リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cobalt/Organophotoredox Dual-Catalysis-Enabled Cascade Cyclization of 1,6-Diynyl Esters via Formal 1,8-Acyloxy Migration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cobalt/Organophotoredox Dual-Catalysis-Enabled Cascade Cyclization of 1,6-Diynyl Esters via Formal 1,8-Acyloxy Migration

Yasui, Takeshi Yamada, Keiji Tatsumi, Rine Yamamoto, Yoshihiko 名古屋大学

2021.09.17

概要

Herein, we report a method for the generation of vinylallenes via cobalt/photoredox dual-catalysis-enabled formal 1,8-acyloxy migration of 1,6-diynyl esters. We demonstrated a 1,8-acyloxy migration/6π-electrocyclization cascade using (hetero)aryl-substituted 1,6-diynyl esters as substrates, leading to the formation of arenol derivatives. Several control experiments suggested that the β-oxygen elimination of a cobaltacyclopentadiene intermediate enabled formal 1,8-acyloxy migration to generate the vinylallene. We also applied this method to cascade cyclizations involving [2+2] or [4+2] cycload- ditions to furnish various polycyclic molecules.

この論文で使われている画像

参考文献

(1) (a) Ma, S. Some Typical Advances in the Synthetic Applications of Allenes. Chem. Rev. 2005, 105, 2829–2871. (b) Ma, S. Electro- philic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679–1688. (c) Zimmer, R.; Reissing, H.-U. Alkoxy- allenes as building blocks for organic synthesis. Chem. Soc. Rev. 2014, 43, 2888–2903. (d) Santhoshkumar, R.; Cheng, C.-H. Fickle Reactivity of Allenes in Transition-Metal-Catalyzed C–H Function- alizations. Asian J. Org. Chem. 2018, 7, 1151–1163. (e) Liu, L.; Ward, R. M.; Schomaker, J. M. Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chem. Rev. 2019, 119, 12422–12490.

(2) (a) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simon- neau, A. Transition Metal Catalyzed Cycloisomerizations of 1,n- Allenynes and -Allenenes. Chem. Rev. 2011, 111, 1954–1993. (b) López, F.; Mascareñas, J. L. [4+2] and [4+3] catalytic cycloaddi-tions of allenes. Chem. Soc. Rev. 2014, 43, 2904–2915. (c) Kitagaki, S.; Inagaki, F.; Mukai, C. [2+2+1] Cyclization of allenes. Chem. Soc. Rev. 2014, 43, 2956–2978. (d) Lledó, A.; Pla-Quintana, A.; Roglans, A. Allenes, versatile unsaturated motifs in transition-metal- catalysed [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 2016, 45, 2010–2023. (e) Blaszczyk, S. A.; Glazier, D. A.; Tang, W. Rhodi- um-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks. Acc. Chem. Res. 2020, 53, 231– 243.

(3) (a) Brummond, K. B.; DeForrest, J. E. Synthesizing Allenes Today (1982–2006). Synthesis 2007, 795–818. (b) Yu, S.; Ma, S. How easy are the syntheses of allenes? Chem. Commun. 2011, 47, 5384–5418.

(4) (a) Marion, N.; Nolan, S. P. Propargylic Esters in Gold Catalysis: Access to Diversity. Angew. Chem. Int. Ed. 2007, 46, 2750–2752.(b) Wang, S.; Zhang, G.; Zhang, L. Gold-Catalyzed Reaction of Pro- pargylic Carboxylates via an Initial 3,3-Rearrangement. Synlett 2010, 692–706. (c) Shu, X.-Z.; Shu, D.; Schienebeck, C. M.; Tang, W. Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent ‘‘gold rush’’. Chem. Soc. Rev. 2012, 41, 7698–7711. (d) Shiroodi, R. K.; Gevorgyan, V. Met- al-catalyzed double migratory cascade reactions of propargylic esters and phosphates. Chem. Soc. Rev. 2013, 42, 4991–5001.

(5) Zhang, L. Tandem Au-Catalyzed 3,3-Rearrangement-[2 + 2] Cycloadditions of Propargylic Esters: Expeditious Access to Highly Functionalized 2,3-Indoline-Fused Cyclobutanes. J. Am. Chem. Soc. 2005, 127, 16804–16805.

(6) (a) Rao, W.; Susanti, D.; Chan, P. W. H. Gold-Catalyzed Tandem 1,3-Migration/[2 + 2] Cycloaddition of 1,7-Enyne Benzoates to Azabicyclo[4.2.0]oct-5-enes. J. Am. Chem. Soc. 2011, 133, 15248– 15251. (b) Niemeyer, Z. L.; Pindi, S.; Khrakovsky, D. A.; Kuzniew- ski, C. N.; Hong, C. M.; Joyce, L. A.; Sigman, M. S.; Toste, F. D. Pa- rameterization of Acyclic Diaminocarbene Ligands Applied to a Gold(I)-Catalyzed Enantioselective Tandem Rearrangement/ Cyclization. J. Am. Chem. Soc. 2017, 139, 12943–12946.

(7) (a) Buzas, A.; Gagosz, F. Gold(I) Catalyzed Isomerization of 5- en-2-yn-1-yl Acetates: An Efficient Access to Acetoxy Bicy-clo[3.1.0]hexenes and 2-Cycloalken-1-ones. J. Am. Chem. Soc. 2006, 128, 12614–12615. (b) Zhang, G.; Catalano, V. J.; Zhang, L. PtCl2- Catalyzed Rapid Access to Tetracyclic 2,3-Indoline-Fused Cyclo- pentenes: Reactivity Divergent from Cationic Au(I) Catalysis and Synthetic Potential. J. Am. Chem. Soc. 2007, 129, 11358–11359.

(8) (a) Li, X.; Huang, S.; Schienebeck, C. M.; Shu, D.; Tang, W. Rho- dium-Catalyzed Carbonylation of 3-Acyloxy-1,4-enynes for the Synthesis of Cyclopentenones. Org. Lett. 2012, 14, 1584–1587. (b) Fukuyama, T.; Ohta, Y.; Brancour, C.; Miyagawa, K.; Ryu, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Rh-Catalyzed [5+1] and [4+1] Cycloaddition Reactions of 1,4-Enyne Esters with CO: A Shortcut to Functionalized Resorcinols and Cyclopentenones. Chem. Eur. J. 2012, 18, 7243–7247.

(9) (a) Lu, L.; Liu, X.-Y.; Shu, Z.-Z.; Yang, K.; Ji, K.-G.; Liang, Y.-M. Platinum-Catalyzed Cycloisomerization Reaction of 1,6-Enyne Coupling with Rearrangement of Propargylic Esters. J. Org. Chem. 2009, 74, 474–477. (b) Huang, S.; Li, X.; Lin, C. L.; Guzei, I. A.; Tang, W. Rhodium-catalyzed 1,3-acyloxy migration and subsequent intramolecular [4+2] cycloaddition of vinylallene and unactivated alkyne. Chem. Commun. 2012, 48, 2204–2206. (c) Pirovano, V.; Arpini, E.; Acqua, D.; Vicente, R.; Abbiati, G.; Rossi, E. Gold(I)-Catalyzed Synthesis of Tetrahydrocarbazoles via Cascade [3,3]- Propargylic Rearrangement/[4+2] Cycloaddition of Vinylindoles and Propargylic Esters. Adv. Synth. Catal. 2016, 358, 403–409.

(10) Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W. Synthesis of Highly Functionalized Cyclohexenone Rings: Rhodium- Catalyzed 1,3-Acyloxy Migration and Subsequent [5+1] Cycloaddi- tion. Angew. Chem. Int. Ed. 2011, 50, 1346–1349.

(11) Tian, Z.-Y.; Cui, Q.; Liu, C.-H.; Yu, Z.-X. Rhodium-Catalyzed [4+2+1] Cycloaddition of In Situ Generated Ene/Yne-Ene-Allenes and CO. Angew. Chem. Int. Ed. 2018, 57, 15544–15548.

(12) For selected examples of cascade transformations involving in situ generation of allenes using other methods than 1,3-acyloxy migration, see: (a) Lee, P. H.; Lee, K.; Kang, Y. In Situ Generation of Vinyl Allenes and Its Applications to One-Pot Assembly of Cyclo-hexene, Cyclooctadiene, 3,7-Nonadienone, and Bicy- clo[6.4.0]dodecene Derivatives with Palladium-Catalyzed Multi- component Reactions. J. Am. Chem. Soc. 2006, 128, 1139–1146. (b) Sasaki, M.; Hamzik, P. J.; Ikemoto, H.; Bartko, S. G.; Danheiser, R. L. Formal Bimolecular [2 + 2 + 2] Cycloaddition Strategy for the Synthesis of Pyridines: Intramolecular Propargylic Ene Reac- tion/Aza Diels−Alder Reaction Cascades. Org. Lett. 2018, 20, 6244–6249. (c) Yaragorla, S.; Rajesh, P. In Situ Generation of Al- lenes and their Application to One-Pot Assembly of Functional- ized Fluoreno[3,2-b]furans by Calcium-Catalyzed, Regioselective, 3-Component Reactions. Eur. J. Org. Chem. 2020, 7243–7251. (d) Zhou, Z.-Y.; Xu, Z.-Y.; Shen, Q.-Y.; Huang, L.-S.; Zhang, X.; Xia, A.-B.; Xu, D.-Q.; Xu, Z.-Y. In situ generation of highly reactive allenes from nitrocyclopropanes: controllable synthesis of enynes and enesters. Chem. Commun. 2021, 57, 6424–6427. (e) Chen, N.; He, M.; Zhou, T.; Zhu, Y.; Zhang, H.; Peng, S. Recent Advances in the Tandem Cyclization/Cycloaddition of Allene Intermediates from Copper-Catalyzed Cross-Coupling of Diazo Compounds with Ter- minal Alkynes. Synthesis 2021, 53, 611–622.

(13) (a) Weding, N.; Hapke, M. Preparation and synthetic applica- tions of alkene complexes of group 9 transition metals in [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 2011, 40, 4525–4538. (b) Amatore, M.; Aubert, C. Recent Advances in Stereoselective [2+2+2] Cycloadditions. Eur. J. Org. Chem. 2015, 265–286. (c) Gandeepan, P.; Cheng, C.-H. Cobalt Catalysis Involving π Compo- nents in Organic Synthesis. Acc. Chem. Res. 2015, 48, 1194–1206.

(14) Roglans, A.; Pla-Quintana, A.; Solà, M. Mechanistic Studies of Transition-Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Chem. Rev. 2021, 121, 1894–1979.

(15) Yasui, T.; Tatsumi, R.; Yamamoto, Y. Highly Enantioselective [2+2+2] Cycloaddition of Enediynes Enabled by Co-balt/Organophotoredox Cooperative Catalysis. ACS Catal. 2021, 11, 9479–9484.

(16) Selected examples involving cobalt/photoredox dual cataly- sis, see: (a) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. External Oxidant-Free Oxidative Cross- Coupling: A Photoredox Cobalt-Catalyzed Aromatic C−H Thiola-tion for Constructing C−S Bonds. J. Am. Chem. Soc. 2015, 137, 9273–9280. (b) Ruhl, K. E.; Rovis, T. Visible Light-Gated Cobalt Catalysis for a Spatially and Temporally Resolved [2+2+2] Cy- cloaddition. J. Am. Chem. Soc. 2016, 138, 15527–15530. (c) Ravetz, B. D.; Ruhl, K. E.; Rovis, T. External Regulation of Cobalt-Catalyzed Cycloaddition Polymerization with Visible Light. ACS Catal. 2018, 8, 5323–5327. (d) Meng, Q.-Y.; Schirmer, T. E.; Katou, K.; König, B. Controllable Isomerization of Alkenes by Dual Visible-Light- Cobalt Catalysis. Angew. Chem. Int. Ed. 2019, 58, 5723–5728. (e) Takizawa, K.; Sekino, T.; Sato, S.; Yoshino, T.; Kojima, M.; Matsuna- ga, S. Cobalt-Catalyzed Allylic Alkylation Enabled by Organopho- toredox Catalysis. Angew. Chem. Int. Ed. 2019, 58, 9199–9203. (f) Grenier-Petel, J.-C.; Collins, S. K. Photochemical Cobalt-Catalyzed Hydroalkynylation To Form 1,3-Enynes. ACS Catal. 2019, 9, 3213– 3218. (g) Li, Y.-L.; Zhang, S.-Q.; Chen, J.; Xia, J.-B. Highly Regio- and Enantioselective Reductive Coupling of Alkynes and Aldehydes via Photoredox Cobalt Dual Catalysis. J. Am. Chem. Soc. 2021, 143, 7306–7313. (h) Cristòfol, À. Limburg, B.; Kleij, A. W. Expedient Dual Co/Organophotoredox Catalyzed Stereoselective Synthesis of All-Carbon Quaternary Centers. Angew. Chem. Int. Ed. 2021, 60, 15266–15270.

(17) For selected reviews, see: (a) Shibata, T.; Tsuchikama, K. Recent advances in enantioselective [2 + 2 + 2] cycloaddition. Org. Biomol. Chem. 2008, 6, 1317–1323. (b) Inglesby, P. A.; Evans, P. A. Stereoselective transition metal-catalysed higher-order carbocy- clisation reactions. Chem. Soc. Rev. 2010, 39, 2791–2805. (c) Shi- bata, Y.; Tanaka, K. Rhodium-Catalyzed [2+2+2] Cycloaddition of Alkynes for the Synthesis of Substituted Benzenes: Catalysts, Re-action Scope, and Synthetic Applications. Synthesis 2012, 323–350. (d) Yamamoto, Y. Recent Advances in Transition-Metal- Catalyzed Synthesis of 3- and/or 4-Aryl-2(1H)-Quinolones. Heter‐ ocycles 2019, 98, 1309–1344.

(18) (a) Tanaka, K.; Hojo, D.; Shoji, T.; Hagiwara, Y.; Hirano, M. Rh- Catalyzed [4 + 2] Carbocyclization of Vinylarylaldehydes with Alkenes and Alkynes Leading to Substituted Tetralones and 1- Naphthols. Org. Lett. 2007, 9, 2059–2062. (b) Wang, C.; Chen, Y.; Xie, X.; Liu, J.; Liu, Y. Gold-Catalyzed Furan/Yne Cyclizations for the Regiodefined Assembly of Multisubstituted Protected 1- Naphthols. J. Org. Chem. 2012, 77, 1915–1921. (c) Hojo, D.; Tanaka, K. Rhodium-Catalyzed C–H Bond Activation/[4 + 2] Annu- lation/Aromatization Cascade To Produce Phenol, Naphthol, Phe- nanthrenol, and Triphenylenol Derivatives. Org. Lett. 2012, 14, 1492–1495. (d) Chen, Y.; Wang, L.; Sun, N.; Xie, X.; Zhou, X.; Chen, H.; Li, Y.; Liu, Y. Gold(I)-Catalyzed Furan-yne Cyclizations Involv- ing 1,2-Rearrangement: Efficient Synthesis of Functionalized 1- Naphthols and Its Application to the Synthesis of Wailupemycin G. Chem. Eur. J. 2014, 20, 12015–12019.

(19) Vargas, J. A. M.; Day, D. P.; Burtoloso, A. C. B. Substituted Naphthols: Preparations, Applications, and Reactions. Eur. J. Org. Chem. 2021, 741–756.

(20) A few examples for the synthesis of allenes via formal 1,8- acyloxy migration based on 1,2-acycloxy migration or 1,5-acyloxy migration was previously reported, see; (a) Harrak, Y.; Simonneau, A.; Malacria, M.; Gandon, V.; Fensterbank, L. Gold(I)-catalysed cycloisomerisation of 1,6-enynes into functionalized allenes. Chem. Commun. 2010, 46, 865–867. (b) Teske, J.; Plietker, B. A Redox-Neutral Fe-Catalyzed Cycloisomerization of Enyne Ace- tates. ACS Catal. 2016, 6, 7148–7151.

(21) (a) Slowinski, F.; Aubert, C.; Malacria, M. Intramolecular [2+2+2] Cyclization of Triynes and Enediynes Catalyzed by CoI2- Mn-Phosphine Ligand. Adv. Synth. Catal. 2001, 343, 64–67. (b) Geny, A.; Gaudrel, S.; Slowinski, F.; Amatore, M.; Chouraqui, G.; Malacria, M.; Aubert, C.; Gandon, V. A Straightforward Procedure for the [2+2+2] Cycloaddition of Enediynes. Adv. Synth. Catal. 2009, 351, 271–275.

(22) (a) Kikuchi, H.; Uno, M.; Takahashi, S. A New Ruthenium- catalyzed Reaction with Propargyl Alcohol: Cyclopropanation of Norbornene. Chem. Lett. 1997, 26, 1273–1274. (b) Tenaglia, A.; Marc, S. CpRuCl(PPh3)2-Catalyzed Cyclopropanation of Bicyclic Alkenes with Tertiary Propargylic Acetates. J. Org. Chem. 2006, 71, 3569–3575. (c) Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsu- naga, S.; Kanai, M. Dehydrative Direct C–H Allylation with Allylic Alcohols under [Cp*CoIII] Catalysis. Angew. Chem. Int. Ed. 2015, 54, 9944–9947. (d) Wu, X.; Fan, J.; Fu, C.; Ma, S. A ruthenium(II)-catalyzed C–H allenylation-based approach to allenoic acids. Chem. Sci. 2019, 10, 6316–6321.

(23) (a) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Hydrosilyla- tion of 1-hexyne catalyzed by rhodium and cobalt-rhodium mixed-metal complexes. Mechanism of apparent trans addition. Organometallics 1990, 9, 3127–3133. (b) Tanke, R. S.; Crabtree, R. H. Unusual activity and selectivity in alkyne hydrosilylation with an iridium catalyst stabilized by an oxygen-donor ligand. J. Am. Chem. Soc. 1990, 112, 7984–7989. (c) Yasui, T.; Kikuchi, T.; Yamamoto, Y. Rhodium-catalyzed cycloisomerization of ester- tethered 1,6-diynes with cyclopropanol moiety leading to tetra- lone/exocyclic diene hybrid molecules. Chem. Commun. 2020, 56, 12865–12868.

(24) Kundu, D.; Tripathy, M.; Maity, P.; Ranu, B. C. Cobalt- Catalyzed Intermolecular C(sp2)–O Cross-Coupling. Chem. Eur. J. 2015, 21, 8727–8732.

(25) (a) Reich, H. J.; Eisenhart, E. K.; Whipple, W. L.; Kelly, M. J. Stereochemistry of Vinylallene Cycloadditions. J. Am. Chem. Soc. 1988, 110, 6432–6442. (b) Alcaide, B.; Almendros, P.; Aragoncillo, C. Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev. 2010, 39, 783–816.

(26) X-ray crystallographic data for compounds 7, 9a, 9b, 10a, and 12 have been deposited with the Cambridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under code CCDC2100989–2100993. For details, see the Supporting Infor- mation.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る