リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon

Sato, Mitsuhiko P Iwakami, Satoshi Fukunishi, Kanade Sugiura, Kai Yasuda, Kentaro Isobe, Sachiko Shirasawa, Kenta 京都大学 DOI:10.1093/dnares/dsad023

2023.10

概要

Echinochloa phyllopogon is an allotetraploid pernicious weed species found in rice fields worldwide that often exhibit resistance to multiple herbicides. An accurate genome sequence is essential to comprehensively understand the genetic basis underlying the traits of this species. Here, the telomere-to-telomere genome sequence of E. phyllopogon was presented. Eighteen chromosome sequences spanning 1.0 Gb were constructed using the PacBio highly fidelity long technology. Of the 18 chromosomes, 12 sequences were entirely assembled into telomere-to-telomere and gap-free contigs, whereas the remaining six sequences were constructed at the chromosomal level with only eight gaps. The sequences were assigned to the A and B genome with total lengths of 453 and 520 Mb, respectively. Repetitive sequences occupied 42.93% of the A genome and 48.47% of the B genome, although 32, 337, and 30, 889 high-confidence genes were predicted in the A and B genomes, respectively. This suggested that genome extensions and gene disruptions caused by repeated sequence accumulation often occur in the B genome before polyploidization to establish a tetraploid genome. The highly accurate and comprehensive genome sequence could be a milestone in understanding the molecular mechanisms of the pernicious traits and in developing effective weed control strategies to avoid yield loss in rice production.

この論文で使われている画像

参考文献

1. Yabuno, T. 1981, Cytological relationship between Echinochloa

oryzicola Vasing and the french strain of E. phyllopogon stapf

subsp oryzicola (Vasing) Koss, Cytologia, 46, 393–6.

Downloaded from https://academic.oup.com/dnaresearch/article/30/5/dsad023/7334457 by Kyoto Univeristy user on 13 November 2023

Figure 5. Genetic relationship for E. phyllopogon. (A) PCA, (B) phylogenetic tree using the maximum likelihood method, and (C) the genetic structure of

K = 4 and 5. Dot colours in (A) and (B) were consistent with the horizontal bar colours in (C).

Genome assembly of Echinochloa phyllopogon

24. Rastas, P. 2017, Lep-MAP3: robust linkage mapping even for

low-coverage whole genome sequencing data, Bioinformatics, 33,

3726–32.

25. Tang, H., Zhang, X., Miao, C., et al. 2015, ALLMAPS: robust scaffold ordering based on multiple maps, Genome Biol., 16, 3.

26. Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A., and Zdobnov,

E.M. 2021, BUSCO update: novel and streamlined workflows along

with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes, Mol. Biol. Evol., 38, 4647–54.

27. Ondov, B.D., Treangen, T.J., Melsted, P., et al. 2016, Mash: fast

genome and metagenome distance estimation using MinHash, Genome Biol., 17, 132.

28. Bao, W., Kojima, K.K., and Kohany, O. 2015, Repbase update, a

database of repetitive elements in eukaryotic genomes, Mob. DNA,

6, 11.

29. Brůna, T., Hoff, K.J., Lomsadze, A., Stanke, M., and Borodovsky,

M. 2021, BRAKER2: automatic eukaryotic genome annotation

with GeneMark-EP+ and AUGUSTUS supported by a protein database, NAR Genom. Bioinform., 3, lqaa108.

30. Kawahara, Y., de la Bastide, M., Hamilton, J.P., et al. 2013, Improvement of the Oryza sativa Nipponbare reference genome using

next generation sequence and optical map data, Rice (New York,

N.Y.), 6, 4.

31. Jiao, Y., Peluso, P., Shi, J., et al. 2017, Improved maize reference

genome with single-molecule technologies, Nature, 546, 524–7.

32. Huerta-Cepas, J., Szklarczyk, D., Heller, D., et al. 2019, eggNOG

50: a hierarchical, functionally and phylogenetically annotated

orthology resource based on 5090 organisms and 2502 viruses,

Nucleic Acids Res., 47, D309–14.

33. UniProt Consortium. 2021, UniProt: the universal protein

knowledgebase in 2021, Nucleic Acids Res., 49, D480–9.

34. Huerta-Cepas, J., Forslund, K., Coelho, L.P., et al. 2017, Fast

genome-wide functional annotation through orthology assignment

by eggNOG-mapper, Mol. Biol. Evol., 34, 2115–22.

35. Buchfink, B., Reuter, K., and Drost, H.-G. 2021, Sensitive protein

alignments at tree-of-life scale using DIAMOND, Nat. Methods,

18, 366–8.

36. Emms, D.M. and Kelly, S. 2019, OrthoFinder: phylogenetic

orthology inference for comparative genomics, Genome Biol., 20,

238.

37. Shumate, A. and Salzberg, S.L. 2020, Liftoff: accurate mapping of

gene annotations, Bioinformatics, 37, 1639–43.

38. Adrian Alexa, J. R. 2017, topGO. Bioconductor.

39. Alexa, A., Rahnenführer, J., and Lengauer, T. 2006, Improved

scoring of functional groups from gene expression data by

decorrelating GO graph structure, Bioinformatics, 22, 1600–7.

40. Li, H. 2018, Minimap2: pairwise alignment for nucleotide

sequences, Bioinformatics, 34, 3094–100.

41. Cabanettes, F. and Klopp, C. 2018, D-GENIES: dot plot large

genomes in an interactive, efficient and simple way, PeerJ, 6, e4958.

42. Wang, Y., Tang, H., Debarry, J.D., et al. 2012, MCScanX: a toolkit

for detection and evolutionary analysis of gene synteny and collinearity, Nucleic Acids Res., 40, e49.

43. Bandi, V., and Gutwin, C. 2020, Interactive exploration of genomic

conservation. In: Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020.

44. Cingolani, P., Platts, A., Wang, L.L., et al. 2012, A program

for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff: SNPs in the genome of Drosophila

melanogaster strain w1118; iso-2; iso-3, Fly, 6, 80–92.

45. Chang, C.C., Chow, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell,

S.M., and Lee, J.J. 2015, Second-generation PLINK: rising to the

challenge of larger and richer datasets, GigaScience, 4, 1–16.

46. Stamatakis, A. 2014, RAxML version 8: a tool for phylogenetic

analysis and post-analysis of large phylogenies, Bioinformatics, 30,

1312–3.

47. Alexander, D.H., Novembre, J., and Lange, K. 2009, Fast modelbased estimation of ancestry in unrelated individuals, Genome

Res., 19, 1655–64.

Downloaded from https://academic.oup.com/dnaresearch/article/30/5/dsad023/7334457 by Kyoto Univeristy user on 13 November 2023

2. Yamasue, Y. 2001, Strategy of Echinochloa oryzicola Vasing for

survival in flooded rice, Weed Biol. Manag., 1, 28–36.

3. Yasuda, K., Mori, K., and Nakayama, Y. 2020, A tetraploid Echinochloa

with plagiotropic tillers: its distribution and habitat in the northern

part of the main island of Japan, Weed Biol. Manag., 20, 82–8.

4. Iwakami, S., Endo, M., Saika, H., et al. 2014, Cytochrome P450

CYP81A12 and CYP81A21 are associated with resistance to two

acetolactate synthase inhibitors in Echinochloa phyllopogon, Plant

Physiol., 165, 618–29.

5. Iwakami, S., Kamidate, Y., Yamaguchi, T., et al. 2019, CYP81A

P450s are involved in concomitant cross-resistance to acetolactate

synthase and acetyl-CoA carboxylase herbicides in Echinochloa

phyllopogon, New Phytol., 221, 2112–22.

6. Suda, H., Kubo, T., Yoshimoto, Y., et al. 2023, Transcriptionally

linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance, Plant Physiol., 192, 3017–29.

7. Ye, C.-Y., Wu, D., Mao, L., et al. 2020, The genomes of the

allohexaploid echinochloa crus-galli and its progenitors provide

insights into polyploidization-driven adaptation, Mol. Plant, 13,

1298–310.

8. Wu, D., Shen, E., Jiang, B., et al. 2022, Genomic insights into the

evolution of Echinochloa species as weed and orphan crop, Nat.

Commun., 13, 689.

9. Nurk, S., Koren, S., Rhie, A., et al. 2022, The complete sequence of

a human genome, Science, 376, 44–53.

10. Huang, Z., Xu, Z., Bai, H., et al. 2023, Evolutionary analysis of

a complete chicken genome, Proc. Natl. Acad. Sci. U.S.A., 120,

e2216641120.

11. Bowyer, P., Currin, A., Delneri, D., and Fraczek, M.G. 2022,

Telomere-to-telomere genome sequence of the model mould pathogen Aspergillus fumigatus, Nat. Commun., 13, 5394.

12. Kurokochi, H., Tajima, N., Sato, M.P., et al. 2023, Telomere-totelomere genome assembly of matsutake (Tricholoma matsutake),

DNA Res., 30, dsad006.

13. Bliznina, A., Masunaga, A., Mansfield, M.J., et al. 2021, Telomereto-telomere assembly of the genome of an individual Oikopleura

dioica from Okinawa using Nanopore-based sequencing, BMC

Genom., 22, 222.

14. Giguere, D.J., Bahcheli, A.T., Slattery, S.S., et al. 2022, Telomere-totelomere genome assembly of Phaeodactylum tricornutum, PeerJ,

10, e13607.

15. Tsuji, R., Fischer, A.J., Yoshino, M., Roel, A., Hill, J.E., and

Yamasue, Y. 2003, Herbicide-resistant late watergrass (Echinochloa

phyllopogon): similarity in morphological and amplified fragment

length polymorphism traits, Weed Sci., 51, 740–7.

16. Marçais, G. and Kingsford, C. 2011, A fast, lock-free approach for

efficient parallel counting of occurrences of k-mers, Bioinformatics,

27, 764–70.

17. Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. 2021,

Haplotype-resolved de novo assembly using phased assembly

graphs with hifiasm, Nat. Methods, 18, 170–5.

18. Marçais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg,

S.L., and Zimin, A. 2018, MUMmer4: a fast and versatile genome

alignment system, PLoS Comput. Biol., 14, e1005944.

19. Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S., and Hoekstra,

H.E. 2012, Double digest RADseq: an inexpensive method for de

novo SNP discovery and genotyping in model and non-model species, PLoS One, 7, e37135.

20. Shirasawa, K., Hirakawa, H., and Isobe, S. 2016, Analytical workflow of double-digest restriction site-associated DNA sequencing

based on empirical and in silico optimization in tomato, DNA Res.,

23, 145–53.

21. Langmead, B. and Salzberg, S.L. 2012, Fast gapped-read alignment

with Bowtie 2, Nat. Methods, 9, 357–9.

22. Danecek, P., Bonfield, J.K., Liddle, J., et al. 2021, Twelve years of

SAMtools and BCFtools, GigaScience, 10, giab008.

23. Danecek, P., Auton, A., Abecasis, G., et al.; 1000 Genomes Project

Analysis Group. 2011, The variant call format and VCFtools, Bioinformatics, 27, 2156–8.

10

56. Shirasawa, K., Itai, A., and Isobe, S. 2021, Genome sequencing

and analysis of two early-flowering cherry (Cerasus × kanzakura)

varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’, DNA Res., 28,

dsab026.

57. Shirasawa, K., Nishio, S., Terakami, S., Botta, R., Marinoni,

D.T., and Isobe, S. 2021, Chromosome-level genome assembly

of Japanese chestnut (Castanea crenata Sieb et Zucc) reveals

conserved chromosomal segments in woody rosids, DNA Res.,

28, dsab016.

58. Huang, C., Ding, S., Zhang, H., Du, H., and An, L. 2011, CIPK7 is

involved in cold response by interacting with CBL1 in Arabidopsis

thaliana, Plant Sci., 181, 57–64.

59. Cheong, Y.H., Kim, K.-N., Pandey, G.K., Gupta, R., Grant, J.J., and

Luan, S. 2003, CBL1, a calcium sensor that differentially regulates

salt, drought, and cold responses in Arabidopsis, Plant Cell, 15,

1833–45.

60. Yasuda, S., Aoyama, S., Hasegawa, Y., Sato, T., and Yamaguchi,

J. 2017, Arabidopsis CBL-interacting protein kinases regulate

carbon/nitrogen-nutrient response by phosphorylating ubiquitin ligase ATL31, Mol. Plant, 10, 605–18.

61. Kolukisaoglu, U., Weinl, S., Blazevic, D., Batistic, O., and Kudla,

J. 2004, Calcium sensors and their interacting protein kinases: genomics of the arabidopsis and rice CBL-CIPK signaling networks,

Plant Physiol., 134, 43–58.

Downloaded from https://academic.oup.com/dnaresearch/article/30/5/dsad023/7334457 by Kyoto Univeristy user on 13 November 2023

48. Bennetzen, J.L., Schmutz, J., Wang, H., et al. 2012, Reference genome sequence of the model plant Setaria, Nat. Biotechnol., 30,

555–61.

49. Sakai, H., Lee, S.S., Tanaka, T., et al. 2013, Rice Annotation Project

Database (RAP-DB): an integrative and interactive database for

rice genomics, Plant Cell Physiol., 54, e6.

50. Liu, J., Seetharam, A.S., Chougule, K., et al. 2020, Gapless assembly

of maize chromosomes using long-read technologies, Genome

Biol., 21, 121.

51. Wang, B., Yang, X., Jia, Y., et al. 2022, High-quality Arabidopsis

thaliana Genome Assembly with Nanopore and HiFi Long Reads,

Genom. Proteom. Bioinform., 20, 4–13.

52. Deng, Y., Liu, S., Zhang, Y., et al. 2022, A telomere-to-telomere

gap-free reference genome of watermelon and its mutation library

provide important resources for gene discovery and breeding, Mol.

Plant, 15, 1268–84.

53. Rice, E.S. and Green, R.E. 2019, New approaches for genome assembly and scaffolding, Annu. Rev. Anim. Biosci., 7, 17–40.

54. Fierst, J.L. 2015, Using linkage maps to correct and scaffold de

novo genome assemblies: methods, challenges, and computational

tools, Front. Genet., 6, 220.

55. Gutiérrez-Valencia, J., Fracassetti, M., Berdan, E.L., et al. 2022, Genomic analyses of the Linum distyly supergene reveal convergent

evolution at the molecular level, Curr. Biol., 32, 4360–4371.e6.

M.P. Sato et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る