lu, Y.; Liu, C.; Chen, Q.-Y. Curr. Org. Chem. 2015, 19, 1638; d) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem. –Eur. J. 2017, 23, 14676.

27. Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K. J. Am. Chem. Soc. 2018, 140, 9404.

4-4. References

1. Smart, B. E. Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York, 1994. (b) Uneyama, K. in Methods for Introduction of Fluorine-Functionality into Molecules, Blackwell Publishing, Oxford, 2006, pp. 1–100. (c) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008. (d) Gladysz, J. A.; Jurisch, M. Top. Curr. Chem. 2012, 308, 1.

2. For a review on bioisosteres in drug design, see: Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.

3. (a) Shen, T. Y.; Lucas, S.; Sarett, L. H. Tetrahedron Lett. 1961, 2, 43. (b) Lloyd, A. E.; Coe, P. L.; Walker, R. T.; Howarth, O. W. J. Fluorine Chem. 1993, 62, 145. (c) Houlton, J. S.; Motherwell, W. B.; Ross, B. C.; Tozer, M. J.; Williams, D. J.; Slawin, A. M. Z. Tetrahedron 1993, 49, 8087. (d) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626. (e) Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. J. Med. Chem. 2009, 52, 1525. (f) Knust, H.; Achermann, G.; Ballard, T.; Buettelmann, B.; Gasser, R.; Fischer, H.; Hernandez, M.-C.; Knoflach, F.; Koblet, A.; Stadler, H.; Thomas, A. W.; Trube, G.; Waldmeier, P. Bioorg. Med. Chem. Lett. 2009, 19, 5940.

4. For synthetic utility of the difluoromethyl group, see: Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K. J. Am. Chem. Soc. 2018, 140, 9404.

5. For reviews, see: (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (b) Xua, P.; Guo, S.; Wang, L.; Tang, P. Synlett 2015, 26, 36. (c) Lu, Y.; Liu, C.; Chen, Q.-Y. Curr. Org. Chem. 2015, 19, 1638. (d) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem. – Eur. J. 2017, 23, 14676.

6. (a) Wang, C.-L. J. Org. React. 1985, 34, 319. (b) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561. (c) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc. 2010, 132, 18199.

7. (a) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494. (b) Xu, P.; Guo, S.; Wang, L.; Tang, P. Angew. Chem., Int. Ed. 2014, 53, 5955. (c) Yuan, G.; Wang, F.; Stephenson, N. A.; Wang, L.; Rotstein, B. H.; Vasdev, N.; Tang, P.; Liang, S. H. Chem. Commun. 2017, 53, 126.

8. (a) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524. (b) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood, K.; Swabeck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012, 51, 12090. (c) Jiang, X.-L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Org. Chem. Front. 2014, 1, 774. (d) Gu, Y.; Leng, X.; Shen, Q. Nat. Commun. 2014, 5, 5405. (e) Aikawa, K.; Serizawa, H.; Ishii, K.; Mikami, K. Org. Lett. 2016, 18, 3690. (f) Xu, L.; Vicic, D. A. J. Am. Chem. Soc. 2016, 138, 2536. (g) Serizawa, H.; Ishii, K.; Aikawa, K.; Mikami, K. Org. Lett. 2016, 18, 3686. (h) Lu, C.; Lu, H.; Wu, J.; Shen, H. C.; Hu, T.; Gu, Y.; Shen, Q. J. Org. Chem. 2018, 83, 1077. (i) Xu, C.; Guo, W.-H.; He, X.; Guo, Y.-L.; Zhang, X.-Y.; Zhang, X. Nat. Commun. 2018, 9, 1.

9. (a) Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44. (b) Deng, X.-Y.; Lin, J.-H.; Xiao, J.- C. Org. Lett. 2016, 18, 4384. (c) Feng, Z.; Min, Q.-Q.; Fu, X.-P.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918. (d) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880. (e) Sheng, J.; Ni, H.-Q.; Bian, K.-J. Li, Y.; Wang, Y.-N. Wang, X.-S. Org. Chem. Front. 2018, 5, 606.

10. For the two-step syntheses of (difluoromethyl)arenes, see: (a) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560. (b) Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X.-S. Org. Lett. 2014, 16, 2958. (c) Shi, H.; Braun, A.; Wang, L.; Liang, S. H.; Vasdev, N.; Ritter, T. Angew. Chem., Int. Ed. 2016, 55, 10786.

11. For reviews, see: (a) Dolbier Jr., W. R. Acc. Chem. Res. 1991, 24, 63. (b) Fuchibe, K.; Ichikawa, J. in Science of Synthesis: Acknowledge Updates 2014/2, Georg Thieme Verlag KG, Stuttgart, 2014, pp. 217–231.

12. (a) Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825. (b) Fuchibe, K.; Mayumi, Y.; Yokota, M.; Aihara, H.; Ichikawa, J. Bull. Chem. Soc. Jpn. 2014, 87, 942. (c) Fuchibe, K.; Imaoka, H.; Ichikawa, J. Chem. – Asian J. 2017, 12, 2359. (d) Fuchibe, K.; Shigeno, K.; Zhao, N.; Aihara, H.; Akisaka, R.; Morikawa, T.; Fujita, T.; Yamakawa, K.; Shimada, T.; Ichikawa, J. J. Fluorine Chem. 2017, 203, 173.

13. For C–C bond formation of 1,1-difluoroallenes at the position α to the fluorine substituents, see also: Mae, M.; Hong, J. A.; Xu, B.; Hammond, G. B. Org. Lett. 2006, 8, 479.

14. For hydrometallation and hydrosilylation of 1,1-difluoroallenes with a stoichiometric amount of metal complexes, see: (a) Kühnel, M. F.; Lentz, D. J. Chem. Soc., Dalton Trans. 2009, 4747. (b) Kuehnel, M. F.; Schloeder, T.; Riedel, S.; Nieto-Ortega, B.; Ramirez, F. J.; Lopez Navarrete, J. T.; Casado, J.; Lentz, D. Angew. Chem., Int. Ed. 2012, 51, 2218. (c) Raza, A. L.; Kuehnel, M. F.; Talavera, M.; Teltewskoi, M.; Ahrens, M.; Klaering, P.; Braun, T.; Lentz, D. J. Fluorine Chem. 2018, 214, 80.

15. (a) Fuchibe, K.; Morikawa, T.; Shigeno, K.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 1126. (b) Fuchibe, K.; Morikawa, T.; Ueda, R.; Okauchi, T.; Ichikawa, J. J. Fluorine Chem. 2015, 179, 106. (c) Fuchibe, K.; Tsuda, N.; Ichikawa, J. Heterocycles 2019, 99, 1196.

16. Fuchibe, K.; Ueda, M.; Yokota, M.; Ichikawa, J. Chem. Lett. 2012, 41, 1619.

17. For a review on synthetic utility of 1,1-difluoroalkenes, see: Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.

18. For our syntheses of (difluoromethyl)quinolines and -isoquinolines by SN2'-type ring construction, see: (a) Mori, T.; Ichikawa, J. Chem. Lett. 2004, 33, 1206. (b) Mori, T.; Iwai, Y.; Ichikawa, J. Chem. Lett. 2005, 34, 778.

19. For C–C bond formation of 1,1-difluoroallenes at the position β to the fluorine substituents via oxidative addition and oxidative cyclization, see: (a) Shen, Q.; Hammond, G. B. Org. Lett. 2001, 3, 2213. (b) Shen, Q.; Hammond, G. B. J. Am. Chem. Soc. 2002, 124, 6534.

20. For reviews on carbopalladation of allenes, see: (a) Cazes, B. Pure Appl. Chem. 1990, 62, 1867. (b) Ma, S. Chem. Rev. 2005, 105, 2829.

21. (a) Ma, S.; Negishi, E.-i. J. Org. Chem. 1994, 59, 4730. (b) Ma, S.; Negishi, E.-i., J. Am. Chem. Soc. 1995, 117, 6345. (c) Nakano, S.-i.; Inoue, N.; Hamada, Y.; Nemoto, T. Org. Lett. 2015, 17, 2622. (d) Higuchi, Y.; Mita, T.; Sato, Y. Org. Lett. 2017, 19, 2710.

22. (a) Oh, K.; Fuchibe, K.; Yokota, M.; Ichikawa, J. Synthesis 2012, 44, 857. (b) Fuchibe, K.; Abe, M.; Oh, K.; Ichikawa, J. Org. Synth. 2016, 93, 352.

23. Ethanol probably acts as a hydrogen source to facilitate the catalytic process, through β-hydrogen elimination of the intermediary π-allylpalladium ethoxide.

24. On the basis of the reported complexations of 1,1-difluoroallenes, the carbometallation takes place on the internal (fluorine-free) double bond. See: (a) Lentz, D.; Nickelt, N.; Willemsen, S.; Chem. – Eur. J. 2002, 8, 1205. (b) Lentz, D. J. Fluorine Chem. 2004, 125, 853. and ref. 14c.

25. Ohrai, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M., J. Am. Chem. Soc. 1994, 116, 11737.

26. Use of pinacol (25 equiv.) instead of EtOH (50 equiv.) was not effective for the fluorinated system to afford 29a in 47% yield.

27. [Di- and trifluorinated π-allyl Pd]. (a) Shi, G.-Q.; Huang, X.-H.; Zhang, F.-J. Tetrahedron Lett. 1995, 36, 6305. (b) Kirihara, M.; Takuwa, T.; Okumura, M.; Wakikawa, T.; Takahata, H.; Momose, T.; Takeuchi, Y.; Nemoto, H. Chem. Pharm. Bull. 2000, 48, 885. (c) Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230. (d) Isa, K.; Minakawa, M.; Kawatsura, M. Chem. Commun. 2015, 51, 6761. (e) Fujita, T.; Sugiyama, K.; Sanada, S.; Ichitsuka, T.; Ichikawa, J. Org. Lett. 2016, 18, 248. (f) Li, C.; Zhang, D.; Zhu, W.; Wan, P.; Liu, H. Org. Chem. Front. 2016, 3, 1080. (g) Zhang, B.; Zhang, X. Chem. Commun. 2016, 52, 1238. (h) Hanakawa, T.; Isa, K.; Isobe, S.-i.; Hoshino, Y.; Zhou, B.; Kawatsura, M. J. Org. Chem. 2017, 82, 2281. (i) Hoshino, Y.; Isa, K.; Hanakawa, T.; Tsuji, H.; Kawatsura, M. Tetrahedron 2018, 74, 1555. [Monofluorinated π-allyl Pd]. (j) Narumi, T.; Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.; Ohno, H.; Fujii, N. Org. Lett. 2007, 9, 3465. (k) Pigeon, X.; Bergeron, M.; Barabe, F.; Dube, P.; Frost, H. N.; Paquin, J.-F. Angew. Chem., Int. Ed. 2010, 49, 1123. (l) Drouin, M.; Tremblay, S.; Paquin, J.-F. Org. Biomol. Chem. 2017, 15, 2376.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る