リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Horizontally Transferred DNA in the Genome of the Fungus Pyricularia oryzae is Associated With Repressive Histone Modifications」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Horizontally Transferred DNA in the Genome of the Fungus Pyricularia oryzae is Associated With Repressive Histone Modifications

Kobayashi, Natsuki Dang, Thach An Pham, Kieu Thi Minh Gómez Luciano, Luis B Van Vu, Ba Izumitsu, Kosuke Shimizu, Motoki Ikeda, Ken-ichi Li, Wen-Hsiung Nakayashiki, Hitoshi 神戸大学

2023.09

概要

Horizontal gene transfer (HGT) is a means of exchanging genetic material asexually. The process by which horizontally transferred genes are domesticated by the host genome is of great interest but is not well understood. In this study, we determined the telomere-to-telomere genome sequence of the wheat-infecting Pyricularia oryzae strain Br48. SNP analysis indicated that the Br48 strain is a hybrid of wheat- and Brachiaria-infecting strains by a sexual or parasexual cross. Comparative genomic analysis identified several megabase-scale “insertions” in the Br48 genome, some of which were possibly gained by HGT-related events from related species, such as P. pennisetigena or P. grisea. Notably, the mega-insertions often contained genes whose phylogeny is not congruent with the species phylogeny. Moreover, some of the genes have a close homolog even in distantly related organisms, such as basidiomycetes or prokaryotes, implying the involvement of multiple HGT events. Interestingly, the levels of the silent epigenetic marks H3K9me3 and H3K27me3 in a genomic region tended to be negatively correlated with the phylogenetic concordance of genes in the same region, suggesting that horizontally transferred DNA is preferentially targeted for epigenetic silencing. Indeed, the putative HGT-derived genes were activated when MoKmt6, the gene responsible for H3K27me3 modification, was deleted. Notably, these genes also tended to be up-regulated during infection, suggesting that they are now under host control and have contributed to establishing a fungal niche. In conclusion, this study suggests that epigenetic modifications have played an important role in the domestication of HGT-derived genes in the P. oryzae genome.

この論文で使われている画像

参考文献

Alexander WG, Wisecaver JH, Rokas A, Hittinger CT. 2016.

Horizontally acquired genes in early-diverging pathogenic fungi

enable the use of host nucleosides and nucleotides. Proc Natl

Acad Sci U S A. 113:4116–4121.

Ambrose KV, Koppenhöfer AM, Belanger FC. 2014. Horizontal gene

transfer of a bacterial insect toxin gene into the Epichloe fungal

symbionts of grasses. Sci Rep. 4:5562.

Chou DM, Adamson B, Dephoure NE, Tan X, Nottke AC, Hurov KE,

Gygi SP, Colaiácovo MP, Elledge SJ. 2010. A chromatin localiza­

tion screen reveals poly (ADP ribose)-regulated recruitment of

the repressive polycomb and NuRD complexes to sites of DNA

damage. Proc Natl Acad Sci U S A. 107:18475–18480.

Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida

K, Terauchi R, Fujita Y, Nakayashiki H, et al. 2011. Multiple trans­

location of the AVR-Pita effector gene among chromosomes of

the rice blast fungus Magnaporthe oryzae and related species.

PLoS Pathog. 7:e1002147.

Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC,

Grimwood J, Schmutz J, Taga M, White GJ, Zhou SG, et al. 2009.

The genome of Nectria haematococca: contribution of super­

numerary chromosomes to gene expansion. PLoS Genet. 5:

e1000618.

Connolly LR, Smith KM, Freitag M. 2013. The Fusarium graminearum

histone H3 K27 methyltransferase KMT6 regulates development

and expression of secondary metabolite gene clusters. PLoS

Genet. 9:e1003916.

Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ,

Thon M, Kulkarni R, Xu JR, Pan H, et al. 2005. The genome se­

quence of the rice blast fungus Magnaporthe grisea. Nature.

434:980–986.

Eisen JA. 2000. Assessing evolutionary relationships among microbes

from whole-genome analysis. Curr Opin in Microbiol. 3:475–480.

Erlendson AA, Friedman S, Freitag M. 2017. A matter of scale and di­

mensions: chromatin of chromosome landmarks in the fungi.

Microbiol Spectrum. 5:4–5.

Fitzpatrick DA. 2012. Horizontal gene transfer in fungi. FEMS

Microbiol Lett. 329:1–8.

Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H, Faris JD,

Rasmussen JB, Solomon PS, McDonald BA, Oliver RP. 2006.

Emergence of a new disease as a result of interspecific virulence

gene transfer. Nat Genet. 38:953–956.

Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN, Nhani A, Chen

L, Terauchi R, Lebrun MH, et al. 2018. Gene flow between diver­

gent cereal-and grass-specific lineages of the rice blast fungus

Magnaporthe oryzae. mBIO. 9:e01219–1236.

Gómez Luciano LB, Tsai IJ, Chuma I, Tosa Y, Chen YH, Li JY, Li MY, Lu

MYJ, Nakayashiki H, Li WH. 2019. Blast fungal genomes show fre­

quent chromosomal changes, gene gains and losses, and effector

gene turnover. Mol Biol Evol. 36:1148–1161.

Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF, Hane

JK, Foster AJ, Van der Lee TAJ, Grimwood J, Aerts A, et al. 2011.

Finished genome of the fungal wheat pathogen Mycosphaerella

graminicola reveals dispensome structure, chromosome plasticity,

and stealth pathogenesis. PLoS Genet. 7:e1002070.

Habig M, Lorrain C, Feurtey A, Komluski J, Stukenbrock EH. 2021.

Epigenetic modifications affect the rate of spontaneous muta­

tions in a pathogenic fungus. Nat Commun. 12:5869.

Han YN, Liu XG, Benny U, Kistler HC, VanEtten HD. 2001. Genes de­

termining pathogenicity to pea are clustered on a supernumer­

ary chromosome in the fungal plant pathogen Nectria

haematococca. Plant J. 25:305–314.

Downloaded from https://academic.oup.com/mbe/article/40/9/msad186/7245980 by Kobe Universtiy Library user on 14 September 2023

proteins in a fungal species against the seven conserved pro­

teins in P. oryzae. Consequently, the species ranking was de­

termined in order of their appearance in this section.

The ranking of gene similarity to a gene in P. oryzae was

made according to BLASTP scores of the top-hit protein in

the twenty fungal species. When no orthologous proteins

were detected in fungal species by BLAST search with the

cutoff values of E-value <0.01 and query cover >40%, the

average of the lower ranks was given to all of them. For ex­

ample, if five fungal species do not possess a detectable

ortholog, they are all ranked as 18th. When an ortholog

was not detectable in more than 10 fungal species, the

gene was eliminated from the analysis. The IPC of a gene

was given as a correlation coefficient between the rankings

of species similarity and gene similarity.

Horizontally Transferred DNA in the Fungal Genome · https://doi.org/10.1093/molbev/msad186

methylation in an exogenous promoter CpG island. PLoS

Genet. 4:e1000155.

Peng Z, Oliveira-Garcia E, Lin GF, Hu Y, Dalby M, Migeon P, Tang HB,

Farman M, Cook D, White FF, et al. 2019. Effector gene reshuffling

involves dispensable mini-chromosomes in the wheat blast fun­

gus. PLoS Genet. 15:e1008272.

Pham KT, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T, Ikeda K,

Nakayashiki H. 2015. MoSET1 (histone H3K4 methyltransferase

in Magnaporthe oryzae) regulates global gene expression during

infection-related morphogenesis. PLoS Genet. 11:e1005385.

Qiu H, Cai G, Luo J, Bhattacharya D, Zhang N. 2016. Extensive hori­

zontal gene transfers between plant pathogenic fungi. BMC Biol.

14:41.

Rahnama M, Novikova O, Starnes JH, Zhang S, Chen L, Farman ML. 2020.

Transposon-mediated telomere destabilization: a driver of genome

evolution in the blast fungus. Nucleic Acids Res. 48:7197–7217.

Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G, Paszkiewicz

K, Foster PG, Hall N, Talbot NJ. 2011. Horizontal gene transfer facili­

tated the evolution of plant parasitic mechanisms in the oomy­

cetes. Proc Natl Acad Sci U S A. 108:15258–15263.

Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM,

Freitag M, Stukenbrock EH. 2015. Histone modifications rather

than the novel regional centromeres of zymoseptoria tritici distin­

guish core and accessory chromosomes. Epigenet Chromatin. 8:41.

Soanes D, Richards TA. 2014. Horizontal gene transfer in eukaryotic

plant pathogens. Ann Rev Phytopathol. 52:583–614.

Starnes JH, Thornbury DW, Novikova OS, Rehmeyer CJ, Farman ML.

2012. Telomere-targeted retrotransposons in the rice blast fun­

gus Magnaporthe oryzae: agents of telomere instability.

Genetics. 191:389–406.

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome compari­

son visualizer. Bioinformatics. 27:1009–1010.

Talbot NJ, Ebbole DJ, Hamer JE. 1993. Identification and characteriza­

tion of MPG1, a gene involved in pathogenicity from the rice

blast fungus Magnaporthe grisea. Plant Cell. 5:1575–1590.

Tembo B, Mulenga RM, Sichilima S, M’Siska K K, Mwale M, Chikoti

PC, Singh PK, He X, Pedley KF, et al. 2020. Detection and charac­

terization of fungus (Magnaporthe oryzae pathotype Triticum)

causing wheat blast disease on rain-fed grown wheat (Triticum

aestivum L.) in Zambia. PLoS One. 15:e0238724.

Temporini ED, VanEtten HD. 2004. An analysis of the phylogenetic

distribution of the pea pathogenicity genes of Nectria haemato­

cocca MPVI supports the hypothesis of their origin by horizontal

transfer and uncovers a potentially new pathogen of garden pea:

Neocosmospora boniensis. Curr Genet. 46:29–36.

Ueyama A, Tsuda M. 1975. Formation of the perfect state in culture

of Pyricularia sp. From some graminaceous plants. Trans Mycol

Soc Japan. 16:420–422.

Urashima AS, Igarashi S, Kato H. 1993. Host range, mating type, and

fertility of Pyricularia grisea from wheat in Brazil. Plant dis. 77:

1211–1216.

Van Vu B, Nguyen Q, Kondo-Takeoka Y, Murata T, Kadotani N, Thi

Nguyen G, Arazoe T, Ohsato S, Nakayashiki H. 2021. Copy numberdependent DNA methylation of the Pyricularia oryzae MAGGY

retrotransposon is triggered by DNA damage. Commun Biol. 4:351.

Wisecaver JH, Rokas A. 2015. Fungal metabolic gene clusterscaravans traveling across genomes and environments. Front

Microbiol. 6:161.

Yaegashi H, Nishihara N. 1976. Production of the perfect stage in

Pyricularia from cereals and grasses. Ann Phytopath Soc Japan.

42:511–515.

Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, Inoue

Y, Chuma I, Tosa Y, Cano LM, et al. 2016. Host specialization of the blast

fungus Magnaporthe oryzae is associated with dynamic gain and loss

of genes linked to transposable elements. BMC Genomics. 17:370.

Zhang N, Cai GH, Price DC, Crouch JA, Gladieux P, Hillman B, Khang

CH, LeBrun MH, Lee YH, Luo J, et al. 2018. Genome wide analysis

of the transition to pathogenic lifestyles in Magnaporthales fun­

gi. Sci Rep. 8:5862.

17

Downloaded from https://academic.oup.com/mbe/article/40/9/msad186/7245980 by Kobe Universtiy Library user on 14 September 2023

Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu

K, Tsuge T. 2002. A conditionally dispensable chromosome con­

trols host-specific pathogenicity in the fungal plant pathogen

Alternaria alternata. Genetics. 161:59–70.

Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS. 1986.

Ocorrência de pyricularia sp. no estado do paraná. Fitopatol

Bras. 11:351–352.

Ikeda K, Nakayashiki H, Kataoka T, Tamba H, Hashimoto Y, Tosa Y,

Mayama S. 2002. Repeat-induced point mutation (RIP) in

Magnaporthe grisea: implications for its sexual cycle in the nat­

ural field context. Mol Microbiol. 45:1355–1364.

Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C, Asuke S, Anh VL,

Cumagun CJR, Chuma I, Terauchi R, et al. 2017. Evolution of the

wheat blast fungus through functional losses in a host specificity

determinant. Science. 357:80–83.

Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee

P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, et al.

2016. Emergence of wheat blast in Bangladesh was caused by a

South American lineage of Magnaporthe oryzae. BMC Biol. 14:84.

Kato H, Yamaguchi T, Nishihara N. 1976. The perfect state of

Pyricularia oryzae cav. In culture. Ann Phytopathol Soc Jpn.

42:507–510.

Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y,

Nakayashiki H, Tosa Y, Mayama S, Mori N. 2000. Pathogenicity, mat­

ing ability and DNA restriction fragment length polymorphisms of

Pyricularia populations isolated from Gramineae, Bambusideae and

Zingiberaceae plants. J Gen Plant Pathol. 66:30–47.

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic

evolution. Nat Rev Genet. 9:605–618.

Khaldi N, Collemare J, Lebrun MH, Wolfe KH. 2008. Evidence for hori­

zontal transfer of a secondary metabolite gene cluster between

fungi. Genome Biol. 9:R18.

Koonin EV, Makarova KS, Aravind L. 2001. Horizontal gene transfer

in prokaryotes: quantification and classification. Ann Rev

Microbiol. 55:709–742.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: mo­

lecular evolutionary genetics analysis across computing plat­

forms. Mol Biol Evol. 35:1547–1549.

Langner T, Harant A, Gomez-Luciano LB, Shrestha RK, Malmgren A,

Latorre SM, Burbano HA, Win J, Kamoun S. 2021. Genomic rearran­

gements generate hypervariable mini-chromosomes in

host-specific isolates of the blast fungus. PLoS Genet. 17:e1009386.

Li B, Carey M, Workman JL. 2007. The role of chromatin during tran­

scription. Cell. 128:707–719.

Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di

Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, et al.

2010. Comparative genomics reveals mobile pathogenicity chro­

mosomes in Fusarium. Nature. 464:367–373.

Marcet-Houben M, Gabaldón T. 2010. Acquisition of prokaryotic

genes by fungal genomes. Trends Genet. 26:5–8.

Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’barek S,

Gohari AM, Jashni MK, Stergiopoulos I, Kema GH, de Wit PJ.

2011. Horizontal gene and chromosome transfer in plant patho­

genic fungi affecting host range. FEMS Microbiol Rev. 35:542–554.

Milani NA, Lawrence DP, Arnold AE, VanEtten HD. 2012. Origin of

pisatin demethylase (PDA) in the genus fusarium. Fungal Genet

Biol. 49:933–942.

Nakayashiki H, Kiyotomi K, Tosa Y, Mayama S. 1999. Transposition of

the retrotransposon MAGGY in heterologous species of fila­

mentous fungi. Genetics. 53:693–703.

Nguyen Q, Iritani A, Ohkita S, Vu BV, Yokoya K, Matsubara A, Ikeda

KI, Suzuki N, Nakayashiki H. 2018. A fungal argonaute interferes

with RNA interference. Nucleic Acids Res. 46:2495–2508.

Noguchi MT, Yasuda N, Fujita Y. 2006. Evidence of genetic exchange

by parasexual recombination and genetic analysis of pathogen­

icity and mating type of parasexual recombinants in rice blast

fungus, Magnaporthe oryzae. Phytopathology. 96:746–750.

O’Hagan HM, Mohammad HP, Baylin SB. 2008. Double strand breaks

can initiate gene silencing and SIRT1-dependent onset of DNA

MBE

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る